{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"hide": true
},
"source": [
"# Learning bounds and the Test set\n",
"\n",
"##### Keywords: empirical risk minimization, Hoeffding's inequality, hypothesis space, training error, out-of-sample error, testing set, training set, test error, complexity parameter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Contents\n",
"{:.no_toc}\n",
"* \n",
"{: toc}"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"hide": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"//anaconda/envs/py35/lib/python3.5/site-packages/matplotlib/__init__.py:872: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n",
" warnings.warn(self.msg_depr % (key, alt_key))\n"
]
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import scipy as sp\n",
"import matplotlib as mpl\n",
"import matplotlib.cm as cm\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"pd.set_option('display.width', 500)\n",
"pd.set_option('display.max_columns', 100)\n",
"pd.set_option('display.notebook_repr_html', True)\n",
"import seaborn as sns\n",
"sns.set_style(\"whitegrid\")\n",
"sns.set_context(\"poster\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"hide": true
},
"outputs": [],
"source": [
"def make_simple_plot():\n",
" fig, axes=plt.subplots(figsize=(12,5), nrows=1, ncols=2);\n",
" axes[0].set_ylabel(\"$y$\")\n",
" axes[0].set_xlabel(\"$x$\")\n",
" axes[1].set_xlabel(\"$x$\")\n",
" axes[1].set_yticklabels([])\n",
" axes[0].set_ylim([-2,2])\n",
" axes[1].set_ylim([-2,2])\n",
" plt.tight_layout();\n",
" return axes\n",
"def make_plot():\n",
" fig, axes=plt.subplots(figsize=(20,8), nrows=1, ncols=2);\n",
" axes[0].set_ylabel(\"$p_R$\")\n",
" axes[0].set_xlabel(\"$x$\")\n",
" axes[1].set_xlabel(\"$x$\")\n",
" axes[1].set_yticklabels([])\n",
" axes[0].set_ylim([0,1])\n",
" axes[1].set_ylim([0,1])\n",
" axes[0].set_xlim([0,1])\n",
" axes[1].set_xlim([0,1])\n",
" plt.tight_layout();\n",
" return axes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Revisiting the model\n",
"\n",
"Let $x$ be the fraction of religious people in a county and $y$ be the probability of voting for Romney as a function of $x$. In other words $y_i$ is data that pollsters have taken which tells us their estimate of people voting for Romney and $x_i$ is the fraction of religious people in county $i$. Because poll samples are finite, there is a margin of error on each data point or county $i$, but we will ignore that for now."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us assume that we have a \"population\" of 200 counties $x$:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" promney | \n",
" rfrac | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.047790 | \n",
" 0.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.051199 | \n",
" 0.01 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.054799 | \n",
" 0.02 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.058596 | \n",
" 0.03 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.062597 | \n",
" 0.04 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" promney rfrac\n",
"0 0.047790 0.00\n",
"1 0.051199 0.01\n",
"2 0.054799 0.02\n",
"3 0.058596 0.03\n",
"4 0.062597 0.04"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dffull=pd.read_csv(\"data/religion.csv\")\n",
"dffull.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets suppose now that the Lord came by and told us that the points in the plot below captures $f(x)$ exactly. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwUAAAIbCAYAAAC6zjImAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuMXPV9///Xucx9Z3f25vWud9m1wWBjwMTk6qQRtKlC\nW6ko/bX6ujQqoOJEJVGrtCqNStryBwltE0VpTImipMS1iCKRRtCLfq1aktKQNvmm4DhAs2Awtpn1\nei/em3fnsnPOmfP9YzyD1977zu7cng8pUnxmZv1Z6cjM67w/7/fH8H3fFwAAAICGZVZ6AQAAAAAq\ni1AAAAAANDhCAQAAANDgCAUAAABAgyMUAAAAAA2OUAAAAAA0uDWHgu9+97s6cODAiu97/fXXdc89\n9+gd73iH7rjjDn3ta19b1wIBAAAAbC57LW8+fvy4HnzwwRXfNzk5qfvuu0833HCD/vqv/1o/+9nP\n9KUvfUm2beu+++5b92IBAAAAlN+qQkEul9Pf/d3f6ctf/rKi0agcx1n2/U8++aQ8z9NXvvIVBYNB\nffCDH9T8/Ly++tWv6rd/+7dlWVZZFg8AAABg41a1fej73/++vv71r+vTn/60PvrRj674/h/+8Id6\n3/vep2AwWLr2oQ99SDMzM3r55ZfXv1oAAAAAZbeqUHDLLbfou9/9rn7rt35LhmGs+P4zZ87ommuu\nWXCtr69Pvu/rzJkz61ooAAAAgM2xqu1D27ZtW9MPnZubUywWW3Ct+Oe5ubk1/SwAAAAAm2tTRpL6\nvr9kRWE1lQYAAAAAW2dTQkE8HlcqlVpwrfjneDy+GX8lAAAAgHVa00jS1erv71cymVxwrfjnnTt3\nrvnnvfjii2VZFwAAAFBvbrvttg3/jE0JBe973/v01FNPKZvNKhwOS5L+/d//Xa2trdq7d++6fmY5\nflk0jsHBQUla9/2GxsW9g/Xi3sF6ce9gvQYHB5VOp8vys8qyfSiZTOqnP/1p6c933323crmcDh8+\nrOeee05f+cpX9LWvfU0f//jHZdubkkMAAAAArNO6QsGVzcKPP/64Dh06VPpzZ2enjh49Ks/z9Pu/\n//v69re/rT/4gz/Qvffeu6HFAgAAACg/w/d9v9KLWMmLL77I9iGsCaVYrBf3DtaLewfrxb2D9Spu\nHyrH9+RNmT4EAAAAoHYQCgAAAIAGRygAAAAAGhyhAAAAAGhwhAIAAACgwREKAAAAgAZHKAAAAAAa\nHKEAAAAAaHCEAgAAAKDBEQoAAACABkcoAAAAABocoQAAAABocIQCAAAAoMERCgAAAIAGRygAAAAA\nGhyhAAAAAGhwhAIAAACgwREKAAAAgCrluJ6mZ+fluN6m/j32pv50AAAAAMtyXE+pjKtYxFbAtkrX\nRyZSSo7Oyvclw5D6uuLa3h7blDUQCgAAAIAKWeqLf87xStclyfel5Ois2lvCC4JDubB9CAAAANhE\nS20BWuqLv+N6Smfd0vUi35dSGXdT1kilAAAAANgky20BWu6LfyxiyzC04HXDkGKRzfn6TqUAAAAA\n2KDFqgHLVQIklb74X674xT9gW+rripdeLwaKzdg6JFEpAAAAADZkqWrAcpWARNwqffG/8rPFL/7b\n22Nqbwkv2oRcboQCAAAAYBUWmxK0XEPwarYArfTFP2BbSsQ3LwwUEQoAAACAFayvGhBathJQtFVf\n/JdDKAAAAACWsZFqwFZuAdoIGo0BAACASxZrGF6uGrCahuBCJSBUtYFAolIAAAAASFp6i1C9VAOW\nQ6UAAAAADWWt40PrpRqwHCoFAAAAaBjrHR9aD9WA5VApAAAAQN1ZazVguYPEimq9GrAcKgUAAACo\nC8VzBOYyOZ2/kNqU8aH1ilAAAACAmlfcFuQ4eZ0+P6OORESt8XBdjg/dDGwfAgAAQE0qbhFKZXKl\nJ/zzjiffl8anM3K9vKT6Gx+6GagUAAAAoOZc3jCczjqadzy1xsMKBa1SNSCb89QUMakGrAKVAgAA\nAFSlxZqFpasbhoMBSxcuVQZsy1RHIiLDkMKXAgLVgJVRKQAAAEDVWWp0qHT1CcPFIJBzPNmWqbbm\nsG7c2a54NEg1YJUIBQAAAKgqS40ObW8JK2BbizYMtzWHtW9Xm3KOTxBYB7YPAQAAoGIW2yK03OhQ\nSUs2DEfDQbYFrROVAgAAAGw5x/V0eviiJmYyskxzwRahlUaHSjQMlxuhAAAAAFtqZCKl0+dm9Obw\njHxJnZfOFLh8i9BqDhIrNAwTBsqBUAAAAIBNVTxpOBaxS/0B2ZxXqgSMT2cUjwZlW+al04UtKgFb\njFAAAACATXPlFKGWppB8XwvOE9ClMwXiUXPBFiEqAVuHRmMAAABsisWmCE3MZOTlF54nIEOKhKxF\ntwhha1ApAAAAwIYVpgjlJMNXoqkwAWixKUKWaSoRD2lmbl6t8bCaY0G1t0S0s6eZQFBBhAIAAABs\nyMhESi+9Ma7xqYx8Sdtao7rlug61t4QXnSK0s6dZkugXqCJsHwIAAMC65RxPp8/NFALBpf6Asam0\nTg/PSNKi5wkEbOtSvwBnClQLKgUAAABYlcunCBW/zKez7oJJQpIkX8rMF97LFKHaQCgAAADAiq6c\nInT5QWPhkLVwm9ClxuHiJCGmCFU/tg8BAABgWYtNEUqOzspxPQVsSzt7WtTZ+vYkoW2tUe3saaEq\nUEOoFAAAAKBkqS1CV04R8n1dddDYldOHUDsIBQAAAJDjejo9fFETMxlZpnnVFqHFpghdedBYZ2uk\nAitHORAKAAAAGtzIREqnz83ozeEZ+ZI6ExG1xsNKjs6qvSWsgF04WOzKngKqAfWDUAAAANDAiv0C\nl08QGp/OKB4NyrbMq7YIMUWoPtFoDAAA0GAKpw/Py3G9Ur9AKGiVzhOQL2Vz3qJbhDhboD5RKQAA\nAGgQi/UNbG+PyTAk2zLVkYjownThVOJIyGKLUAMhFAAAANSx4jShuUxOyZHZq/oGRiZS6u6I6fyF\nlFrjYTXHgmpviWhnTzOBoIEQCgAAAOqM43oaHk/rzeEpGYYUtGydPj+jaNhetG+gKRLUrddH6Rdo\nYIQCAACAOjI0Nqt/fv5NnTo3o7mso0jQ1u6+FsWjIV1M52TIkGkYpb6BeNQsBQFOHW5cNBoDAADU\nieToRf3rf7+pl09d0Ex6Xp6bVybn6tS5i5p3HFmGqXg0WDp5mL4BFFEpAAAAqHGO62nq4rxeOzul\ni2lXeV8yZSjreQpbhvK+L0OFxuKutqgMQ/QNYAFCAQAAQA1KZ3Man8rK9/Man85qLu3o3IU5WZYp\n05DyMhSwTPm+ZJumdvU269odrYpHg/QN4CqEAgAAgBrz8qkLeun1cbluXmNTafX3tKi3s0m2aSoU\ntErThAK2qc5ERO+5uVvvv2UHQQBLIhQAAABUueJY0WDA0NTFeZ14bUyGYcjx8sr70pnhGXW3RdSR\niEiSdvV0y3FcRUMBHdjbqZamSIV/A1Q7QgEAAEAVG5lIKTk6q8mLWV2YzsgwpOGJlFpiQUVCtgxD\n8n1pJuVoW2tUzbGgrutLKNHEycNYPaYPAQAAVKnp2YxeHBzVXHq+cNKwL2UdT/KlmVROkqHmWEim\nIbXEAjIMaWdPizoTUQIB1oRKAQAAQBV6+dQF/fh/z+vCdFaO6ykSDqirNaqgVegZGJ1IKed6ikcD\nes9N27Wzu4UGYqwboQAAAKAKFPsGYhFb8zlPL70+LtsqjBG1TFPjk2m1xYMKBGxdtyOhnT3N6uls\nUnd7VNFwsNLLR40jFAAAAFSQ6+V1fnJe0+6oLLMQAkzTkO8XwkBzLKSLqXlFQrYy8556OuMK2KZ2\ndbVoe3us0stHnSAUAAAAVMjIREqDb6U0PDGvjvSMOhMRtcbDSmcd+b4vwzDUFAkoErLkennd9cFd\nsi2bbUIoOxqNAQAAtpjjehqbTOv08Ixybr5w0ZfGpzNyvbxCAVvX9SVkGIWXbMvUu/d1qyMRUyLO\nVCGUH5UCAACALVQcMVo8gXje8d9+0ZeyOU/xqKl37u3S/t0dGp/KqrM1TN8ANhWhAAAAYJPNzGWU\nHEmpqz2s5OicfF8KBS0ZkmbTruJRq3DegKRIyFJfV1wB21LAttTfTRjA5iMUAAAAbKL//MmQfvTy\neeXcwvkCO7Y16aZdHbItUx2JiMbHpVDA1K4dLWpviWhnTzPbg7DlCAUAAACbZHImo/88PqS5jCP5\nUl6+pk5NaGdPXLFwSK3xsHZ0hNTbEdI793YRBlAxNBoDAABskrdGZ0uBQJJMGcr7vsamspIkw5B6\n2sNKNAUJBKgoKgUAAACbpDUekSkpf9m1cMDSbTdsV0cirFjE1huvT1VqeUAJlQIAAIAycFxP07Pz\nclyvdK2nM6rr+xMyL40WNQ3p+v6E+rubGC2