Keywords: bayesian |  regression |  normal-normal model |  bayesian updating |  conjugate prior |  Download Notebook

Contents

Contents

%matplotlib inline
import numpy as np
import scipy as sp
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.width', 500)
pd.set_option('display.max_columns', 100)
pd.set_option('display.notebook_repr_html', True)
import seaborn as sns
sns.set_style("whitegrid")
sns.set_context("poster")
from scipy.stats import norm
from scipy.stats import multivariate_normal
def cplot(f, ax=None):
    if not ax:
        plt.figure(figsize=(4,4))
        ax=plt.gca()
    xx,yy=np.mgrid[-1:1:.01,-1:1:.01]
    pos = np.empty(xx.shape + (2,))
    pos[:, :, 0] = xx
    pos[:, :, 1] = yy
    ax.contourf(xx, yy, f(pos))
    #data = [x, y]
    return ax
def plotSampleLines(mu, sigma, numberOfLines, dataPoints=None, ax=None):
    #Plot the specified number of lines of the form y = w0 + w1*x in [-1,1]x[-1,1] by
    # drawing w0, w1 from a bivariate normal distribution with specified values
    # for mu = mean and sigma = covariance Matrix. Also plot the data points as
    # blue circles. 
    #print "datap",dataPoints
    if not ax:
        plt.figure()
        ax=plt.gca()
    for i in range(numberOfLines):
        w = np.random.multivariate_normal(mu,sigma)
        func = lambda x: w[0] + w[1]*x
        xx=np.array([-1,1])
        ax.plot(xx,func(xx),'r', alpha=0.2)
    if dataPoints:
        ax.scatter(dataPoints[0],dataPoints[1])
    ax.set_xlim([-1,1])
    ax.set_ylim([-1,1])

The Bayesian formulation of regression

Let us say we have data $D$, of $n$ observations
$D=\left{ ({\bf x}_1, y_1), ({\bf x}_2,y_2), \ldots, ({\bf x}_n, y_n) \right} $ where ${\bf x}$ denotes an input vector of dimension $D$ and $y$ denotes a scalar output (dependent variable). All data points are combined into a $D \times n$ matrix $X$. The model that determines the relationship between inputs and output is given by

where ${\bf w}$ is a vector of parameters of the linear model. Usually there is a bias or offset is included, but for now we ignore it.

We assume that the additive noise $\epsilon$ is iid Gaussian with zero mean and variance $\sigma_n^2$

a0=-0.3
a1=0.5
N=20
noiseSD=0.2
u=np.random.rand(20)
x=2.*u -1.
def randnms(mu, sigma, n):
    return sigma*np.random.randn(n) + mu
y=a0+a1*x+randnms(0.,noiseSD,N)
plt.scatter(x,y)
<matplotlib.collections.PathCollection at 0x11651dda0>

png

Likelihood

The likelihood is, because we assume independency, the product

where $ x $ denotes the Euclidean length of vector $\bf x$.
likelihoodSD = noiseSD # Assume the likelihood precision is known.
likelihoodPrecision = 1./(likelihoodSD*likelihoodSD)

Prior

In the Bayesian framework inference we need to specify a prior over the parameters that expresses our belief about the parameters before we take any measurements. A wise choice is a ${\bf w_0}$ mean Gaussian with covariance matrix $\Sigma$

If we assume that $\Sigma$ is a diagonal covariance matrix then

priorMean = np.zeros(2)
priorPrecision=2.0
prior_covariance = lambda alpha: alpha*np.eye(2)#Covariance Matrix
priorCovariance = prior_covariance(1/priorPrecision )
priorPDF = lambda w: multivariate_normal.pdf(w,mean=priorMean,cov=priorCovariance)
priorPDF([1,2])
0.0021447551423913074
cplot(priorPDF);

png

plotSampleLines(priorMean,priorCovariance,15)

png

Posterior

We can now continue with the standard Bayesian formalism

In the next step we `complete the square’ and obtain

\begin{equation} p(\bf w| \bf y,X) \propto \exp \left( -\frac{1}{2} (\bf w - \bar{\bf w})^T (\frac{1}{\sigma_n^2} X X^T + \Sigma^{-1})(\bf w - \bar{\bf w} ) \right) \end{equation}

This is a Gaussian with inverse-covariance

where the new mean is

To make predictions for a test case we average over all possible parameter predictive distribution values, weighted by their posterior probability. This is in contrast to non Bayesian schemes, where a single parameter is typically chosen by some criterion.