KqkKlAAAAYIOKY0Z9v7AlqK8rru3tMQVsS798cJd2\n9kxoYjqr9kRYewfaCQOoOoQCAACAdXBcT6mMq4BtlAKBJPm+lBydVXtLWAHb0vb2mNpbwkplXE4i\nRtUiFAAAAKzR5ZWBdNbRvOOpNR4uve77UirjKhEvBICAbZX+P1CN6CkAAABYpXQ2pzeSU3ojOVWq\nDAQDli5MZ+R6b7cTG4YUi/DsFbWDuxUAAGAVXj51QS+9Pq7MvKvJi1kN9LRoYHtz6RCynOPJtsxS\nTwHbhFBLCAUAAAArmEvn9NLr4/J9KWAXNlqcGZ5Rd1tEoWBAbc1h7dvVppzj0zeAmrTq7UNPPfWU\nPvzhD2v//v06dOiQTpw4sez7jx8/rrvvvlsHDhzQhz70IT322GNyXXfDCwYAANhsjutpfCqj8em0\nHNfTxEy2tF3IMk01x0KSpJmUU6oMRMNBxoyiZq2qUvD000/r4Ycf1ic/+UnddNNNevLJJ3X//ffr\nH/7hH7Rjx46r3p9MJvU7v/M7ete73qXHHntMp0+f1uc//3ml02k9+OCDZf8lAAAAysFxPb3+1rQG\nz04olXFlmoa2tUZ1XW9ChqFSMGiKBBQNW7ptT6c6ElGCAGreqkLBkSNHdOjQIT3wwAOSpIMHD+rO\nO+/U0aNH9dBDD131/n/5l3+R7/s6cuSIQqGQDh48qLGxMX3zm98kFAAAgKo0NDar//rpsF49O6lU\nxlFTJKhtbRFJUjwa0L5d7frfNydKZxG84/oudXfEK7xqoDxWDAVnz57V8PCw7rjjjrc/ZNu6/fbb\n9fzzzy/6GcdxZNu2QqFQ6VpLS4vS6bRyuZyCwWAZlg4AAFAeydGL+qcfvKk3h2Z0MZOT8oZc11cw\nYCoSCigz72nvQLuuvyah8amsOlvDiob5PoP6sWJPwZkzZ2QYhvr7+xdc7+3tVTKZlF+so13mV3/1\nV2VZlr7whS9oZmZGL730ko4dO6Zf/MVfJBAAAICqknM8vXZmSpMzWckwZMpQzvOUyTnKOXm5rqdI\nyFIsYisaDqq/u5lAgLqzYqVgbm5OkhSLxRZcj8ViyufzSqfTV73W19enP/qjP9Kf/dmf6etf/7ok\nad++ffrc5z5XrnUDAACsm+N6mp7NSUbh4aYvybZMWaahcNCWl/eVv7RNqGdbk3b2tNA3gLq2Yigo\nVgIMw1j0ddO8utjw7W9/W3/6p3+qQ4cO6Zd+6Zc0NjamL3/5y/rYxz6mo0ePKhAIbHDZAAAA63Nm\neFo/fHlE8zlXdsBSe3PhJOLW5rByjidJCgRMdbfF9KH3XKO9A20EAtS9FUNBPF5ooEmlUmpraytd\nT6VSsixLkUjkqs987Wtf0+23366HH364dG3fvn365V/+Zf3TP/2Tfu3Xfm3NCx0cHFzzZ9C4MpmM\nJO4brB33DtaLe6f6uV5eL785q5+8eVGZ+bwMw1BbPKALTQE1xywFJDUFXAWVV0tTQDf22wo4F/TG\n6xc2dV3cO1iv4r1TDiuGgv7+fvm+r2Qyqb6+vtL1oaEhDQwMLPqZ8+fP6yMf+ciCa7t27VIikdAb\nb7yxsRUDAACs0dj0vF46PaufvZVSdt5T3pciQUuTs46aIpaCdkDXdkcvvdtXU8SWba36OCeg5q0Y\nCgYGBtTd3a1nn31WBw8elFSYLvTcc88tmEh05Wd+8pOfLLh29uxZTU9PLwgWa7F37951fQ6Nqfi0\nhfsGa8W9g/Xi3qleydGL+p83k7owZ8k3bNm2KSfvy7AshSNBRWPNunbnNr1zb1dFtglx72C9BgcH\nlU6ny/KzVnVOweHDh/XII48oHo/rwIEDevLJJzU9Pa177rlHUuGwssnJSe3fv1+S9IlPfEKf+tSn\n9JnPfEa/8iu/ovHxcf3N3/yN+vr6dNddd5Vl4QAAAMtJZ3MaHk/p1NC0cm5eQduSaRjyTEMBw1De\nl/y8r/7uOI3EaHirCgV33323crmcjh07pmPHjmnPnj164okn1NvbK0l6/PHH9cwzz5SS7p133inb\ntvX444/rH//xH9XR0aH3v//9+tSnPqVoNLrcXwUAALBhJ06O6firY3K8vKYuZmXbpgIBU4lYSNOp\neYWClhKxkG6/rVcHb+khEKDhGf5iBw1UmRdffFG33XZbpZeBGkIpFuvFvYP14t6pHm+em9J3vveG\n8r6U933lHE+GpPbmsFLzrlw3r2u6m3Xw5h7t2tFS6eVy72DdituHyvE9eVWVAgAAgGrmuJ5SGVcB\n29CrZ6aUv/TI07w0Uj0YsNXbFVcsElBPR5N2X5OgOgBchlAAAABq2shESsnRWfm+lM468ry8TEOl\nYBAO2mprDuvd+7rUkYgSBoBFMGsLAADUJMf1NDaZ1unhGRU3QwcDli6mHfV1Ncu8dO6qaUjvurFL\n3R1xAgGwBCoFAACg5gyNzeqN5LQcN6/RqbQ6ExG1xsOyLVMdiYhCAUs9nTHNpXPaM9BeFb0DQDUj\nFAAAgJpyenha//HCkCzLlAxf2XlPkhSPBmVbptqaw9q3q005x1csYlMdAFaBUAAAAGqC43o6+da0\n/vulc5q8OC8ZUkssKBmG8nlf2ZyneNRUX1dc0XBQ0XClVwzUDkIBAACoekNjs3r1zKTeHJ7RxExW\nOcdTOGhrJpXT9raYejpiuvm6diWaQlQGgHUgFAAAgKrluJ5+9uakfjx4Xvm8NHmxEAgkyfclQ5Ln\n5bVnoE2dCQ5IBdaLUAAAAKrSmeFp/eDEsE4NTyuV9RQN2jIuzU0MBWwlmkMKWIbueGeferfFK7tY\noMYRCgAAQFVxXE8/evm8fvDTYV2YySiddWSZhTQQDVkKBwNqaw5p144W3dDfpr4uAgGwUYQCAABQ\nNUYmUnr9rSl9/ydDmpidV97LSzKUcz1F8pYsK6D2lrDev79Hu/s4lRgoF0IBAACoOMf1NHVxXqeH\nZ3QxlZNpmrJMQ5n5vIIBUzmncDLx9raoPvTua7Szh3MHgHIiFAAAgIo6Mzyt/31zUpYlXZiZV0s0\nINsy1BQOyHXzMk1DoYClW3Z36L039bBdCNgEhAIAAFAxx18b03d/fFZ5X/J9X8GgJSmqvq5mJUcv\nKhi01BoPad+1HXrvvu1sFwI2CaEAAABUxFw6p5+8Nqq8X/izYRiaS+XU1hRST3eTdmyLKRoOaO9A\nq6LhYGUXC9Q5QgEAANhS6WxO41NZZXOObMuUYRTOHJCkUNBWW3OYg8iALUYoAAAAW+bEyTEdf3VM\nlmUq7+c1PTuv5lhIF1Pz8n3JNKRbdndwEBmwxQgFAABgS/zszQt65j/fUNA2ZdmWWmKFLUGRoKVI\nKCrXy+vAni4N9CQqvFKg8RAKAADApvvRy+f09HOnNDOXk2kZamkKSZK2t8X0nhu3KxK21dkapncA\nqBBCAQAA2FT/939H9Pffe0Oz6ZzmMo6CAVvSvOIRW56X1zXdTYQBoMLMSi8AAADUr7l0Ti8OjkiG\nIdM0FQxYyjmu8p6vnJvXgT3bCARAFaBSAAAAysZxPaUyrmIRWwHb0sRMVuGQLfvSAWSSFLRNtTQF\n9X9+4Xrt3dVR4RUDkAgFAACgTEYmUkqOzsr3JcOQ+rri6mwNKxSwtK0tqrHJtGzblHxfH7njWgIB\nUEUIBQAAYMNSmZxePTOpYMCSbZnyfSk5Oqtbr+/ULbs79dLr40rEQ8rOu3rXvu16197tlV4ygMsQ\nCgAAwIaMTKT06plJDY3NSYbUmYioNR6W70upjKubr+3QtTuaNT6VZcIQUKUIBQAAYN1yjqfk6KyC\nAat0MvH4dEbxaFAB21QsUviqEQ0H1d9NGACqFdOHAADAuqWzrnxfsi1THYmIDEOSXwgLfV1xBWyr\n0ksEsApUCgAAwLrFInapQtAaDyseDSrneHr3vi62CQE1hEoBAABYFcf1NDye0qlz00pnc5KkgG2p\nryteqBBICtim9gy0EQiAGkOlAAAArGhobFbPvZDUuQspyZASTSEdvKVHN1/boe3tMbW3hBecTwCg\nthAKAADAspKjF/Xs/z2r196aVl5SLGxrWtKJ18Z07Y5mRcNBBWxLiThhAKhVbB8CAACLclxPY5Np\nvXZ2Sul5T3lfki+lsq7yeV9Zx9P4VLbSywRQBlQKAADAVYqnE8+lHZ27MKe8JNNQKRh4Xl7hgKXO\n1nCllwqgDKgUAACABYqnEztuXqGgJds0FbBNdbZGZBqSYUjtiYhuvWEbDcVAnaBSAAAASl5PTuhH\nL49q3nEVDgXUmYioIxGRJO3qaVE+n1dbPKybrmsnEAB1hFAAAADkuJ7+9Ydn9IOfDsvL+8pkHfV0\nNkkqhIHmWFDX9SWUaAoxXQioQ4QCAAAa3MhESoOnJ/Sfx4eUmncVDlgK2JaGx+fU1RZRzvG0Z6BN\nnYlopZcKYJMQCgAAaGA5x1NydFYTM9lCs4AvZR1PTZGAbNtUKGBzOjHQAGg0BgCggaWzrnxfamsJ\nyzYNhQJWYbpQ3pdtGnrvzQQCoBFQKQAAoME4rqfp2Zxk+IqFbRmG1BQJ6vr+hE6enZYdMNUSDerg\n/h7t7muv9HIBbAFCAQAADWRobFYvDo5qJpWTaRra1hpVd0dM2XlXN+3q1M6eFpmmqVt3t6ulKVLp\n5QLYIoQCAAAaxOnhaT3747c0MTMvw5RaYoVtQfFoQPt3dyjn+IpFbKYLAQ2IUAAAQANIjl7U915I\namQirdmMo1i48BUgEgooM+8p5/hKxEMVXiWASqHRGACAOpdzPJ0ampFtFU4mNiSlsq7yeV+u6ykS\nshSL8JwQaGT8CwAAQJ1yXE+pjCvH8xQMWLItU4l4WDnHK4QCz1fPtibt7GlhyxDQ4AgFAADUoaGx\nWb2RnFYwYMkwpLmMo45EoXE4EmrWvOPpvTd1a+9AG4EAAKEAAIB6c3p4Wv/xwpAsy5RlGepMRGQY\nUnMsqHg0qJzj6drehPq64pVeKoAqQSgAAKCOFBuKL0xnJePtCUO7elp0XW+rArbJhCEAVyEUAABQ\nBxzX09TFeb12dkq2ZcowJN+XZlI5RUIB5RxPiXiQMABgUYQCAABq3MhESqeHZzQxk9X4dFo5J6/m\nWEgXU/Pyfcnz8rquL0EgALAkQgEAADUslcnpR6+c18VUTr7va3wqo4Btqr0lokjIkuvldcc7+9S7\njf4BAEsjFAAAUKOGxmZ1/NVRvXpmUoZpqCUWLFUIOlsjigRtGooBrAqhAACAGuO4nk6+Na3jr44q\nPe9qanZe0UsnFG9viykatnR9X6uu2R5nyxCAVSEUAABQQ4bGZvXKqQm9npxSKuMoHgsqFraVyroK\nBiw5bl7XbG8iEABYE0IBAAA1Ijl6Uf//f5/R+FRa06mc8q6vnJNXRyKqYGpezdGgbuhPaHdfK4EA\nwJoQCgAAqAE5x9NrZ6Y0MzcvyzRlGYZc5TWXyamrPaqezpjeuXe7djNlCMA6EAoAAKhi6WxOw+Np\neXlPjpeXJJmmoWio8J/wWDig7vaY3nHDNhqKAawboQAAgCr18qkL+sGJc5qYycoypGDQUsA25bh5\nhUO2QkFLu/ta9aF39ykaDlZ6uQBqGKEAAIAqNJfO6fkTQzp7fla+L8mQAhlTOzpjSsRD8vK+dnQ0\n6R03bCMQANgwQgEAAFVodDKtiZlsIRBIki85+by2d0R1y3Xb1BIPKtEUon8AQFkQCgAAqEKRUEBB\ny5RhqBQMTEmxcEj93YwbBVBeZqUXAAAACgeSTc/Oy3E9SVJna1i7elsUC9syDMk0pK72qPZd20Yg\nAFB2VAoAAKiwkYmUkqOF3gHDkPq64treHtPP3dqr7e0xTc1kFQxa2rerQ73bmDAEoPwIBQAAVFAq\nk9Mrpybky1csHJBtmUqOzqq9Jazt7TG1t4SVyriKRWwqBAA2DaEAAIAKGZlI6UevDOvkW9PyJSWa\nQhroblZrvBAEEnFLAdtSIk4YALC56CkAAKACco6n0+dmdDGVK1zwpem5eY1OpuXl84pFeG4HYOsQ\nCgAAqIB01lU258k0TDXHQjIMSb6Uc/Jqb4mwVQjAluIxBAAAW8hxPaUyroIBQ+GQJcOQmiIBRUKW\nHC+vG65JaGdPc6WXCaDBEAoAANgiV04ZaooG1dka0fhURpZlqrujSbv7WqkSANhyhAIAADbZzFxG\nbw7NaiadVTQUlFQ4kCw77+oD+3uUyniS4XNCMYCKIRQAALCJ/vMnQ/rxK+eVzXlKZRxd39+qm3Z1\nSCoEg5zjq7M1UuFVAmh0NBoDALBJRifn9F8nzsnN+7ItU76kk2enlMrOSypsIWLKEIBqwL9EAACU\nmeN6Oj18UT95bVTTcznJkGJhW9GQrfS8qwtT82rqCamvK852IQBVgVAAAEAZjUykdPrcjN4cnlE6\n58r18rItU6msq9Z4SOGgpffctE3dHQQCANWD7UMAAJSJ4+aVHJ1VNufJ96VIwFZ7Ilw6g8DP+3rv\nLT26ZnuCQACgqlApAACgDLI5T+cn5hVvdRQKFs4f8H2pv6tZiWuDyuY83X7bDnUkYpVeKgBchVAA\nAMAGvXzqgr7/8pQ8z5d3bkT9PS3qSER0YTojX1J7IqKdPS0EAgBVi1AAAMAGTF3M6H/+d0Su58sy\nDUVjIZ0dntF7b9quXTta1N4S0c6eZrYLAahqhAIAANZpaGxWP3r5vEan0pqbdRQL2+roCCgSstQa\nj+iGAU6Nqv+mAAAgAElEQVQnBlAbCAUAAKzD6eFp/ccLQ/J8XzOz83IdX5Ir79KZBLt6qQ4AqB1M\nHwIAYI2Soxf1vReSGp/OaPJiVvFYQDnHU9735Xl53bK7U9FwsNLLBIBVo1IAAMAqOa6nqYvzeu3s\nlGzLLE0Ysm1LO9pDikdt/X8/f61amiKVXioArAmhAACAVRiZSCk5Oqu5tKNzF+aUzXlqjoV0MTUv\n35dMy9C+gSYCAYCaRCgAAGAFOcdTcnRWvi+FgpZs05QvT9GwrUjIkuvlNdBma1siVOmlAsC6EAoA\nAFiG43o6fyElx83LtkzZlqmORKEa0NkaVdA2dW1vQnOTQxVeKQCsH6EAAIBFOK6n08MXNTGTke9L\np4dn1JGIqDUeVms8rOZYUNf1JZRoCilgWxqcrPSKAWD9Vj196KmnntKHP/xh7d+/X4cOHdKJEyeW\nff/k5KQefPBBvec979G73vUu/e7v/q6SyeSGFwwAwGYbmUjphZ+N6n9+NqJT52Y0m86VTih2vbwM\nQ9rZ06LORJSxowDqwqpCwdNPP62HH35Yd911l44cOaLm5mbdf//9Onfu3KLvd11X9913n1555RV9\n9rOf1V/8xV8omUzq8OHDcl23rL8AAADllMrk9MqpCY1Np+V6vuRL49MZxaNB7exp0Y7OJt16fae2\nt8cqvVQAKJtVbR86cuSIDh06pAceeECSdPDgQd155506evSoHnrooave//TTT+utt97Sv/7rv6qr\nq0uStGPHDn3sYx/TyZMndeONN5bxVwAAoDxGJlL60SvDOvnWtLy8L8fNa1trRE2RoLI5T/FoQD2d\nMaoDAOrOiqHg7NmzGh4e1h133PH2h2xbt99+u55//vlFP/Pd735XP/dzP1cKBJK0Z88eff/73y/D\nkgEAKL+c4+n0uRldTOUkSaZhyPd9zczlFA0HFAlZ6uuKEwgA1KUVtw+dOXNGhmGov79/wfXe3l4l\nk0n5vn/VZ1577TXt3LlTjz32mD7wgQ/o5ptv1sc//nGdP3++fCsHAKCM0llX2Zwn0zDVHAvJMKRw\n0FYiHta+Xe16594utgwBqFsrhoK5uTlJUiy28B/CWCymfD6vdDp91WcmJyf1ne98Rz/4wQ/0uc99\nTp///Of1xhtv6OMf/7jy+XyZlg4AQPnEIrbCIUuGITVFAupqi6o9EdaNO1t1y3UdVAgA1LUVtw8V\nKwGGYSz6umlenStc15Xruvr617+upqYmSYXKwq//+q/r3/7t33TnnXeueaGDg4Nr/gwaVyaTkcR9\ng7Xj3mls+YwjN5PS1FxhKEZrPCAz5+uN12dX/Cz3DtaLewfrVbx3ymHFUBCPxyVJqVRKbW1tpeup\nVEqWZSkSufo492g0qv3795cCgSTddNNNam5u1smTJ9cVCgAA2Gxt8YAO7G7WXMaT5KspYsu2Vj29\nGwBq1oqhoL+/X77vK5lMqq+vr3R9aGhIAwMDi37mmmuukeM4V113XXfJisNK9u7du67PoTEVn7Zw\n32CtuHcag+N6SmVcxSJ22bYFce9gvbh3sF6Dg4OLbuVfjxUffwwMDKi7u1vPPvts6ZrjOHruuef0\nvve9b9HPfOADH9Dx48c1Pj5euvbjH/9Y6XRaBw4cKMOyAQBYn5GJlE6cHNfJt6Z04uS4RiZSlV4S\nAFTcqs4pOHz4sB555BHF43EdOHBATz75pKanp3XPPfdIkpLJpCYnJ7V//35J0j333KPvfOc7Onz4\nsD75yU8qk8no85//vG677Ta9//3v37zfBgCAZaQyOb16ZlLBgCXbMuX7UnJ0Vu0tYRqJATS0VYWC\nu+++W7lcTseOHdOxY8e0Z88ePfHEE+rt7ZUkPf7443rmmWdK5a+2tjZ961vf0l/+5V/qj//4j2Xb\ntn7hF35Bf/Inf7J5vwkAAMsYmUjp1TOTGhqbkwypMxFRazws35dSGVeJOKEAQONaVSiQpHvvvVf3\n3nvvoq89+uijevTRRxdc6+vr02OPPbahxQEAUA45x1NydFbBQGHkqO9L49MZxaNBBWxTsciq/3MI\nAHWJkQoAgLqXzrryfcm2THUkIjIMSX4hLHBKMQCsoVIAAEAtuXzCUCxilyoErfGw4tGgco6nd+/r\nUjQcrPRSAaDiCAUAgLozMpFScnRWvi8ZhtTXFVdfV7x0LWCb2rWjhUAAAJcQCgAAdaXYP+D7hT8X\nJwzden2n2lvCZT+fAADqAT0FAIC64biezl9IyXHzC64XJwwFbEuJeIhAAABXoFIAAKgLxS1DjpvX\n6eEZdVwaOSoVthAxYQgAlkalAABQ8y7fMlScMHRhOiPXy5d6CqgOAMDSeGwCAKh5xZGjRcUJQzs6\nm9TTGSMQAMAKqBQAAGqS43qanp2X43qlkaOXC9gmgQAAVolKAQCg5qw0cpQtQwCwNoQCAEBNYeQo\nAJQf24cAADXlyv4BiZGjALBRhAIAQE1ZrH+AkaMAsDGEAgBATQnYlvq64qVgQP8AAGwcj1UAAFXL\ncb1FewS2t8foHwCAMiIUAACq0mIThra3x0qvF/oHCAMAUA5sHwIAVJ1UJqdXz0zKcfOS3p4w5Lhe\nhVcGAPWJSgEAoKoMjc3qpdfHNT6dlWUZ6kxE1BoPlyYMUR0AgPIjFAAAqsbp4Wn9xwtDkiFdmM6o\nORaUJMWjQQVskwlDALBJ+NcVAFAVkqMX9b0XkrownZUMKWAZupjKKRIKKOd42rWjhYZiANgkhAIA\nQMXlHE+nhmZkW6YMo9BD4Hi+OhMRdSbCeve+LkXDwUovEwDqFo3GAICKclxP5y+kZJqGbMtUcyxU\nOIPAL/zvlt2dBAIA2GRUCgAAFVMcO+q4eSVHZxUMmIpHA4qELLleXne8s0+92+KVXiYA1D1CAQCg\nIopjR4MBS7ZlqiMR0YXpjPq64srnfV3bm1BfF4EAALYCoQAAsOVGJlJ69cykhsbmJEOlsaPxaFA7\nOpvU0xmjqRgAthA9BQCALZVzvEtbhaxS78D4dEaul1fANgkEAFABhAIAwJZwXE/Ts/OaSc3L91Xa\nMlQMBjnHU19XnEAAABXA9iEAwKYbGpvVG8npUnVgNu0o0RQqbRnKOR5jRwGggggFAIBNlRy9qO//\n5Jx8X6X+AcOQvHxelmkqYJvataOFQAAAFUQoAABsmuKhZL5/6cKl/oFdPS26rrdVAdtULGKzZQgA\nKoxQAADYNOmsW9oydHkwyDmeEvEgYQAAqgSNxgCATVOoAlzWUCzJMKTr+hIEAgCoIlQKAACbJmBb\npQPIig3F1/YmOKUYAKoMoQAAsKm2t8fU3hJWKuPSPwAAVYpQAAAoC8f1lvziH7AtJeKEAQCoVoQC\nAMCGjUyklBydle8Xegb6uuLa3h6r9LIAAKtEozEAYENyjlcKBFJhylBydFaO61V2YQCAVSMUAAA2\nJJ113x43eonvS6mMW5kFAQDWjFAAANiQWMQujRstMozCdQBAbSAUAAA2pDh29PJzCPq64kwZAoAa\nwmMcAMCqLTVhiLGjAFDbCAUAgFVZacIQY0cBoHaxfQgAsCImDAFAfaNSAABYUnG7kON5S04YojoA\nALWPUAAAWNTIREqnh2eUmfcUsA1l5j0lmkKl15kwBAD1g3/NAQBXyTmeXnrjgsam0pIvyZBCAUvx\naECWaTJhCADqDKEAAHCVmbn5twOBJPnSvOOpv7tZ0VCACUMAUGcIBQCABRzX08xcTvm8L/OyU8kM\nSQHLUiIeWvrDAICaRCgAAJQUx446bl6ZeVeSFAsHZBhSZ2tEiXiwwisEAGwGQgEAQNLCsaO2ZWqg\nu1mjkyl1tUXVFA1oZ08LW4YAoE4RCgAAkqR01l0wdrQ1HlY8GtSOzib1dMYIBABQxzi8DAAgqTBe\n9LIWAklSwDYJBADQAAgFAABJUsC21NcVLwUDxo4CQONg+xAANJjiKcWLjRXd3h5Te0t4ydcBAPWJ\nUAAADaQ4Xcj3364EbG+PLXhPwLaUiBMGAKCRsH0IABrE5dOFJMn3dWn8qFfZhQEAKo5QAAAN4srp\nQlIhGKQybmUWBACoGoQCAGgQi00XMozCdQBAYyMUAECDYLoQAGApPB4CgAbCdCEAwGIIBQBQh5Yb\nO8p0IQDAlQgFAFBnVjN2FACAy9FTAAB1hLGjAID1IBQAQB1h7CgAYD0IBQBQRxg7CgBYD0IBANQR\nxo4CANaDR0cAUKOWmjDE2FEAwFoRCgCgBq00YYixowCAtWD7EADUGCYMAQDKjVAAADWGCUMAgHIj\nFABAjWHCEACg3AgFAFBjmDAEACg3HisBQA1iwhAAoJwIBQBQxZYaOyoxYQgAUD6EAgCoUiuNHQUA\noFzoKQCAKsTYUQDAViIUAEAVYuwoAGArEQoAoAoxdhQAsJUIBQBQhRg7CgDYSjxyAoAKW2rCEGNH\nAQBbhVAAABW00oQhxo4CALYC24cAoEJSmZxePTMpx81LYsIQAKByqBQAQAWMTKT06plJDY3NSYbU\nmYioNR4uTRiiOgAA2EpUCgBgixXPIAgGrEIjsS+NT2fkenkmDAEAKoJQAABbrHgGgW2Z6khESsEg\n53hMGAIAVMSqQ8FTTz2lD3/4w9q/f78OHTqkEydOrPoveeyxx7Rnz551LRAA6oHjepqenZfjegvO\nIGiNh7Wzp0W925r07n1dC5qMAQDYKqsKBU8//bQefvhh3XXXXTpy5Iiam5t1//3369y5cyt+9uTJ\nk/rqV78q48pTeACgQYxMpHTi5LhOvjWlEyfHNTGTXXAGQcA2tWegTdFwsLILBQA0rFWFgiNHjujQ\noUN64IEH9MEPflCPP/64EomEjh49uuzn8vm8HnroIbW3t5djrQBQc4r9A75f+HNxwlB7S1i3Xt+p\n669p1a3Xd1IhAABU1Iqh4OzZsxoeHtYdd9xRumbbtm6//XY9//zzy372G9/4htLptD760Y9ufKUA\nUIOK/QOXK04YKpxBEKKHAABQcSuGgjNnzsgwDPX39y+43tvbq2QyKf/K/9pdcvbsWT322GN65JFH\nFAgEyrNaAKgxl/cPFDFhCABQbVYMBXNzc5KkWGxhaTsWiymfzyudTi/6uc985jP6yEc+one84x1l\nWCYA1KaAbS3oHyieWkx1AABQTVZ8VFWsBCzVKGyaV+eKb33rW0omk/rqV7+6weW9bXBwsGw/C/Uv\nk8lI4r7B2m3WvRPO55XN5RUOmpoam9LUWFl/PKoA/+5gvbh3sF7Fe6ccVqwUxONxSVIqlVpwPZVK\nybIsRSKRBddHRkb0hS98QQ899JBCoZA8z1M+n5ckeZ635HYjAKh1rpfXXMaV6+Wves22TDVFbNkW\nx8MAAKrPipWC/v5++b6vZDKpvr6+0vWhoSENDAxc9f4f/vCHSqfT+r3f+72rAsBNN92kT3ziE/rk\nJz+55oXu3bt3zZ9B4yo+beG+wVqt994ZmUgVpgyFpKwh9W2LM1GowfDvDtaLewfrNTg4uORW/rVa\nMRQMDAyou7tbzz77rA4ePChJchxHzz333IKJREU///M/r7//+79fcO2f//mfdfToUX3nO99RZ2dn\nWRYOANViubGj9A4AAGrBqsZfHD58WI888oji8bgOHDigJ598UtPT07rnnnskSclkUpOTk9q/f79a\nWlrU0tKy4PMvvPCCJOnGG28s8/IBoPKWGzuaiBMKAADVb1Wh4O6771Yul9OxY8d07Ngx7dmzR088\n8YR6e3slSY8//rieeeYZGmQANKTi2NHLgwFjRwEAtcTwa6Dz98UXX9Rtt91W6WWghrA/E+u14Z4C\n/+2xo/QUNBb+3cF6ce9gvYo9BeX4nsxjLABYJcf1lMq4ikXsq3oFtrfH1N4SXvJ1AACqGaEAAFZh\nNZWAgG3RQwAAqEkMzAaAFSw1XchxvcouDACAMiEUAMAKlpsuBABAPSAUAMAKitOFLsd0IQBAPSEU\nAMAKAralvq54KRgUewpoJgYA1AsecwHAZVwvr2wuL8f1FnzpZ7oQAKCeEQoA4JKRiZReP5cu9A+c\nHL9qwhDThQAA9YrtQwAgJgwBABoboQAAxIQhAEBjIxQAgJgwBABobIQCABAThgAAjY1HYAAajuN6\ni04R2t4e0+4dUWVzed16fSeBAADQMAgFABrKyESq1FBcrAZcPmHItkw1RUwCAQCgobB9CEDDYMIQ\nAACLIxQAaBhMGAIAYHGEAgANgwlDAAAsjlAAoGEwYQgAgMXxeAxAXVpuwlB7S3jR1wAAaFSEAgB1\nZ6UJQwHbUiJOGAAAoIjtQwDqChOGAABYO0IBgLrChCEAANaOUACgrjBhCACAtSMUAKgrTBgCAGDt\neHQGoGYxYQgAgPIgFACoSUwYAgCgfNg+BKDmMGEIAIDyIhQAqDlMGAIAoLwIBQBqDhOGAAAoL0IB\ngJrDhCEAAMqLx2oAqhoThgAA2HyEAgBViwlDAABsDbYPAahKTBgCAGDrEAoAVCUmDAEAsHUIBQCq\nEhOGAADYOoQCAFWJCUMAAGwdHrkBqDgmDAEAUFmEAgAVxYQhAAAqj+1DACqGCUMAAFQHKgUAtlxx\nu5DjeUtOGKI6AADA1iEUANhSl28X8vJ5zaYdJZpCpdeZMAQAwNZj+xCALXPldiHLNCX58vJ5SUwY\nAgCgUngcB2DTLbddKNEU1s6eFgVskwlDAABUCKEAwKZazXahRDxIGAAAoILYPgRg07BdCACA2kCl\nAMCmSWddtgsBAFADCAUANk0sYsswtCAYsF0IAIDqw/YhAGXhuJ6mZ+cXHDwWsC31dcVlGIU/s10I\nAIDqRKUAwIZd3kxc/OK/vT0mSdreHlN7S1ipjMt2IQAAqhSVAgAbcmUzse9LydHZqyoGiXiIQAAA\nQJUiFADYkMWaiX1fSmXcyiwIAACsGaEAwIYUm4kvZxiF6wAAoDYQCgBsCM3EAADUPh7lAVg1x/UW\nbRimmRgAgNpGKACwKstNGJKKzcSEAQAAahHbhwCsaDUThgAAQO0iFABYEROGAACob4QCACtiwhAA\nAPWNUABgAcf1ND07f9XhY0wYAgCgfvGYD0DJcs3ETBgCAKB+USkAIGl1zcSFCUMhAgEAAHWGUABA\nEs3EAAA0MkIBAEk0EwMA0MgIBQAk0UwMAEAj4xEg0IAc11u0YZhmYgAAGhOhAGgwy00YkorNxIQB\nAAAaCduHgAaymglDAACg8RAKgAbChCEAALAYQgHQQJgwBAAAFkMoAOqU43qanp2/6vAxJgwBAIAr\n8XgQqEPLNRMzYQgAAFyJSgFQZ1bTTFyYMBQiEAAAAEmEAqDu0EwMAADWilAA1BmaiQEAwFoRCoAa\nRjMxAAAoBx4dAjWKZmIAAFAuVAqAGkQzMQAAKCdCAVCDaCYGAADlRCgAahDNxAAAoJwIBUAVW6yR\nWKKZGAAAlBePFYEqtVwjsUQzMQAAKB8qBUAVWk0jsUQzMQAAKA9CAVCFaCQGAABbiVAAVCEaiQEA\nwFYiFAAVxqnEAACg0lb92PGpp57S3/7t32pkZER79+7Vpz/9ad16661Lvv/48eP60pe+pMHBQYXD\nYR08eFAPPvig2tvby7JwoB5wKjEAAKgGq6oUPP3003r44Yd111136ciRI2pubtb999+vc+fOLfr+\nU6dO6b777lM8HtcXv/hFffrTn9bx48d1//33y/O8RT8DNBpOJQYAANViVZWCI0eO6NChQ3rggQck\nSQcPHtSdd96po0eP6qGHHrrq/d/85je1bds2ffnLX5ZlFb7MXHPNNfqN3/gN/dd//Zc++MEPlvFX\nAGrTcs3EiTghAAAAbJ0VQ8HZs2c1PDysO+644+0P2bZuv/12Pf/884t+Zvfu3bruuutKgUCSdu7c\nKUkaGhra6JqBmuO43lXbgIrNxJcHA5qJAQBAJaz47ePMmTMyDEP9/f0Lrvf29iqZTMr3fRlXjEn5\nzd/8zat+zve+9z0ZhqFdu3ZtcMlAbVmqb6DYTHzla2wVAgAAW23FUDA3NydJisViC67HYjHl83ml\n0+mrXrvS+fPn9Vd/9Ve6+eab9d73vncDywVqy1J9A+0tYQVsi2ZiAABQFVYMBf6lbzNXVgOKTHP5\nXuXz58/r3nvvlSR98YtfXOPy3jY4OLjuz6LxZDIZSZW/b+Yyrt4ay179QnZcTWwTqkrVcu+g9nDv\nYL24d7BexXunHFacPhSPxyVJqVRqwfVUKiXLshSJRJb87MmTJ3Xo0CGl02l94xvfUG9v7waXC9SW\ncNBc9BCycJAjQgAAQPVY8VFlf3+/fN9XMplUX19f6frQ0JAGBgaW/NxPf/pTHT58WM3NzfrGN76x\n4LPrsXfv3g19Ho2l+LRlK++bxZqJJamze+mzCFB9KnHvoD5w72C9uHewXoODg0qn02X5WSuGgoGB\nAXV3d+vZZ5/VwYMHJUmO4+i5555bMJHockNDQ/rYxz6mbdu26ejRo+ro6CjLYoFqxSFkAACglq1q\nU/Phw4f1yCOPKB6P68CBA3ryySc1PT2te+65R5KUTCY1OTmp/fv3S5I++9nPKpVK6c///M917ty5\nBYec9fT0qLOzcxN+FaAyVmomloqHkBEGAABAdVpVKLj77ruVy+V07NgxHTt2THv27NETTzxR6hF4\n/PHH9cwzz2hwcFCu6+r555+X53n6wz/8w6t+1oMPPqj77ruvvL8FUEEcQgYAAGrdqsef3HvvvaUp\nQld69NFH9eijjxZ+oG3rlVdeKcvigGrDIWQAAKAe8a0FWCUOIQMAAPWKUACsAoeQAQCAesawdGAV\nlusbKCo0E4cIBAAAoOYQCoBVKPYNXI6+AQAAUC8IBcAVHNfT9Oy8HNcrXSv2DRSDAX0DAACgnvCY\nE7gMh5ABAIBGRKUAuGSpZuIrKwb0DQAAgHpDKAAuWU0zMQAAQD0iFKAhLdY3QDMxAABoVHzbQcPh\nEDIAAICFCAVoKBxCBgAAcDW2D6GhcAgZAADA1QgFqEuul9dcxl3QMyDRNwAAALAYQgHqzshESq+f\nS+utsaxOnBzXyESq9BqHkAEAAFyNx6OoKyv1DEgcQgYAAHAlKgWoK6s9a4C+AQAAgLcRClCzOGsA\nAACgPPimhJq04lkDSXHWAAAAwCoRClBzVnPWwO4dUWVzed16fSeBAAAAYAVsH0JVW2yL0Gr6BmzL\nVBNNxAAAAKtCpQBVa6ktQsW+gcuDAX0DAAAA60elAFVpqS1Cjutx1gAAAECZ8Wj1/7V3b7FRVW8f\nx391SgELVYovQtLSAuFPkUNpCZQSUEZrwAslJETKIeAEhKgJ8UYOgmZIOKmEgK1IoaFNY9RUGky8\nIBFqEEiakFiODZFDMjiFooYqkY7QmbLfC9NJS6ftzHQOe7q/n6QXXV178kzyZGY/fdZaG6bU0xKh\nZ4faeNYAAABABFEUIO68vrYuN/fBLBH671kDFAMAAAB9RVGAuOr1aNEn/kZHAAAAIPIoChA3wRwt\nyhIhAACA6GOjMWIi3KNF/1siNJCCAAAAIIroFCDqOFoUAADA3OgUIKo4WhQAAMD8+JcsooqjRQEA\nAMyPogARw9GiAAAAiYmiABHB0aIAAACJi6IAfcbRogAAAImNjcYICUeLAgAA9D90ChA0jhYFAADo\nn+gUICgcLQoAANB/8a9cdBHoFCGOFgUAAOi/KArQSV+WCHG0KAAAQGJi+RD8WCIEAABgTXQKLCjQ\n8iCJJUIAAABWRVFgMd0tD5J4+jAAAIBVsXzIQnpaHiSJJUIAAAAWRaegnwrnBCFJLBECAACwIIqC\nfqivDxljiRAAAIC1sHyon+EEIQAAAISKTkEC4yFjAAAAiASKggTFQ8YAAAAQKSwfMjmvr01///PI\nf0KQxBIhAAAARBadAhPrrhvAEiEAAABEEp0Ck+qpG9C+RKijwEuEBlIQAAAAoFcUBSYQaIlQT90A\nlggBAAAgklg+FGfhbhhmiRAAAAAihU5BjERjwzBLhAAAABAJdApigA3DAAAAMDM6BVHGhmEAAACY\nHUVBBLFhGAAAAImI5UMRwoZhAAAAJCo6BSEI1AmQ2DAMAACAxEanIEjddQKknpcIsWEYAAAAZken\n4AmhHh0qiQ3DAAAASGh0CjoI9+jQ9iVCT15LAQAAAIBEYMmiwOtr67KUp7tuwPBnBvW6WVhiwzAA\nAAASl+WKgvC6AQOD6gT8t0SIYgAAAACJpd8WBZHuBtAJAAAAQH+V0EVBoBt/KXrdADoBAAAA6I8S\ntijo7safbgAAAAAQmoQ5kjTYI0J76gbwIDEAAACgq4TpFFy49mdQy4DoBgAAAAChSZhOQcduQE8P\nC6MbAAAAAIQmYToFUvCbgukGAAAAAMFLqKIglGVAnBQEAAAABCdhigKOCAUAAACiI2GKgmn/+z+W\nAQEAAABRkDAbjSkIAAAAgOhImKIAAAAAQHRQFAAAAAAWR1EAAAAAWBxFAQAAAGBxFAUAAACAxVEU\nAAAAABZHUQAAAABYHEUBAAAAYHEUBQAAAIDFURQAAAAAFkdRAAAAAFhc0EVBdXW15s+fr9zcXBUX\nF+vChQs9zr9+/bpWrVqlvLw82e12HT58uM/BAgAAAIi8oIqCY8eOyel0auHChSopKVFaWprWrFmj\n27dvB5zf3Nwsh8Oh5ORk7d+/X0uWLNG+fftUUVER0eABAAAA9F1yMJNKSkpUXFysd999V5I0e/Zs\nLViwQJWVldqyZUuX+V999ZXa2tr05ZdfKiUlRS+++KIePXqksrIyrVy5UjabLbLvAgAAAEDYeu0U\n3Lp1S3fu3JHdbvePJScna968eTpz5kzAa+rq6lRYWKiUlBT/WFFRke7fv6/Lly9HIGwAAAAAkdJr\nUeByuZSUlKSsrKxO4xkZGXK73TIMI+A1o0eP7jSWmZkpwzDkcrn6FjEAAACAiOq1KHjw4IEkKTU1\ntdN4amqqHj9+LI/HE/CaQPM7vh4AAAAAc+i1KGjvBCQlJQV+gae6voRhGN3O724cAAAAQHz0utF4\n6G8Qo70AAAnWSURBVNChkqSWlhalp6f7x1taWmSz2TR48OCA17S0tHQaa/+9/fVCdfXq1bCugzX9\n+++/ksgbhI7cQbjIHYSL3EG42nMnEnotCrKysmQYhtxutzIzM/3jjY2Nys7O7vYat9vdaaz99zFj\nxoQVaKBlSkBvyBuEi9xBuMgdhIvcQTz1WhRkZ2dr1KhROnnypGbPni1J8nq9OnXqVKcTiToqLCxU\ndXW1Hj58qEGDBkmSTpw4oWHDhmnixIkhBzl9+vSQrwEAAAAQHJvT6XT2NiklJUUHDhxQa2urWltb\ntWvXLrlcLu3evVtpaWlyu91yuVwaOXKkJGncuHGqqqpSXV2d0tPTdfz4cR08eFDr169Xfn5+tN8T\nAAAAgBAkGYHOFA2gsrJSVVVV+uuvv5STk6PNmzdr6tSpkqTNmzfr+++/77QWrqGhQTt27FBDQ4OG\nDx+u5cuXa/Xq1dF5FwAAAADCFnRRAAAAAKB/6vVIUgAAAAD9G0UBAAAAYHEUBQAAAIDFURQAAAAA\nFkdRAAAAAFgcRQEAAABgcXEvCqqrqzV//nzl5uaquLhYFy5c6HH+9evXtWrVKuXl5clut+vw4cMx\nihRmE2ru1NfXa+XKlZoxY4bmzp2rjRs36t69ezGKFmYSau50VFpaqpycnChGBzMLNXeam5u1YcMG\nFRQUaMaMGXrnnXfkdrtjFC3MJJzvrGXLlik/P19FRUUqLS2Vz+eLUbQwm9ra2qAeANyX++S4FgXH\njh2T0+nUwoULVVJSorS0NK1Zs0a3b98OOL+5uVkOh0PJycnav3+/lixZon379qmioiLGkSPeQs2d\nmzdvyuFwaOjQodq7d682bdqk+vp6rVmzRm1tbTGOHvEUau50dO3aNZWVlSkpKSkGkcJsQs0dn88n\nh8OhK1euaMeOHdq9e7fcbrfefvttbu4sJtTccbvdWr16tYYMGaLS0lI5HA6Vl5dr7969MY4cZlBf\nX68NGzb0Oq/P98lGHNntdmPbtm3+371er/HKK68Y27dvDzh///79xqxZs4xHjx75x/bt22cUFBQY\nPp8v6vHCPELNnW3bthlFRUWd8uTSpUvGhAkTjJ9//jnq8cI8Qs2ddm1tbcbixYuNl156ycjJyYl2\nmDChUHOnurramDZtmnH37l3/2NWrV425c+caDQ0NUY8X5hFq7pSVlRm5ubnGw4cP/WN79+41pk+f\nHvVYYR6PHj0yDh06ZEyePNmYOXOmkZeX1+P8vt4nx61TcOvWLd25c0d2u90/lpycrHnz5unMmTMB\nr6mrq1NhYaFSUlL8Y0VFRbp//74uX74c9ZhhDuHkzvjx4+VwOGSz2fxjY8aMkSQ1NjZGN2CYRji5\n066iokIej0crVqyIdpgwoXByp7a2VnPnztXzzz/vH8vJydHp06f1wgsvRD1mmEM4ueP1epWcnKyB\nAwf6x5555hl5PB61trZGPWaYw+nTp1VeXq5NmzYF9d3T1/vkuBUFLpdLSUlJysrK6jSekZEht9st\nwzACXjN69OhOY5mZmTIMQy6XK5rhwkTCyZ2lS5dq2bJlncZ++uknJSUlaezYsVGNF+YRTu5I/32p\nl5aWavv27RowYEAsQoXJhJM7v/76q8aMGaPS0lLNmTNHU6ZM0bp169TU1BSrsGEC4eTOG2+8IZvN\npj179uj+/fu6dOmSqqqq9Oqrr3a64UP/NnXqVNXW1mr58uVBLVvt631y3IqCBw8eSJJSU1M7jaem\npurx48fyeDwBrwk0v+Prof8LJ3ee1NTUpE8//VRTpkzRrFmzohInzCfc3Nm6dasWLVqkvLy8qMcI\ncwond5qbm1VTU6OzZ89q586d+uyzz3Tjxg2tW7dOjx8/jknciL9wciczM1MffPCBjhw5ooKCAr35\n5psaPny4du7cGZOYYQ4jRozQkCFDgp7f1/vk5NDCi5z2yri7yuepp7rWK4ZhdDufjX/WEU7udNTU\n1KS33npLkti0ZTHh5M4333wjt9utsrKyqMYGcwsnd3w+n3w+n8rLy/1f7BkZGVq8eLF+/PFHLViw\nIHoBwzTCyZ3vvvtOH330kYqLi/Xaa6/pjz/+0Oeff661a9eqsrKSjiUC6ut9ctw6BUOHDpUktbS0\ndBpvaWmRzWbT4MGDA14TaH7H10P/F07utLt27ZqKi4vl8XhUUVGhjIyMqMYKcwk1d+7evas9e/Zo\ny5YtGjhwoNra2vz/4W1ra+t2uRH6n3A+d55++mnl5uZ2+k/f5MmTlZaWpmvXrkU3YJhGOLlz+PBh\nzZs3T06nUwUFBXr99ddVVlamX375RT/88ENM4kbi6et9ctyKgqysLBmG0eW85sbGRmVnZ3d7zZPz\n239v3zSK/i+c3JGkixcvasWKFRowYIC+/vprjR8/PsqRwmxCzZ26ujp5PB6tX79ekyZN0qRJk/TJ\nJ5/IMAxNnjxZX3zxRYwiR7yF87kzevRoeb3eLuM+n4/utoWEkztNTU3Kzc3tNDZ27Fg9++yzunHj\nRrRCRYLr631y3IqC7OxsjRo1SidPnvSPeb1enTp1SoWFhQGvKSwsVF1dnR4+fOgfO3HihIYNG6aJ\nEydGPWaYQzi509jYqLVr12rEiBH69ttvlZmZGatwYSKh5s7LL7+so0eP6ujRo6qpqVFNTY0cDoeS\nkpJUU1OjJUuWxDJ8xFE4nztz5sxRfX29/vzzT//YuXPn5PF4gnoIEfqHcHInOztb58+f7zR269Yt\n/f3333x/oVt9vU+2OZ1OZxTj61FKSooOHDig1tZWtba2ateuXXK5XNq9e7fS0tLkdrvlcrk0cuRI\nSdK4ceNUVVWluro6paen6/jx4zp48KDWr1/PB6zFhJo7Gzdu1I0bN/Thhx9Kkn7//Xf/j81m67Ix\nB/1XKLkzaNAgjRgxotPPzZs3dfbsWW3bto28sZhQP3cmTJigmpoa1dbW6rnnnlNDQ4OcTqdycnL0\n/vvvx/ndIJZCzZ309HQdOnRId+/e1eDBg3X+/Hl9/PHHSktLk9PpZE+BBZ07d07nz5/XunXr/GMR\nv08O5SEK0VBRUWHY7XZj2rRpRnFxsXHx4kX/3zZt2tTlIUFXrlwxli5dakydOtWw2+1GeXl5rEOG\nSQSbO16v15g0aZKRk5MT8OfIkSPxeguIk1A/dzqqrKzk4WUWFmru/Pbbb8Z7771n5OfnGzNnzjQ2\nb95s/PPPP7EOGyYQau6cOHHCWLRokTFlyhTDbrcbW7duNe7duxfrsGESJSUlRn5+fqexSN8nJxkG\nO+UAAAAAK4vbngIAAAAA5kBRAAAAAFgcRQEAAABgcRQFAAAAgMVRFAAAAAAWR1EAAAAAWBxFAQAA\nAGBxFAUAAACAxVEUAAAAABb3/1NYhK884D6WAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x=dffull.rfrac.values\n",
"f=dffull.promney.values\n",
"plt.plot(x,f,'.', alpha=0.3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice that our sampling of $x$ is not quite uniform: there are more points around $x$ of 0.7.\n",
"\n",
"Now, in real life we are only given a sample of points. Lets assume that out of this population of 200 points we are given a sample $\\cal{D}$ of 30 data points. Such data is called **in-sample data**. Contrastingly, the entire population of data points is also called **out-of-sample data**."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" f | \n",
" i | \n",
" x | \n",
" y | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.075881 | \n",
" 7 | \n",
" 0.07 | \n",
" 0.138973 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.085865 | \n",
" 9 | \n",
" 0.09 | \n",
" 0.050510 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.096800 | \n",
" 11 | \n",
" 0.11 | \n",
" 0.183821 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.184060 | \n",
" 23 | \n",
" 0.23 | \n",
" 0.057621 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.285470 | \n",
" 33 | \n",
" 0.33 | \n",
" 0.358174 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" f i x y\n",
"0 0.075881 7 0.07 0.138973\n",
"1 0.085865 9 0.09 0.050510\n",
"2 0.096800 11 0.11 0.183821\n",
"3 0.184060 23 0.23 0.057621\n",