# Given the mean = priorMu and covarianceMatrix = priorSigma of a prior
# Gaussian distribution over regression parameters; observed data, x
# and y; and the likelihood precision, generate the posterior
# distribution, postW via Bayesian updating and return the updated values
# for mu and sigma. xtrain is a design matrix whose first column is the all
# ones vector.
def update(x,y,likelihoodPrecision,priorMu,priorCovariance): 
    postCovInv  = np.linalg.inv(priorCovariance) + likelihoodPrecision*np.outer(x.T,x)
    #The outer product looks wrong but when updating we need a 2x1 matrix while x is 1x2
    postCovariance = np.linalg.inv(postCovInv)
    postMu = np.dot(np.dot(postCovariance,np.linalg.inv(priorCovariance)),priorMu) + likelihoodPrecision*np.dot(postCovariance,np.outer(x.T,y)).flatten()
    postW = lambda w: multivariate_normal.pdf(w,postMu,postCovariance)
    return postW, postMu, postCovariance
# For each iteration plot  the
# posterior over the first i data points and sample lines whose
# parameters are drawn from the corresponding posterior. 
fig, axes=plt.subplots(figsize=(12,30), nrows=5, ncols=2);
mu = priorMean
cov = priorCovariance
muhash={}
covhash={}
k=0
for i in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]:
    postW,mu,cov = update(np.array([1,x[i]]),y[i],likelihoodPrecision,mu,cov)
    muhash[i]=mu
    covhash[i]=cov
    if i in [1,4,7,10,19]:
        cplot(postW, axes[k][0])
        plotSampleLines(muhash[i],covhash[i],15, (x[0:i],y[0:i]), axes[k][1])
        k=k+1

png

Posterior Predictive Distribution

Thus the predictive distribution at some $x^{*}$ is given by averaging the output of all possible linear models w.r.t. the posterior

$$ \begin{eqnarray} p(y^{} | x^{}, {\bf x,y}) &=& \int p({\bf y}^{}| {\bf x}^{}, {\bf w} ) p(\bf w| X, y)dw \nonumber
&=& {\cal N} \left(y \vert \bar{\bf w}^{T}x^{}, \sigma_n^2 + x^{^T}A^{-1}x^{*} \right), \end{eqnarray}

which is again Gaussian, with a mean given by the posterior mean multiplied by the test input and the variance is a quadratic form of the test input with the posterior covariance matrix, showing that the predictive uncertainties grow with the magnitude of the test input, as one would expect for a linear model.

Regularization

$\alpha = \sigma_n^2/\tau^2$ (prior precision/likelihood precision) is the regularization parameter from ridge regression. An uninformative (tending to uniform) prior means no regularization which is the standard MLE result.

priorPrecision/likelihoodPrecision
0.08000000000000002

But now say you had a strong belief the both the slope and intercept ought to be 0. Or in other words you are trying to restrict your parameters to a certain range.

priorPrecision=100.0
priorCovariance = prior_covariance(1/priorPrecision )
priorPDF = lambda w: multivariate_normal.pdf(w,mean=priorMean,cov=priorCovariance)
cplot(priorPDF)
<matplotlib.axes._subplots.AxesSubplot at 0x11959d198>

png

priorPrecision/likelihoodPrecision
4.000000000000001
choices=np.random.choice([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19],4,replace=False)
choices
array([8, 7, 2, 6])

# For each iteration plot  the
# posterior over the first i data points and sample lines whose
# parameters are drawn from the corresponding posterior. 
fig, axes=plt.subplots(figsize=(12,30), nrows=4, ncols=2);
mu = priorMean
cov = priorCovariance
muhash={}
covhash={}
k=0
xnew=x[choices]
ynew=y[choices]
for j,i in enumerate(choices):
    postW,mu,cov = update(np.array([1,xnew[j]]),ynew[j],likelihoodPrecision,mu,cov)
    muhash[i]=mu
    covhash[i]=cov
    cplot(postW, axes[k][0])
    plotSampleLines(muhash[i],covhash[i],15, (xnew[:j+1],ynew[:j+1]), axes[k][1])
    k=k+1


png

Notice how our prior tries to keep things as flat as possible!