"4 0.285470 33 0.33 0.358174"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"data/noisysample.csv\")\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"figure_type": "w"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABZkAAAI3CAYAAAD5glVPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WlwW/d57/HfOdgBAiAJLqBISqRIaqNs2rLlRU18pda9\nddI2Tdv7IhN1mmSauJ02M510ppnMdJm86NQvmrnTJq1zY6e9rq/tpE4dZ3GdxnViuXa8SZZM7RJF\niRIJiSLFBRQBEjg459wXkGjK2iiZIkDy+5nJ2Pjzfw4fyocc5KeHz99wXdcVAAAAAAAAAAA3wSx1\nAQAAAAAAAACAxYuQGQAAAAAAAABw0wiZAQAAAAAAAAA3jZAZAAAAAAAAAHDTCJkBAAAAAAAAADeN\nkBkAAAAAAAAAcNPKKmT+2c9+pk2bNl13X09Pjz7zmc/ozjvv1LZt2/T4448vQHUAAAAAAAAAgA/y\nlrqAi3bv3q0vf/nL1903Ojqqz33uc1q7dq3+4R/+QQcPHtTf//3fy+v16nOf+9wCVAoAAAAAAAAA\nuKjkIXM+n9e//uu/6utf/7rC4bAsy7rm/qeeekq2beub3/ym/H6/HnjgAeVyOX3rW9/S7//+78vj\n8SxQ5QAAAAAAAACAko/L+O///m99+9vf1le+8hX93u/93nX3v/nmm7r//vvl9/tn1h588EGl02nt\n27fvVpYKAAAAAAAAAPiAkofMt99+u372s59p+/btMgzjuvv7+vq0cuXKS9aam5vluq76+vpuUZUA\nAAAAAAAAgCsp+biMurq6G9o/OTmpSCRyydrF15OTk/NWFwAAAAAAAADg+kreyXyjXNe9asfzXDqh\nAQAAAAAAAADzp+SdzDcqGo0qk8lcsnbxdTQaveH7vfvuu/NSFwAAAJanu+66q6Sfn/ezAAAA+LA+\n7HvaRRcyr1q1Sv39/ZesXXzd2tp6U/cs9f8xQHk4dOiQJGn9+vUlrgSlxrOA2XgeMBvPA2Y7dOiQ\nstlsqcuQxPtZFPEzCrPxPGA2ngfMxvOA2ebrPe2iG5dx//33680339T09PTM2n/913+pqqqKbw4A\nAAAAAAAAWGBlHzL39/eru7t75vWnP/1p5fN5feELX9COHTv0zW9+U48//rj+8A//UF7vomvMBgAA\nAAAAAIBFrexC5g8e3vfoo4/qU5/61Mzr2tpaPfHEE7JtW3/6p3+q733ve/qzP/szffazn13gSgEA\nAAAAAAAAZdX6+8UvflFf/OIXL1l75JFH9Mgjj1yy1tnZqWeeeWYhSwMAAAAAAAAAXEHZdTIDAAAA\nAAAAABYPQmYAAAAAAAAAwE0jZAYAAAAAAAAA3DRCZgAAAAAAAADATSNkBgAAAAAAAADcNEJmAAAA\nAAAAAMBNI2QGAAAAAAAAANw0QmYAAAAAAAAAwE0jZAYAAAAAAAAA3DRCZgAAAAAAAADATSNkBgAA\nAAAAAADcNEJmAAAAAAAAAMBNI2QGAAAAAAAAANw0QmYAAAAAAAAAwE0jZAYAAAAAAAAA3DRCZgAA\nAAAAAADATSNkBgAAAK7FsqSJieI/AQAAAFzGW+oCAAAAgHLlDA6q0Ncnv88nGYbU1CTV1ZW6LAAA\nAKCsEDIDAAAAliVNTUmhkCampjQwMKDTJ08q+/bbKliW2tra1NXVJQ0MSFVVks9X6ooBAACAskHI\nDAAAgGXNSqU0vGePzp49q6GhIZ31+TQdi8k3NaX4hREZY2Njxc2uWwyjCZkBAABwi9i2o5xlK+Dz\nyONZHNOOCZkBAACwPMzqVk5nszp16pT6jx9XbtcuuY4zsy1iGMpFIir4/fL6fKqtrdXGzs7iBw1D\nCoVK9AUAAACgnD228+kb2v/w5u2XvB4cyai7Z1i9qbQcx5VpGmprjKuro1bJRGQ+S513hMwAAABY\n8pzBQZ177z0NnjmjwbNnNej1vt+tPCtgNgxD1VVVWr1hg1asW6da15V5+nSxg/niTGa6mAEAADDP\nDhwf0Y7dA3Jdd2bNcVz19I/r2EBaWzc1qXN1ooQVXhshMwAAAJaWCx3LWddV/+Cg+o8fn5mtfNHs\nbuVgKKRkfb2SyaRqa2vl8/ul2257P0xOJGY6oAmYAQAAMN8GRzKXBcyzua6rHbsHlIgHy7ajmZAZ\nAAAAS8bYkSM6s2uXzp45o9HxcWUqK2X7fDOzlS+qrqpSW2enmjs7lbDt4oF+V+tW9vkIlwEAAHBT\nXNeV7bjymIYMw7jinu6e4asGzLPv090zTMgMAAAAzJtZ85WHx8d14sQJnTh6VN7Dh2VceINuSIqM\nj2ssmZTX55vpVq6vr1cgGLy0W7mqim5lAAAAzJtsrqCR9JQmMvmZXoZYxK9EPKRw4P1I1rYd9abS\nc7pnbyot23bK8jBAQmYAAAAsKu7Zsxrp7tbpVEqp06c1HAi8P195VgdINBYrjsC4/37VxWLXnq1M\ntzIAAADmyej5aZ05l9Hs5mTXldKTeU1k8mqoiag6GpQk5SxbjnPtLuaLHMdVzrIVJmQGAAAAbsCF\njmUnENDgyIj6eno0/tprmp6amtkSmZqama+cqKnRihUrtKKhQZFIpBgot7YWA2RmKwMAAOAWy+YK\nlwXMs7mudOZcRkF/MZYN+DwyTWNOQbNpGgr4PPNZ7rwhZAYAAEBZcgYHNbxnj1IDAzp95oxGw+Hi\nfOVZAbNhGKqtqVHnXXdp5caNCk9OXn2+Mt3KAAAAuMVG0lNXDZgvct3iPknyeEy1NcbV0z9+3Xu3\nNcbLclSGRMgMAACAUps1X1k+n4aGhnTs0CGNvvqq8rnczLZIPq+xZFKGaaqutlYrGhu1oqHh0vnK\n4TDzlQEAAFASrutqIpOf096JTH5mvnJXR62ODaSvefifYRjq6qidr1LnHSEzAAAASmdoSBoY0OT5\n8zo1MKAjk5MaNozifOVZAbNpmqqvr1fXli1qrq1VYHiY+coAAAAoK7bjXreL+SLX1cx85WQioq2b\nmrRj98AVg2bDMLR1U5OSicg8Vzx/CJkBAABQEtPnzyv16qs6deqUxkZHJUmuYchobFTB75dhmkom\nk2pqalIymZTP53u/YzmZpFsZAAAA8862HeUsWwGf54ZHU3hMQ4ahOQXNhqFL5it3rk4oEQ+qu2dY\nvam0HMeVaRpqa6xUV0dNWQfMEiEzAAAAFsKFkRgFn08nT59WT0+PBo8eVezs2Uu2Ga6rxqoqtXZ1\naXVFxdU7lulWBgAAwIf02M6nZ/49mytoJD2liUx+5u1nLOJXIh5SOFCMUB/evP2a9zMMQ7GIX+nJ\n64/MiEX8l4XYyUREyUTkQwXdpULIDAAAgFvjQrDsTkzo3IEDOtnXp9Nnzmi8okLTsZgMn6/Yuey6\nikajam5uVvPKlYrcd9/7ATIdywAAALjFRs9P68y5zCUdyK4rpSfzmsjk1VATUXU0eN37PLx5uwZH\nMnrulWPXna/8u/e1X/XjHo+p8CIJly8iZAYAAMD8uXiI3/nzmurr06neXo28845GvV7lI8Vf8YuM\njysXiSgUjWrl/ferPRhUVWUl85UBAACw4LK5wmUB82yuK505l1HQP7cYdSnMV74ZhMwAAACYH0ND\ncvv7NTgwoOE331R/Lifb41FFNquQYcgKhWT6fGpsbNR9DzyghrVrZZrm+8E03coAAABYYCPpqevO\nUHbd4r65WuzzlW8GITMAAAA+tMmxMZ166SWd7OuTNT6uitFRBQ1D5xMJyTBUFY9rzcaNamhvl9fn\nk9rbJfPCrwDSrQwAAIAScF1XE5nrz0+WpIlMXrbtzHlG8mKer3wzCJkBAABwYy50HjuBgE6ePq3D\nhw9r8OhRxYeGJEmG1ysZhvxerzpaW7Xq/vtVkc0Wg2Wf7/KRGAAAAEAJ2I573S7mi1xXyln2Dc9K\nXozzlW8GITMAAADmbmhIk4cPq+/ECZ08dUojoVDxED+/f+YQv9qGBq1ev15Jj0dmR0cxUK6vl6JR\nRmIAAACgbHhMQ4ahOQXNhiEFfJ5bX9QiRcgMAACA63JdV/3Hj6v/xRd1dnBwZj2Sy80c4tf2wAPq\nCIUUCYeL78IJlgEAAFDGDMNQLOJXevL6IzNiEf+SHnfxYREyAwAA4MosS7nxcR05dUoHe3o0dfbs\nzEgMqfimvCGZ1D0PPKDG9es5xA8AANy0x3Y+fUP7H968/RZVguUmEQ9pIpO/ZjezYRT34eoImQEA\nAPC+CyHx2KlTOvHWW+o/dUoFx1G+slKFSESuYSgcDKqltVUtLS0KhULSmjUc4gcAAIBFKRzwqqEm\nojPnMlcMmg1DaqiJKBwgRr0W/nQAAABQNDSks+++q2OHDmn6wAFNRaOyIxEZkiLj40q0t2vj3Xer\n2TBkGkbxHTeH+AEAAGCRq44GFfR7NZKemulqNgwpFgkoEQ8SMM8Bf0IAAADLmWXJnpzUsb4+nXrp\nJZ2fmJA3l1OF6yp0/rycSETNq1drdWur4nffLcVijMQAAADAkhMOeBWui8p1XdmOe+FQQKPUZS0a\nhMwAAADL1PSpUzrx2ms63turwvnz8liWFInI9noVCIXU3Niohnvvla+ystjKEbowh46RGAAAAFgC\nmO09fwiZAQAAloNZ3cfjmYwOvPeezr3yiuxCQZJkeDyqGB1VJJlU+7p1agyFZJ47J1VUMBYDAAAA\nwDURMgMAACx1qZTU26vh8+fVc+KEjk1Py/b5FL8QMEtSsqlJHXfeqZqGBikSKQbLGzdK0ShjMQAA\nAABcEyEzAADAEuYODGj43/9dJ/v6NHH+vKaiUUUqKjSWTMrj9WrlypVqb29X9GLH8rp1UqFAsAwA\nAABgzgiZAQAAliDHcdR7+LBOPfusjFOnJEmGpND58zLjcbV3dWntqlUKnjunmeOzm5qkcLi0hQMA\nAABYdAiZAQAAlgrLkj05qSOnTqn74EFNDw2pcnpaccOQXFfhSEQrm5tVf8898tx3X7FTuaFhZlYz\nncsAAAAAbgYhMwAAwBJgpVI68dpr6jl6VNP5vKzKShUiETler/zNzVpbWamaREKGaUodHe8Hyj4f\n4TIAAACAD4WQGQAAYBGzLEsH3ntPAz/5ifK5nKTiWIzI+LgS7e3atGWLGmxbsiwpl5Pa2qTGxtIW\nDQAAAGBJIWQGAABYTCxLmpqS5fXqwNGj2rt3r+yxMcUvBMyS1NDQoLVr16r63nulWGzmGkZiAACA\ncvXw5u2lLgEoicd2Pn1D+8v1e4WQGQAAYLFIpWQdOaLjAwPq6evTaDis6VhMht8v1zDUtGKF1q1b\np3g8XjzILxQqXsdIDAAAAAC3ECEzAADAImD19Sn1zDPqP3lS+UJBikYVyeeVi0TU2tGhu375l1WV\nyUiuWwyYm5oIlgEAAAAsCEJmAACAMmbbtg7t3avUv/+7fGfOSCrOXA6dP6+6tjZt+9jHVN3SUtzM\nWAwAAAAAJUDIDAAAUIbcfF69+/dr5/79mh4bU6VtK24Ykuuqtq5OLS0tim7YcOkhfozFAAAAAFAC\nhMwAAADlxLJ06vXXdeSNN3Q+m5XfMFSIRuV4vYp2dGhdZaWiFRXFkRhtbYTKAAAAKAnbdpSzbAV8\nHnk8ZqnLQYkRMgMAAJTahTEXp48c0ZGf/1zu0aMyJfmjUeUjEa0KBLT+oYdUa9vFvblcMWCe3cUM\nAAAALIDBkYy6e4bVm0rLcVyZpqG2xri6OmqVTERKXR5KhJAZAACgVLJZqbtbY0eO6ODp05ru7ZXl\n98vvujIk1Utadd99qluxQmptLc5aZuYyAAAASuTA8RHt2D0g13Vn1hzHVU//uI4NpLV1U5M6VydK\nWCFKhZAZAACgFLq7lX3mGU384heazGYVr6iQJ5FQtrJSkXBYq9vbVVtbK8VixdEYF4NlwmUAAACU\nwOBI5rKAeTbXdbVj94AS8SAdzcsQITMAAMACyx05orNf/7oK774r3/S0PD6fgufPy+/xaNXddyvZ\n2SkjkyluDoWkpibCZQAAAJRUd8/wVQPmi1zXVXfPMCHzMkTIDAAAsEDs6WkdeucdnXnuOdWcOqWY\nJLmu/IWCwnV1iq1ZI08sJjU0FC+oqZFWriRgBgAAQEnZtqPeVHpOe3tTadm2w2GAywwhMwAAwK2U\nzUqjo+o7dkyH33hD+dFRRcfHi10gHo9CNTWK+/3yRaNSXZ300ENSfT1zlwEAAFA2cpYtx7l2F/NF\njuMqZ9kKEzIvK4TMAAAAt8qBAxrbsUO9R47IOXlSnvp62dXVcr1eVbS0qLG1VcGxMclxpNtuk377\nt6WOjlJXDQAAgGXIth3lLFsBn+eyLuSAzyPTNOYUNJumoYDPc6vKXHIe3ry91CXMC0JmAACA+WRZ\n0sSEMsPD6vt//09nh4bkyecVdl3Fz55VsK1Nt911lyrz+eI4jGxWSialri4pHC519QAAAFhmBkcy\n6u4ZVm8qLcdxZZqG2hrj6uqonZmt7PGYamuMq6d//Lr3a2uMMypjGSJkBgAAmC9DQ7L37FH/rl06\nvX+/QqOj8lVXqxAIKBAKqbmpSVW33VYch1EoSO3tUizGWAwAAACUxIHjI9qxe+CSA/0cx1VP/7iO\nDaS1dVOTOlcnJEldHbU6NpC+5uF/hmGoq6P2lteN8kPIDAAAMB/SaQ3++Mfqe+cdZS1Lps+n2PS0\nIlNTqu3sVGNlpczxcSkelwxDam2VEolSVw0AAIBlanAkc1nAPJvrutqxe0CJeFDJRETJRERbNzVd\n9RrDMLR1U9NM9zOWF0JmAACAD2nirbd04plnVOjpUUU2K1VXK1tVpdC6dVpbVSVfXZ0UiUgf+Yi0\nejWH+gEAAKDkunuGr9mVLBWD5u6e4ZnguHN1Qol48ArjNSrV1VFDwLyMETIDAADcpHw+r/feeEOT\nTz0lo1BQhccjw3VVNz2tmq4uxWpqpOZmaeVKqa6OmcsAAAAoC7bjqjeVntPe3lRatu3MzFm+2NV8\nrYMCsfwQMgMAANwgN5/XsX379PbevdLQkFY4jlzTlFNTo2RjoxKmWRyJUV8vrVtXDJgBAACAMmEV\nXDnOtbuYL3IcVznLVvgDQbLHY162huWLkBkAAGCuLEuZw4e140c/0tjEhEKGoalwWDJNrWxu1qqW\nFvlcV5qakn7jN6RkkrEYAAAAKDs+ryHTNOYUNJumoYDPswBVYTEjZAYAAJiD/MCA+p5/Xtm9e1VZ\nWSl/NKp8JKLVsZhu/9znVNHXJ7lusYN58+bimAwAAACgBK43ysJjGmprjKunf/y692prjDMOA9dF\nyAwAAHAtlqXePXt05MUXdfbkScVdV4brKmHbar3nHiWbmqSODunOO6XRUam6mtnLAAAAKInBkcwV\nDuWLq6uj9rJD+bo6anVsIH3Nw/8Mw1BXR+2tLhtLACEzAADAVUwcO6bu//gPjfX3KzI2Jm8+L8M0\n1bp6tVY2N8tTWVnsXA6FimMxCJcBAABQIgeOj2jH7oFLQmPHcdXTP65jA2lt3dSkztWJmY8lExFt\n3dR02TUXGYahrZuaLgungSshZAYAAJjNsmSnUjr4+us60d2tgt8vw+uVIWlFIKCme+5Ra01NcW8o\nJDU1MXcZAAAAJTU4krlqWCxJrutqx+4BJeLBS9Y7VyeUiAev0P1cqa6OGgJmzBkhMwAAwEVDQxp9\n8kmd++lP5clm1eE4OtveruyaNVq3fr3cs2dlVVVJ7e1STY20ciUBMwAAAEquu2f4mmMvpGLQ3N0z\nrJXxS9eTiYiSich15zgD10LIDAAAICk3Oan93/mOAj/+sYwLB/gFcjmtPX9eNfffL19VlU4Eg8o3\nN0ubNhEuAwAAoCzYtqPeVHpOe3tTaTVGffKYxmUf83hMhQmXcZMImQEAwLJ3/PhxvfPyy6o+eFCN\nFzpAghUVamhqUjgSkcbHpepqWY2NcqqqCJgBAABQNnKWLce5dhfzRY7jyiq48vgvD5mBD4OQGQAA\nLE+Wpcy5c3pjzx6dGBiQYdsKVlTI8HhUV1urRHW1DMOQ6uqke++VkknZx46VumoAAADgEgGfR6Zp\nzCloNk1DPi8BM+YfITMAAFh23LNn1ff669q/b5/yhYKClZWajsVUcdddWtXaqsjBg5LrSpWV0q/8\nitTcXOqSAQAAgCvyeEy1NcbV0z9+3b1tjXF5zKkFqArLDSEzAABYPixL6f5+dX//+zo3NiZJMiRV\nZTJa9/GPq2PDBsmypMHB4oiMlSulePza9wQAAABKrKujVscG0tc8/M8wDHV11Gps6NQCVoblgpAZ\nAAAsC87goHpeeUU9e/YoNDIifzSqfCSi5uZm3XbbbQo2NRU3+nzFzmW6lwEAAJaNx3Y+fUP7H968\nvaw+TzIR0dZNTdqxe+CKQbNhGNq6qUnJRERjQzdUAjAnhMwAAGDpymal0VGNWpbee+45jY+NyTBN\nhSVV5fNavW2bGpqaJMOQQqFSVwsAAADctM7VCSXiQXX3DKs3lZbjuDJNQ22NlerqqFEyESl1iVjC\nCJkBAMDSdOCAnD17dOrkSZ08ckR2MCjV1sr1eFS3caPWVlfLV1lZDJibmoodzAAAAMAilkxElExE\nZNuOcpatgM8jj8csdVlYBgiZAQDA0pPNavIXv9Chgwd1fmJChmkqfvastGKF7rz/ftXU1EiFgtTe\nLsViBMwAAAAoGdtxlS/Y8hiGfF5ThmF86Ht6PKbChMtYQITMAABg6bAsudmsDr7+uobeeUeu40iS\nXNNUTUeHNt19t7w1NcXu5dZWKZEoccEAAABYrkYnptV3ZkLpyZxsx5UhyefzqK4qpJXJmMIBYjss\nHjytAABgaejr0/mdO7W7p0ej4+NKZLMqBIMKhUJat369qqqqpI9+9P35y3QvAwAAoERODk6o78yE\nrIIzs+ZKylu2BoYmNT6Z15qVlXO6140eJvjRik03tB+Yi7IImZ999ln98z//swYHB7V+/Xp95Stf\n0R133HHV/bt379bXvvY1HT58WNXV1frkJz+pP/qjP5LXWxZfDgAAWEjZrNyf/1xnv/99DQwPK2Sa\nqqiv13Q0qta6OrW2txffI9xxhxSPl7paAAAALHOjE9M6+YGA+YMms3n1nZ7Q4EiGA/uwKJQ8lX3+\n+ef11a9+VV/84he1ceNGPfXUU/r85z+vH/7wh2psbLxsf39/v/7gD/5Amzdv1j/+4z/qxIkT+ru/\n+ztls1l9+ctfLsFXAAAASubAAU298ILGvv992em04hUVmkwkVDc2phXbt6v2vvuKs5erq6VwuNTV\nAgAAYJlzXVenzp5XwXGvu3dyylJ3zzAhMxaFkofM3/jGN/SpT31Kf/zHfyxJ2rJlix566CE98cQT\n+ou/+IvL9v/kJz+R67r6xje+oUAgoC1btmhoaEhPP/00ITMAAMtJNqvBF1/U0CuvKJLLye+6Ck5O\nqqKhQTXr1skXCBRnLjMWAwAAACU2OJJRd8+wDpwc0bnxqeIMZkMyr3HIn2XZ6jk1pgc3r5Rnng/x\n+9HAz/Xa5O4573948/Z5/fxYekoaMp88eVKnT5/Wtm3bZta8Xq+2bt2q11577YrXWJYlr9erQCAw\nsxaPx5XNZpXP5+X3+2953QAAoEQsS5qaUs409c4LL8jp7laFaUqmKScUUl0kolDlhdl169cTMAMA\nAKDkDhwf0Y7dA3JdV/asDmbXlWzXlWkYulLW7ErKWY5ylq3wPIfMwHwracjc19cnwzC0atWqS9ab\nmprU398v13VlfOC77BOf+ISefPJJfe1rX9MXvvAFnTx5Uk8++aR+9Vd/lYAZAIClrK9P2rdPwxMT\n2nXsmEZ8Pq3w+WR7vfI0N2uFacpnGFJjo/RbvyW1tJS6YgAAACxzgyOZmYBZkkzz8jTZcV15rpAy\nG5ICPlMBn+dWlwl8aCUNmScnJyVJkcils2UikYgcx1E2m73sY83NzfrzP/9z/fVf/7W+/e1vS5I6\nOzv1t3/7tzddx6FDh276WiwdU1NTkngewLOAS/E8lAf/vn2KvvCC0gMDGjt/Xp54XPaKFToWjWpL\nOKywx6Mxy5JVX6/MRz4iOxKRbsF/M54HzHbxeSgHPJOQ+BmFS/E8YDaeh+sbGx+/of1z/bN8+/C4\nxsZyM6+tYF5eU7IdqdirXOQ4uqyb2esxVOGb1tGjR675OW609inPlOxC4Yau49lZuubrPW1JQ+aL\nf4vzwW7li0zz8l8F+N73vqe/+qu/0qc+9Sl97GMf09DQkL7+9a/r4Ycf1hNPPCEfvxYLAMCS4unr\nU+D55zW+f7/yhYJ8fr8q02l5kklV/87vyFNZqfToqBy/X05VFSMyAAAAcMM+0fTL835P23F1eiR3\nyVrT9Galpws6PpiVbV96+J/Pe2kO1lQfVPsKDq/G4lDSkDkajUqSMpmMqqurZ9YzmYw8Ho9CodBl\n1zz++OPaunWrvvrVr86sdXZ26uMf/7h+/OMf63d+53duuI7169ffePFYci7+rRzPA3gWMBvPQ2m5\nJ04o9dJLOn/8uCosSz6fT47Xq1hzs2o2b5Zxxx3Fw/0WCM8DZjt06JCy2Wypy5DEM4kifkZhNp4H\nzMbzUBrZaUuxg/nL1isrJcOc0IkzEyoUW5olFZstDUkypJX1MX3m1zeoc/X13+veyAF+khQKheTx\nelV18SyTOeDZWbrm6z1tSUPmVatWyXVd9ff3q7m5eWZ9YGBALVeZo3jmzBn99m//9iVrq1evVmVl\npY4dO3YrywUAAAvBsqSJCWV7e3XsySdlHT+ueD4vxzQVdF1VJpMKVVdLbW1SLFbqagEAAIArCvg8\nMk1DjuNe9rGVDTFFwj6dPDOhdCYvx3FlGFK8IqB7NyT18V9qVTIRucJdgfJU0pC5paVFDQ0Nevnl\nl7VlyxZJkmVZ2rFjh7Zt23bVa/bs2XPJ2smTJzU+Pn5JUA0AABahoSFp926N7tmj/jfekDM9LcM0\nNRWPq9KyVJlIyFtZKW3dKt1zD6MxAAAAULY8HlNtjXH19F959nEiHlIiHlLBcdSYiOh/3rtKFWG/\nPJ7Lx8cC5a6kIbMkfeELX9Df/M3fKBqNatOmTXrqqac0Pj6uz3zmM5Kk/v5+jY6OqqurS5L0J3/y\nJ/rSl74ruWcFAAAgAElEQVSkv/zLv9Sv//qva3h4WP/0T/+k5uZm/dZv/VYpvxQAAPBhWJacXbs0\n8MMfavjUKQUmJxUoFGRVVanpzjtVVVEhhcPSQw9JGzcSMAMAAKDsdXXU6thAeuZcsivxeTz66J1N\nikeDC1gZML9KHjJ/+tOfVj6f15NPPqknn3xS69at07/8y7+oqalJkvToo4/qBz/4wcz8oIceekhe\nr1ePPvqofvSjH6mmpka/9Eu/pC996UsKhxmGDgDAYjWRSqnnxz+Wc+aMDI9HhmEoFA6rdcMGBdra\nJK9X+tVfla4yUgsAAAAoN8lERFs3NWnH7oErBs2GYWjrpqYPNRrj4c3bb2j/xYwNmE8lD5kl6bOf\n/aw++9nPXvFjjzzyiB555JFL1h588EE9+OCDC1AZAAC45SxLvfv36+0dO9QwPa2IJHk8SqxerfpQ\nSEZrq7R2bfF/jY2lrhYAAAC4IZ2rE0rEg+ruGVZvKi3HcWWahtoaK9XVUcPsZSwJZREyAwCA5clK\npbT3xRd1sq9PQceR5fPJSCS0rr5e0YqK4tHbv/IrxUP+GI8BAACARSqZiCiZiMi2HeUsWwGfh9nL\nWFIImQEAwMKyLGliQqNnz+rd55/X+Wy2uG6aSrS36/Z775WvUJAMg+5lAAAALCkej6lwGYTLn2j6\nZa1fv77UZWAJIWQGAAALJ5WSdu1S/759OnH0qIKWpVx9vexYTLd3dam1paU4c9nnk0IhupcBAAAA\nYBEgZAYAAAsjlZL1n/+pvv/+b42Nj8sMBuWfnlZdoaB1H/2oYtXVxe7lWIxwGQAAAAAWEUJmAABw\n66XTSr/0ko6+9po0NiZDkn96WtUtLWpZv15ev78YMDc1ETADAACgLDA/+X2P7Xz6hvY/vHn7LaoE\n5YqQGQAA3DqWJe3Zo9MvvqjTu3crNDYmx+uVVVmplpYWJTZskDo7i7OX6WAGAABAGRgcyai7Z1i9\nqbQcx5VpGmprjKuro1bJRKTU5QFliZAZAADcGqmUrO5u9T/7rEZGRuTJ52WFw6rM5ZRcs0ahaFRq\nbpba26VEotTVAgAAADpwfEQ7dg/Idd2ZNcdx1dM/rmMDaW3d1KTO1R/uvStdwViKCJkBAMD86+nR\n5HPP6ei+ffIPDMgbDMo1DFU2NKi5uVnezk6pq0tqa6N7GQAAAGVhcCRzWcA8m+u62rF7QIl4kI5m\n4AMImQEAwPzatUsj3/qWho4ckd+2FcjlZJqmajduVO2GDZLXKz30kBSPl7pSAAAAYEZ3z/BVA+aL\nXNdVd88wITPwAYTMAABg3ti9ver/+teVOX5cgWxWRiAgn8+npuZmheJxKRKR7rqLgBkAAABlxbYd\n9abSc9rbm0rLtp1lfxggMBshMwAA+PAsS5OnT6v7299WYHRUIdNUwe9Xpc+nxJo18q1fL/2P/yFt\n2CCFw6WuFgAAAMucbTvKWbYCPo88HlM5y5bjXLuL+SLHcZWzbIUJmYEZhMwAAODD6evT8Ouva897\n78k3PKxQoaB8JKJVDQ2qjselykrpE5+QOjpKXSkAAACWucGRjLp7htWbSstxXJmmobbGuDa2JWSa\nxpyCZtM0FPB5FqBaYPEgZAYAADfvvfd0+vHHlRoYUJXjyPb5pHhcHS0tqgiFpEJB+uQnCZgBAABQ\ncgeOj1x2sJ/juOrpH9exgbTCAa8y09Z179PWGGdUBvABhMwAAODGZbPKnzihY9/+tjL9/cU1w1C1\nx6OWbdvkb22VHEdav15qaSlpqQAAAMDgSOaygHk213V1Lj0lSQoFrh6XGYahro7aOX3Ox3Y+fcX1\nQ8PHrri+vrZ9TvcFyhEhMwAAmDvLkvbsUWb3bh1++20Fjh1TwOtVLhpVsqFBTY2NMhobpbvvlmIx\nyecrdcUAAACAunuGrxowXxQKeBUJepXN2VfcaxiGtm5qUjIRuVVlAosWITMAAJibVErq7tbYCy/o\neCqlab9fAcNQMJ9Xc0uLqmprJcOQbrtNSiRKXS0AAAAgqXjIX28qPae9U3lbn3xgtfYfH/nA3OZK\ndXXUEDADV0HIDAAArq+nR86//ZvO7NunqZ4eRQIBmbGYCg0Naq+oULClRYpGpc2bGY8BAACAspKz\n7Dkd6CcVZzRXxYL6tftaZNuOcpatgM+z7GcwP7x5e6lLQJkjZAYAANf23nuyvvMdDb3+uqYyGfnz\neUlSjder5Ec/Kl8oJD3wgNTYKIXDJS4WAAAAuFTA55FpGnMKmk3TUMDnkSR5PKbCyzxcBuaKkBkA\nAFxdNqvJV19V36FDCk1NyTAMyXWVqKxUVTIpeb3SffdJHR2lrhQAAAC4Io/HVFtjXD3949fd29YY\nv+Vdy1c74I9uYSxmhMwAAOCq+vfu1Ym9exVyHHn9fgUKBSVaWxXp6Cge7veJT0jxeKnLBAAAAK6p\nq6NWxwbS1zz8zzAMdXXULmBVwNJByAwAAC5nWep+6y3t2r1bLZKMaFQRj0cN1dUKmqa0bZu0ZQsB\nMwAAABaFZCKirZuatGP3wBWDZsMwtHVTEwf7ATeJkBkAAFyicPq0dv/oRxro71elYWiyulqttbXq\n6OiQL5+XbrtNuvdeyecrdakAAADAnHWuTigRD6q7Z1i9qbQcx5VpGmprrFRXRw0BM/AhEDIDAIAZ\nk0NDevdf/kWjmYxkmjJcVx1dXVr/G78hY3JSqq7mcD8AAAAsWslERMlERLbtKGfZCvg8t3wGM7Ac\nEDIDAABJ0tD+/dr9zDPyDw4qZhjKV1bqtgceUFNTk2SaUlNTqUsEAAAA5oXHYypMuAzMG0JmAACg\nw/v26dCzz0qOI79hKBgI6J6ODkWTSckwpFCo1CUCAAAAAMoUITMAAMuY4zh68803dXTXLsUdR/J4\nFFy5Unc1Nyvg90u5nNTayvxlAAAA4AY9vHl7qUsAFgwhMwAAy9T09LRefvllnT59WobfL9cwtLql\nRV1dXTIdpxgw3303M5gBAAAAANdEyAwAwHKTzWr08GG98tZbGjUMyeOR4fNp46/9mtZGIpLrSh5P\nsYOZgBkAAAA34LGdT9/Qfrp9gaWBkBkAgOWku1vnvvc9ndy7V82GoWgyqfHbbtNHf/d31dDQIFmW\nNDVVnMHMiAwAAAAAwBwQMgMAsFz09enM//k/Gj1wQAHDkBUMqmFiQr+0dq0iNTXFPT4f4TIAAAAA\n4IYQMgMAsNRZlpzxce3/zndk9fUpKMlwXSV8PjW0t8t3sXuZcBkAAABlxLYd5SxbAZ9HHo9Z6nIA\nXAMhMwAAS9nQkHK9vdq1Y4fyhw8rbtuSpERNjerr6mRIUjxeHI8BAAAAlIHBkYy6e4bVm0rLcVyZ\npqG2xri6OmqVTERKXR6AKyBkBgBgqbIsnd+3T2+/+qomp6cV83plRaNa2dysGr+/uKezU+rooIsZ\nAAAAc3K9g/0ODR+75PX62vYbuv+B4yPasXtAruvOrDmOq57+cR0bSGvrpiZ1rk7c0D0B3HqEzAAA\nLEXptIb/4z90+KWXZJqmooYhMxjUmm3bVNXRIeXzUkuLtG4dATMAAADKwuBI5rKAeTbXdbVj94AS\n8SAdzUCZIWQGAGCpeeUVnfvudzV04IAaslmNJ5MqtLXp9ttvV7izU1q7VorFCJcBAABQVrp7hq8a\nMF/kuq66e4YJmYEyQ8gMAMBS0tOjs48+qtFUSoHpabmmqYaJCdWtXy9fOCzV10sJfr0QAAAA5eHi\n4X5e01BvKj2na3pTadm2w2GAQBkhZAYAYImwp6e1/+mn5T17VjJNGZJiFRWqaWuTWVEhtbdLK1eW\nukwAAABA2VxBI+kpfesH++Q4rhzX1enhSSViIYWC146rHMdVzrIVJmQGygYhMwAAS0Aul9PPf/hD\n5Scm1GYYMkxT8cZG1QQCkmFIq1ZJra2MyAAAAEDJjZ6f1plzGbmuVG++Px5jIpNXejKvFTUVqooF\nrnq9aRoK+DwLUSqAOSJkBgBgMbMsnU+l9PLLL2tkelpV4bBGWlp0e6GgqlhMchzpN39T2rKFgBkA\nAAAll80VZgLm2UzDUDTs10Qmr9PnJhX0e67a0dzWGGdUBlBmCJkBAFisUimNv/yy9v/iF4rZtnzR\nqAp1dercvl1VgYB07px0++1SR0epKwUAAMAysb62/ZLXD2/efsnrn77VJ68xLhmXX5uIBzWRyUuS\nRiam1BSMXrbHMAx1ddTOX8EA5gUhMwAAi1Ffn4afflon335bfsOQGw4rHApp4733Knr//VKhIIVC\ndC8DAACgbNi2c83D/cJBn1bURHT6XEYTmbxc15VhvJ9GG4ahrZualExEFqJcADeAkBkAgMUmlVL/\nE09o6O23FcxmZQWDqohE1N7VJb/XWwyYY7FSVwkAAABcImfZchz3mnuqYkEF/B6NpKflusXjRUzT\nUFtjpbo6agiYgTJFyAwAwCLi5HLa/4MfaKSvTxUejwzXVcLvV2N7uzxSsXs5FCp1mQAAAMAM23aU\ns2x5TUOmaVw3aA4HfaoI+/X53+xUwXEV8HmYwQyUOUJmAAAWCSub1WvPPaeJkycV83g0HY1qRXW1\nVoTDMlxXam6WWloYkQEAAICykM0V9NO3+tSbSstxXJmmoelcQbbtXvVQv4vaGuPy+73yL1CtAD4c\nQmYAAMqdZSl75IjeeuEFpcfHFRsZke31au2dd6qxrk6ampI+8hFp3ToCZgAAANxSHzzI72oOHB/R\njt0D6nHHZ9Ycx1XBdtR3ZkINiQpVxQJXvJbD/YDFh5AZAIBylkrp/K5d2vfii3ILBfmiUVlVVbp7\n5UrV3HWXZNtSW5vU2FjqSgEAAABJ0uBIRjt2D8h1Lx+LEQ761JCI6MzIpIJ+z2UdzRzuByxOhMwA\nAJSrVErjP/yhDuzcKd/oqPzhsAJ+vzZ+7GOqrKwsBsv19XQvAwAAoKx09wxfMWC+6OLhfh7P+zOa\nOdwPWNwImQEAKEeWpcE33tDhPXvkuq58rqtKx1H7HXcoFAwWg2UCZgAAAJQZ23bUm0pfd1846JNp\nGhzuBywRhMwAAJSbbFa9r7yi/W+9pajjSKapQEOD1jU0yGeaUigkNTURMAMAAKDs5CxbjnP1LubZ\nHMdVwXEVDvK+FljsCJkBACgXliXt2aMTP/mJTp04oYaxMWVjMVU3Nqpz/Xp5JOnee4szmAmYAQAA\nUCZs21HOshXweRTweWZGYFyPaRoK+DwLUCGAW42QGQCAcjA0JOfgQfX/3/+rc6Oj8lZUKBcOa1Uw\nqJaHHpJhmhzwBwAAgLIyOJJRd8+welPpWXOV46qJhzQ0lr3u9W2NcUZkAEsEITMAAKWWzarw+us6\n+tOfyj1xQiHDkDefV+WWLWpdtao4e7m9ne5lAAAAlI0Dx0e0Y/fAJQf8OY6rnv5xTeUKyuVtVUYD\nV73eMAx1ddQuRKkAFgAhMwAApZRKKf/GGzr+3e9qKptV2LLk+P1qqa5WVV1dMVhetYqAGQAAAGVj\ncCRzWcA8Wyjg1XTe1lSuoFDg8ujJMAxt3dSkZCJyq0sFsEAImQEAKJVUSlPf+56O79ihwKlTigQC\ncj0eNTc1KRaLSYYh3XGHFA6XulIAAABgxp4jQ7IKtjymIcMwrrinKhpQXVVI8YrAB8ZpVKqro4aA\nGVhiCJkBACgFy1J6504df/112YWCPH6/AoWC6trbFdm8WaqtlT7+cSkeL3WlAAAAgKRiB/OeI0N6\n4fUTclxXhiHFIn4lYiGFgpdHTOfS0/rdbR16cLNmDgZkBjOwNBEyAwCw0CxLg3v36r3XXlN1Pi/D\nNGXX1qqhpkbBmhpp3bpiBzMBMwAAAMrExRnMVsGWc2FMhutK6cm80pN5raipUFXs0hnMjuMqZ9kK\nB30KEy4DSxohMwAACymVUurll7X/rbcUmJyU7fUqFgioo71dfq9X2rhR+shHGJEBAACAsjF7BrNp\nGjKMYsA82+lzkwr6PZd0NJumoYDPs8DVAigFQmYAABZKKqUz//t/a2zXLjVKckxTgfp6rd62TT7D\nkJqbpU2bCJgBAABQVrp7hmcO+TMNQ9GwXxOZ/GX7Riam1BSMzrxua4wzHgNYJgiZAQBYCJalI88/\nL2vXLhkX3qBXVVSocc0amR/5iFRfL8Viks9X4kIBAACA99m2o95U+pK1RDx4xZB5IpOX67oyjOKB\ngF0dtQtVJoASI2QGAOAWc11X7+zYodGDB7XyQsBcnUgoWV8vw3GkUEhKJEpcJQAAAHC5b+18WocL\nY5cu+iW30VZm2rpsv+08KJ/X1NZNTUomIgtUJYBSI2QGAOBWsSw5mYxefecdHevtVU1FhXLhsJqj\nUdXW1EiGISWTxS5mAAAAoAx5rjKD2e/zyDQN5fK2rIItV5IhQ+tWVumOtXUEzMAyQ8gMAMCtMDSk\nQl+f3n7rLY0ODSlQWanzdXWqfegh1abTkmUVA+Zt25jBDAAAgLJlGIZiEb/Sk5ePx/B6THlDpiSv\nXFeKVwT00JbWhS8SQMkRMgMAMN8sS/mDB/Xuz36moVxOhs+naDqtrt/7PTWvXi2NjEjT01JdHQEz\nAAAAyl4iHrowb/lqOwyZplRTGVrIsgCUEUJmAADmWfYXv1Dvt74lbyajRsPQ+RUrtPE3f1P1DQ3F\ng/2SyVKXCAAAAMxZOOBVQ01EZ85lrhg0G4bUUBNROEDMdD2P7Xz6hvY/vHn7LaoEmF989wMAMI8m\nBgd14LvflSeTkSHJ6/HonspKRePx4gF/AAAAwCJUHQ0q6PdqJD0109VsGFIsElAiHiRgBpY5fgIA\nADBPRkZG9Mq//Zuq83n5IhFFLUtr16xRKByWIpFiFzMAAACwSIUDXoXronJdV7bjXjgU0Ch1WddF\n9zBw6xEyAwDwYVmWzvb16T9ffVWWx6Mqw5CvpkZrOzsV8ngkv19as6bUVQIAAADzwjAMeT3lHy4D\nWDiEzAAAfBhDQzqzc6fefustVbiuMpWVcm6/XZvicfm93uLvEN5xBwf8AQAAAACWLEJmAABuVjqt\ngR/9SLuOHpXj88mQ1OL16r7Pf15+w5BGR6XqagJmAAAAAMCSRsgMAMDN6O7WmWef1Zm9e7XCNJWu\nr1dFV5fu2bxZHtuWYjHCZQAAAADAskDIDADAjerp0Zl/+ielUimFJidlBYNqs2213H67TK9XCoVK\nXSEAAAAAAAuGkBkAgLmyLKm3V32PPabM4cMKGoZcw1AyHFayuVnG5KS0dq3k85W6UgAAAGCG7biy\nCq5s25HHY97QtQ9v3n6LqgKwlBAyAwAwF0NDck+cUO/zz2v8yBFFLEuOz6fa2lrVb9ggJRLSli1S\nPF7qSgEAAABJ0uBIRt09w3p3/5AcV3rzWEFtjXF1ddQqmYiUujwASwghMwAA12NZck6d0ntvvqn0\n4KAiHo+sYFANiYRqa2sl15UeeICAGQAAAGXjwPER7dg9INd15bjFNcdx1dM/rmMDaW3d1KTO1YnS\nFglgySBkBgDgWixLxvCwdh44oNODg4p7PMpFImppaVHtmjWS40gf+5jU0VHqSgEAAABJxQ7miwHz\nlbiuqx27B5SIB+loBjAvCJkBALiaoSF59+3TwXfeUXRiQr54XFOxmDZs2KC6mhqpubk4g7mxsdSV\nAgAAADO6e4avGjBf5LquunuGCZkXGDOusVQRMgMAcCWWJevdd3Xiv/5L9sSEvMGgKs+dU9v/+l9K\nNjRINTXSypUc8gcAAICyYtuOelPpOe3tTaVv6jBAAPggQmYAAD7IsjR9+LAOPv+8Mum0ZBhyIxF1\nbtyoqjvuKHYuEy4DAAAsS4/tfPqG9i9052rOsuU41+5ivshxXOUsW+ElHjLTPQzceoTMAADMlkpp\n6vXXdeCllxQ8dkwJ21a2ulp33HGH4pWVUjRKwAwAAICyFfB5ZJrGnIJm0zQU8HkWoCoAS93S/qsq\nAABuRCqlqRdeUM9zz8kdGpJjGKooFLShrk7xigqpvl6KxUpdJQAAAHBVHo+ptsb4nPa2NcYZlQFg\nXvCTBAAASbIsTe7dq+6dO5WbnpYMQ2Y0qtrOTvlqa4uH/N1+O13MAAAAKHtdHbUyDOOaewzDUFdH\n7QJVBGCpI2QG8P/Zu9fgKMs87+O/u+8k3UmnkyYHSEiHUwCDgIEAghwUGA84yuO4z049rs6uWCXO\n1szUVE1N7c7suLXri5lxdmbXF6vr1ri7jsV4GmcddEQFDxgNSDgFECFKBANJIHZISEi6O913uu/n\nRZNMGA4STNLdyfdTZZVefd3xT81Vt5lf/vlfACR1NDZqxwcfKGRZsiU5nU5NnzdPps+n8MyZ0pIl\n0vjxiS4TAAAA+FJF+W6trPRdMmg2DEMrK30qynePcGUARitmMgMAxrz2Tz7RjhdeUKbfL9OylJGd\nrWumT5czI0NWYaEiM2ZIWVmJLhMAAAC4YrOn5Ss/16UD9a3a29mhmB2fwVxW4lXFjAICZgBDipAZ\nADB2WZZOHzummuefVyQalTweFbjdmjVnjpxTpkiTJikYiTAiAwAAACmpKN+tony3SjxBWb22rpsz\nixnMAIYFITMAYGzy+3V6/37tfu89Zfr9ksejzJISzVu8WE7blubMkfLzpbq6RFcKAAAAfCWmw5CZ\nYRAwAxg2hMwAgLEnGFTrtm3asXevorYtp6Qiw1DFDTcoPTNTMgwpJyfRVQIAAACjylO7nxvU/ocW\n3TdMlQAYakkRMr/00kv6n//5H7W0tGjWrFn68Y9/rHnz5l1yf3t7u37xi1/o/fffVywW08KFC/WT\nn/xEpaWlI1g1ACAlNTfL/+67Ovzee3I7HAp5PMqaMkUVkyYpPRqNB8w+HyMyAAAAkJIuFuSe6eiQ\nJFV3117wGUEugKGQ8N+T2Lhxox555BHdddddevzxx5WTk6MHH3xQzc3NF93f29urBx54QB9//LF+\n9rOf6Re/+IUaGxu1fv169fb2jnD1AICU0tCg1t/+VofffVdZ7e3KCAZVkp6uhatXK728PD4iY+5c\nafz4RFcKAAAAAEDKSHgn8+OPP6577rlH3/nOdyRJS5cu1Zo1a/TMM8/o4YcfvmD/xo0bdeLECW3e\nvFkTJkyQJJWUlOihhx7SkSNHdO21145o/QCAFNHcrC+ef14ndu1Slm0r5nBoQkaGymbNkhmNSjNm\nxGcwAwAAAACAQUloyHz8+HGdPHlSq1at6l9LS0vTypUrVV1dfdFn3n33Xa1YsaI/YJak8vJyffDB\nB8NeLwAgRVmWTlRV6Vh9vbJiMRmS8r1elS1dKkdxsbRwoZSVlegqAQAAkAIYLwEAF0rouIyGhgYZ\nhqHJkyeft+7z+dTY2Cjbti945tNPP9XUqVP1xBNPaPny5Zo7d66+/e1v69SpUyNVNgAgxXy6f7/2\nHjyomMOhsNutvIIClU2ZIodhSNddR8AMAAAAAMBXkNBO5u7ubkmS2+0+b93tdisWiykYDF7wWXt7\nu15++WX5fD79/Oc/VzAY1K9+9St9+9vf1iuvvCKHI+FjpgEASeTgwYOq2bNHeWlpCnk8mjhxoqZN\nmyajt1e6+WappCTRJQIAAAAAkNISGjL3dSobhnHRzy8WGPf29qq3t1f//d//rezsbEnxzue//Mu/\n1FtvvaU1a9YMuo66urpBP4PRJxQKSeI8gLMwmtTV1engwYOSpI5wWHMKC+UsK9Nxy1Jk6lRFQyHp\nS/535jxgIM4DBuo7D8mAMwmJdxTOx3kYu850dFywFu3tveRnI3lGLvbvvxzO7/Dg/YCBhup72oSG\nzB6PR5IUCASUl5fXvx4IBGSapjIzMy94JisrSxUVFf0BsyTNmTNHOTk5OnLkyFWFzACAUcay9Mm+\nfTp09KhkmpKkSQsXasqsWYqEw4o5nVJ6eoKLBAAAAABgdEhoyDx58mTZtq3GxkaVlpb2rzc1NWnK\nlCkXfWbSpEmyLOuC9d7e3kt2RH+ZWbNmXdVzGF36foLHeQBnIcX5/frozTdlHzmiaw1DgZwczVm9\nWpWVlVf15TgPGIjzgIHq6uoUDAYTXYYkziTieEdhIM7D2FXdXXvBWl8H8Tiv94LPRvKMXKy2y+H8\nDg/eDxhoqL6nTegA4ylTpqi4uFjvvPNO/5plWaqqqtINN9xw0WeWL1+u2tpatba29q/t2rVLwWDw\nqgMEAMAoEQzqo9//Xkc/+USSZNi2lvh8qpw7N8GFAQAAAAAweiW0k1mS1q9fr5/+9KfyeDyqrKzU\ns88+q46ODt1///2SpMbGRrW3t6uiokKSdP/99+vll1/W+vXr9b3vfU+hUEi/+tWvtGDBAi1btiyR\nfxQAQALZX3yhAy+9pPZ9+5RjGAp5PJq1dKnKysqkUIjxGAAAAEiYp3Y/N6j9Dy26b5gqAYDhkfCQ\n+d5771UkEtGGDRu0YcMGlZeX6+mnn5bP55MkPfnkk3rllVf6W/nz8vL0wgsv6F/+5V/0ox/9SGlp\nafra176mn/zkJ4n8YwAAEsiORLTvtdd0vLlZuYYhw7Y1f+JElUyeLBmGdJEZ/wAAAEAi2bataMyW\n6TCuevxnqiE8B0avhIfMkrRu3TqtW7fuop89+uijevTRR89bKy0t1RNPPDEClQEAkp1t29r29ttq\n/fxzyTQV8nhU6fOpuKhICoelqVPpYgYAAEDSCIZ71dYZ0tlARLYd74nIcWcoPzdTWc6vHtNcLMhl\nBi+A4ZYUITMAAFcjFoupqqpKR0+cUJ5hyCFp7k03qXjixHjAvHChlJWV6DIBAAAASVJ7V49OnQ7I\ntv+0ZttSZ3dEZwMRFRe4ledxJa5AALhKhMwAgJQUC4f1wZYtOtrcLNs0FRw3TiunT1epzxdvB5k6\nlYAZAAAASSMY7r0gYB7ItqVTpwNyZRDVAEg9vLkAACkn1tKiXX/4g9qbm5VnGArl5Wnp3XertLQ0\nfslfZiYjMgAAAJBU2jpDlwyY+9h2fB8ApBpCZgBASomFw9r58ss6dfKkJMlhGFo9c6YmlpbGg2XC\nZZZ6mQgAACAASURBVAAAACQZ27Z1NhC5or1nAxFFozGZpmOYqwKAocMbCwCQMqI9Pap66SW1NDVJ\nkgyHQ0sWL9bE4uJ4BzMAAACQhKIx+0u7mPvYthS2osNbEAAMMTqZAQApoffkSe18+WV1Njcrp7VV\nkdxczfva11RcVBSfwZyZmegSAQAAgIsyHYYMQ1cUNBuG5Ew3h78oABhCdDIDAJJebyikHb//vb5o\naZFtmgrn5ur6qVNVXFAQ/y7c52NMBgAAAJKWYRjKcWdc0d4cdwajMgCkHDqZAQDJy7LU29Wldzdv\nVsDvlySZpqmFt9yi/Lw8qaREmjCBgBkAAABJLz83U2cDkct2MxtGfB8ApBpCZgBAcvL7ZTU0aMf2\n7Qr4/coIhRTNydHSZctU2NfBTMAMAACAFJHlTFNxgVunTgcuGjQbhlRc4FaWk6gGQOrhzQUASD6W\nJauhQR9u26a2tjbJ4VBaerqWLFmiAkZkAAAAIMU8tOi+/r9vaQvoQH2rjjZ3Khaz5XAYKivxqmJG\ngYry3QmsEgCuHiEzACDpRDo79WF1tdrb2yVJ6enpWnTTTcpfsCAeLGdmEjADAAAgJRXlu1WU71Y0\nGlPYisqZbjKDGUDKI2QGACSVSCSize+/L+vMGRmKB8zLli1TXn6+lJNDuAwAAICkczWBsWk6lEW4\nDGCUIGQGACSNSCSiN998U1+0tcnl9crb3a3ly5drXF4e4zEAAACQdC4++iJXFTMKGX0BYEwhZAYA\nJIVIJKI33nhDfr9fkhQrKNAN996rcdnZjMcAAABA0jl0rE3v7WlUbywm02HIMAzFYrbqGzv0WVOn\nVlb6NHtafqLLBIARQcgMAEi4SCCgt159Va2dnZJpKiMjQ3fccYcKCwsTXRoAAABwgYOfteq5LZ/q\nbCAs247fS53jzlB+TqYyXWmybVtVtU3Kz3XR0QxgTCBkBgAkVKSpSdt/9ztF2tuVZxiyxo/XzX/x\nFyooKEh0aQAAAMAFDh1r03NbPlVnd7h/zbalzu6IOrsjmliQrXE5Ttm2rQP1rYTMAMYEQmYAQGJY\nliKnTmnnM8+oIxSSHA5lpKdr9ezZGpebm+jqAAAAgAu0tAW0dW+jzgbCl9xz8nS3XBmmMl1pOtrc\nqWg0dsWXAQJAqiJkBgCMPL9f1t69OvjHP8p58qQKsrIU8vm0aPVqjfN6pVCIGcwAAABIOgfqWxWN\nxmTbl9/XdjYkn8ujWMxW2Ioqi5AZwCjHWw4AMLIsS1ZdnQ6+9pq6gkHJtuUOh7Vk8uT4JX+GEb/o\nDwAAAEgi0WhMR5s75XAYMozL7z0biMi2bTkchpzp5sgUCAAJRCczAGBEhevr9fGLLyrW3Kwsw5Dh\ndGrm9OnKzsiQwmFp6lS6mAEAAJB0fr37OX3Se0aSFB5vKdIbvez+aOxmzZyUy6gMAGMCITMAYGRY\nlsKtrfpw40app0duSWmmqWumT5d7+vR4uLxwoZSVlehKAQAAgAuY5zqYbVtyZpiXDZkNSWkOhypm\nFI5cgQCQQITMAIDh5/crcuyYat5+W7GGBkXT0xX1ejW7pERut1sqKJDmzCFgBgAAQNIyDEM57gx1\ndkeUZjrkdqUr0GNddG96mqlVC0tVlO8e4SoBIDEImQEAw8uyFDl2TNuqq9UZCChXUqbDoVn/7//J\n7XLFZzAvWULADAAAgKSXn5t5bt6ylJFuyuEwFI5EZfVGZSvewZyeZmpGqVezp+UnulwAGDGEzACA\nYRVubVXN22+rMxiUbZrqzcvTorIyebKzJY9H8vkImAEAAJASspxpKi5w69TpgGxbSjMdSst0SEqT\nbce7nScWupXncSW6VAAYUYTMAIBhE25s1IfPPy+7oUE5kmL5+br+9tvlcbul6dOlnBwu+QMAAEBS\niUZjCltROdPNi17al+dxyZWRprbOUH9Xs2EYys12Kj/XpSwnUQuAsYc3HwBgWPR0dWn7iy+q8+xZ\nOT0eeUIhze/rYJ4yRcrn1wcBAABGu6d2Pzeo/Q8tum+YKvlyLW0BHahv1dHmTsVithwOQ2UluaqY\nUXjBbOUsZ5qyxntk27aiMfvcpYBGgioHgMQjZAYADC3LUs+ZM3rr9dfV29EhSbLHjVPF178uj9Mp\nlZURMAMAACCpHDrWpqraJtm23b8Wi9mqb+zQZ02dWlnpu+hzhmEozSRcBgBCZgDA0PH7Ff70U9W8\n956i3d3KiESkceO0YsUK5ebmxi/5y8lJdJUAAABAv5a2wAUB80C2bauqtklWUS+jMADgEng7AgCG\nhmUpvHu39m/Zolh3t3IMQ2ZWliqXLVNOX8Ds8zGDGQAAAEnlQH3rJQPmPrZtq60zpKzxnhGqCgBS\nCyEzAGBI9Pj9OrBliwLd3ZKkjPR0zZ8zR9lz5khZWVJmJgEzAAAAkko0GtPR5s4r2hu/5M9m9jIA\nXMSF16QCADBIPT092rJliwKBgCQpPSND8+fPV3Z2djxYzskhYAYAAEDSCVtRxWKX72LuY9tS9Ar3\nAsBYQyczAOAr6enp0aZNm3QmHJaZk6PcUEiV8+fLnZ0tTZjADGYAAAAkLWe6KYfDuKKguTztJn17\n0VyZJv16APDnCJkBAFctFArp9ddfV3t7u2SaCk2frpvKy+VOS5NcLmnqVDqYAQAAkLRM06GyklzV\nN3Z86d6yklwCZgC4BEJmAMBVCYVC8Q7mM2ckSVlZWbrlzjvlcbulUIgZzAAAAEgJFTMK9VlT52Uv\n/zMMQxUzCkewKgBILfwIDgAwaKGzZ7X5pZfUcfq0pHjAfOedd8rr9TKDGQAAACmlKN+tlZW+S17o\nZxiGVlb6VJTvHuHKACB1XFUncygUkmEYcrlc5637/X55PB5lZmYOSXEAgOQTOn5c2158UfbZs8oz\nDMWKi3VLX8AMAAAApKDZ0/KVn+vSgfpWHW3uVCxmy+EwVFbiVcWMAgJmAPgSgw6Zt2/fru9+97uS\npJ///Of6+te/3v+Zx+PRyy+/rG9961tDVyEAIGmEzp7VthdfVNfZs5KkTKdTK+bMiY/IAAAAAFJY\nUb5bRfluRaMxha2onOkmM5gB4AoNOmT+3e9+pxdeeEGnT5/WM888o4qKCh08eFAnTpzQuHHjdOTI\nkeGoEwCQYKFQSJs3bpR9LmB2uVxaceON8mRnx2cwMx4DAAAAf+ahRfcluoRBM02HsgiXAWBQBh0y\nl5WVadasWZKk+fPn6wc/+IF8Pp+6urpUV1enu+++e8iLBAAkVt8lfx3BoPIMI97B3BcwG0b8kj8A\nAAAAADAmDTpkzsjI6P/77OxsLVu2TOvWrRvKmgAASaQvYD5z5oxkmooVF8dHZPQFzD4fXcwAAAAA\nAIxhgw6ZX3nlFUnSggULVFFRofHjx5/3eSwWk8PBr5UAQMqzLIXa2/X61q0609UlScrKytKta9fK\nk5UVH5GRmUnADAAAAADAGDfokHnSpEnq6OjQL3/5S3322WcaP3689u3bpwULFmjBggV66aWX+i8G\nBACkKL9fPZ99pm3V1TK6uuTyeuUoKtLatWuVm5sb30O4DAAAMGY8tfu5Qe1PxVnMAICrN+iQ+W//\n9m+1YMECSVJPT4/279+vvXv36ve//70efvhhhcNhQmYASGWWpZ7PPlP1Bx+oq6tLhqSCnh4tW7Pm\nTwEzAAAAAADAOYMOmfsCZklyuVxasmSJlixZIkmKRqN65JFHhqw4AMAIsyyFjh/XtvfeU1cwKCn+\nrl+xYoU8A2byAwAAAAAA9Bl0yHw5pmnqrrvuGsovCQAYKX6/ej75RDVvvy2zqUkZubly5OdrxY03\nyuPxxOcvAwAAAAAA/JlBhcy9vb16/vnnVVNTI7fbrSVLlujrX/+6MgcEDwsXLhzyIgEAw8yy1LN7\nt/Zt3iw7EFBaOKyCjg7NXrs2HjD7fMxgBgAAAAAAF+UYzOZ/+qd/0vvvv6+MjAwdOnRIDz/8sG6/\n/Xbt3LlzuOoDAIyAYEuL9m3erFAgIEly5OZq7uLF8pSVSXPnSuPHJ7hCAAAAAACQrAbVyTxu3Dj9\n/Oc/7/9nv9+v119/XX/3d3+n//iP/9DcuXOHvEAAwPAKdnbq3Vdflbu7WzIMZTidmj9/vtxut+Tx\n0MEMAAAAAAAua1CdzJl/No9z/PjxeuCBB/T8889rw4YNQ1oYAGD4BRsatO0//1O9TU1KC4eVFY3+\nKWCeMEHKyUl0iQAAAAAAIMkNKmS+5ZZb9NRTT12w7vP5NHny5CErCgAw/IKdndr24ovq7uqSbZqK\nlJZq7pIlck+fLk2fLl13HV3MAAAAAADgSw1qXMabb76p//qv/9Jvf/tbXX/99f1/tbW1ybbt/n3N\nzc0qKSkZ8mIBAEMjGAxq88aNUleXpPhvqixesUJul0sqKYl3MRMwAwAAAACAKzCoTub29nZt3LhR\nP/zhD5WRkaFf//rXuv322/XXf/3X+vzzz7Vx40Z98cUX+rd/+7fhqhcA8BUFg0Ft2rRJbaGQbMNQ\nZmamlq9YIU92djxYJmAGAAAAAACDMKhO5vLycu3bt08rV67UN77xDUlSY2OjampqVFNTo8cee0z/\n8A//IIfDoccee2xYCgYAXL2+gLmjo0MyTdkTJ2r57NnxgNkwJJ+PgBkAAABjxlO7nxvU/ocW3TdM\nlQBAahtUyHzvvffq1KlTqq2t1e233y5JKi0tVWlpqb75zW9Kko4ePaof/OAHQ18pAODqWZaCbW16\nfetWdXR3S5LcbrduufNOebKypFBIyswkYAYAAMBFEa4CAC5nUCGzJBUXF6u4uPiSn5eVlen73//+\nVyoKADCE/H6F6uu1vbpaju5uubxemcXFuvPOO5WbmxvfQ7gMAAAAAACu0qBD5itx8803D8eXBQAM\nlmUpVF+vbdXV6urqkiGpoKdHy2677U8BMwAAAAAAwFcwLCEzACA5BNvatP1cwCzpT5f8ZWQkuDIA\nAAAAADBaEDIDwCgVDAb1+tatcnR3y1A8YF6xYoWyPZ74/GUAAAAAAIAh4Eh0AQCAoRcMBrVp0yad\n6e5WwOuVa2DA7PMxgxkAAAAAAAwZOpkBYJTpC5g7OjokSWZxsZavWaPs9PR4BzMBMwAAAAAAGEKE\nzAAwigQ7O7V540Z1hkKSacrtdmvt2rXKyclJdGkAAAAAAGCUImQGgFEi2NCgbS++KHV1Kc8wZE+c\nqFsJmAEAAAAAwDAjZAaAUSDY2altL76o7q4uSVKWy6UVc+Yomwv+AAAAAADAMCNkBoAUFwwGtXnj\nRulcwJzZd8mf2y2FQsxgBgAAAAAAw4qQGQBSWN8lf52hkPIMI97BvGKFsrOzJcOIX/QHAAAAJJFo\nNKawFZUz3ZRpOhJay0OL7kvovx8ARgtCZgBIUX0Bc0dHh2SasidOjI/IcLvjAbPPRxczAAAAkkZL\nW0AH6lt1tLlTsZgth8NQWUmuKmYUqijfnejyAABfASEzAKSg8wJmSW63W7euXRufwRwKxTuYCZgB\nAACQJA4da1NVbZNs2+5fi8Vs1Td26LOmTq2s9Gn2tPwEVggA+CoImQEgxQQ7O7V540Z1hkKSacrt\ndmvt2rXKycmJbyBcBgAAQBJpaQtcEDAPZNu2qmqblJ/roqMZAFIUITMApJBgQ4O2vfii1NWlPMOQ\nPXGibh0YMAMAAABJ5kB96yUD5j62betAfSshMwCkKEJmAEgRgY4ObX/xRXV3dUlS/JK/OXPiIzIA\nAACAJBSNxnS0ufOK9h5t7lQ0Gkv4ZYAAgMHjzQ0AKaC7u1tv/uEP/QFzZmamVqxYEb/kLxRKcHUA\nAADAxYWtqGKxy3cx94nFbIWt6DBXBAAYDoTMAJDkuru7tWnTJp0Jh2UbhjKzsuIBc3a2ZBjxS/4A\nAACAJORMN+VwGFe01+Ew5Ew3h7kiAMBwIGQGgCTW1dWl1157TWfPnpVtmjJ8Pt14441/Cph9Pi76\nAwAAQNIyTYfKSnKvaG9ZSS6jMgAgRTGTGQCSkWXp7Bdf6PWtW9XV0yNJ8ng8unXtWrmdzviIjMxM\nAmYAAAAkvYoZhfqsqfOyl/8ZhqGKGYUjWBUAYCgRMgNAsvH71f3JJ9peXa2MUEgur1cZPp/uvPPO\neAezRLgMAACAlFGU79bKSp+qapsuGjQbhqGVlT4V5bsTUB0AYCgQMgNAMrEsddXVaVt1tUKhkAxJ\nRb29WrZmjdx9ATMAAACQYmZPy1d+rksH6lt1tLlTsZgth8NQWYlXFTMKCJgBIMURMgNAEuk4dUof\nfvCBegaMyFi+YoUyHcymAwAAQGorynerKN+taDSmsBWVM91kBjMAjBKEzACQJDo6OvT61q1yhcMy\nNCBgzsyMz18GAAAARgHTdCiLcBkARhVCZgBIAmfOnNGmTZsUikQU9XpVHI1qxfLlcmVmSj4fM5gB\nAACQdOhIBgD0IWQGgARrb2/Xpk2b+kdkZE2ZouW33iqXFO9gJmAGAABAEmlpC1xktnKuKmYUMlsZ\nAMYoQmYASKC2lha99eqrCsdikmkqPz9fd9xxh1wuV6JLAwAAAC5w6FibqmqbZNt2/1osZqu+sUOf\nNXVqZaVPs6flJ7BCAEAiEDIDQCJYltr379eO116TMxpVhmHIVVamrxEwAwAAIEm1tAUuCJgHsm1b\nVbVNys910dEMAGMMITMAjDS/X2f27dPHf/iDMnt7JY9HWSUlWj5rljJMM9HVAQAAABd1oL71kgFz\nH9u2daC+lZAZAMYYJvMDwEiyLLV/9JFqqqrUa1kybFsTJC1fskQZ6elSKJToCgEAAIALRKMxHW3u\nvKK9R5s7FY3GhrkiAEAyIWQGgBH0RUODtlVXq8e2JcOQJzdX8+bNU0YsJhlG/KI/AAAAIMmErahi\nsct3MfeJxWyFregwVwQASCaMywCAEXLy5Eltee895USjMkxTrkmTNG/KFKWnpcXDZZ9PSk9PdJkA\nAADABZzpphwO44qCZofDkDOdMXAAMJYkRSfzSy+9pNtuu00VFRW65557tH///it+9oknnlB5efkw\nVgcAX5FlqbmuTptfe02WpIDXq4LCQi1as0bp5eXSkiXS/PnS+PGJrhQAAAC4KNN0qKwk94r2lpXk\nyjSTIm4AAIyQhHcyb9y4UY888oi+973vac6cOXr22Wf14IMP6tVXX1VJScllnz1y5Ih+/etfyzCM\nEaoWAAbJ79ep3bu1q6ZGubYdD5ivvVZLV61SmmXFO5jpXgYAAEAKqJhRqM+aOi97+Z9hGKqYUTiC\nVQEAkkHCf7T4+OOP65577tF3vvMd3XjjjXryySfl9Xr1zDPPXPa5WCymhx9+WPn5+SNTKAAMlmWp\needO1dTUyI7FZNi2prtcum31aqVlZko5OQTMAAAASBlF+W6trPRdstHLMAytrPSpKN89wpUBABIt\noSHz8ePHdfLkSa1atap/LS0tTStXrlR1dfVln/3Nb36jYDCob33rW8NdJgBclaMff6xdO3fKjsVv\n1p44caKWLF4sMxJJcGUAAADA1Zk9LV//d9V0zSj1yuGIh80Oh6EZpeP0f1dN1+xpNIIBwFiU0HEZ\nDQ0NMgxDkydPPm/d5/OpsbFRtm1f9Cekx48f1xNPPKGnn35aH3300UiVCwBX7MiRI3q/pkZ5kgxJ\npaWlWrBggRymGR+RAQAAAKSoony3ivLdikZjCltROdNNZjADwBiX0P8KdHd3S5Lc7vN/lcbtdisW\niykYDF70uX/8x3/U3Xffrfnz5w97jQAwWHV1daqqqpJtmgp4vZo0ebIWLlwYD5h9PkZkAAAAYFQw\nTYeyXOkEzACAxHYy910WcKl5Tg7Hhf+heuGFF9TY2Khf//rXQ1ZHXV3dkH0tpK5QKCSJ84CvcBYs\nS58fPqy9hw8rZpqSpGnTpinruut0JBJRLC1NamuL/4WUwbsBA3EeMFDfeUgGnElIvKNwPs4DBuI8\nYCDOAwYaqu9pExoyezweSVIgEFBeXl7/eiAQkGmayvyzXylvaWnRv/7rv+oXv/iFnE6notGoYudm\nnUajUTkcjksG1gAwnMy2NjXV1Kipvl7jJZ3NyVHJ/Pn9v3ERy8hIbIEAAAAAAADDJKEh8+TJk2Xb\nthobG1VaWtq/3tTUpClTplywf8eOHQoGg/r+97/f3wXdZ86cOfrud7+r733ve4OuY9asWYN+BqNP\n30/wOA8Y9FmwLNXV1qrjzBkVFBRIkpbOnKm53/wmozFGAd4NGIjzgIHq6uouOd5tpHEmIfGOwvk4\nDxiI84CBOA8YaKi+p01oyDxlyhQVFxfrnXfe0dKlSyVJlmWpqqpKq1atumD/6tWr9b//+7/nrW3a\ntEnPPPOMXn75ZRUWFo5I3QAw0N5t23T88OH+fy4vL9e1114rhUKEzAAAAAAAYNRLaMgsSevXr9dP\nf/pTeTweVVZW6tlnn1VHR4fuv/9+SVJjY6Pa29tVUVGh3Nxc5ebmnvf8nj17JCke6ADACKupqdHB\nTz5RnmHIsG1de+21Ki8vlwxD+rORPwAAAAAAAKNRwkPme++9V5FIRBs2bNCGDRtUXl6up59+Wj6f\nT5L05JNP6pVXXmEYOYCkYtu2PvzwQx06dEgyTQW8Xt1QWqoZ06fHA2afjy5mAAAAAAAwJiQ8ZJak\ndevWad26dRf97NFHH9Wjjz56yWfvv//+/q5nABgJtm2rurpan3zySf/agttv14yZM+MjMjIzCZgB\nAAAAAMCYkRQhMwCkCjsS0ba339anJ05IpilJuvHGG+MjMiTCZQAAAAAAMOYQMgPAFYq1tGjPK6+o\ntbFReYah4LhxWrx2rWbOnJno0gAAAAAAABKGkBkArkC0p0c7//d/1XLqlCTJIWnl9OkqnTo1sYUB\nAAAAAAAkGCEzAHwJy7K09bXXFDgXMBsOhxZff70mTpwYn8HMiAwAAAAAADCGETIDwGVEIhG9+eab\n8p8+rTzDUJrDoSVLlmjChAmSYcQv+QMAAAAAABjDCJkB4BJ6enr0xhtv6PTp05JpKlJYqBvLy1VY\nUBAPmH0+upgBAAAAAMCYR8gMAH/OstRz5oxe27dPZ7q7JUlOp1M33323Cr3e+IiMzEwCZgAAAAAA\nABEyA8D5/H7FDhzQx3v3Kis7Wy6vV8aECbrjjjuUl5cX30O4DAAAAAAA0I+QGQD6WJa66uq0e9cu\nRSIRud1uFYbDWnr77crtC5gBAAAAAABwHkJmADinralJO6qqFIlEJEnZ2dlavny5sjIyElwZAAAA\nRsJTu58b1P6HFt03TJUAAJBaCJkBQNIXX3yhze++q2zLkhQPmG+88Ua5MjPj85cBAAAAAABwUYTM\nAMa85uZmbdmyRb2xmAyvVzmRiCrnz48HzD4fM5gBAAAAAAAug5AZwNhlWTr+ySd6Z/t2RR0OSVJe\nebkmrVolOxaT5s4lYAYAAAAAAPgShMwAxia/X407dqh29255JQW8Xo2fM0c333yz6uvrFZMImAEA\nAAAAAK4AITOAscey9Hl1tfbV1kqSDEnXuN1atGqVHGm8FgEAAAAAAAaDNAXAmHOgpkZHzwXMkjR5\n8mRVVlbKCIclpzOBlQEAAAAAAKQeQmYAY4Zt29q5c6cOfvyx8gxDhm2rrKxM1113nQyHQ8rMTHSJ\nAAAAAAAAKYeQGcCYEIvF9MEHH+jIkSOSaSrg9WpRcbFmlZdLhiH5fMxgBgAAAAAAuAqEzABGN8tS\ntLtbW3fs0OdNTf3LC7/+dc2aMUMKheIdzATMAAAAAAAAV4WQGcDo5ffL+vxz1ezYobOnT8vl9Sri\n9WrlypWaPn16fA/hMgAAAAAAwFdCyAxgdLIshY8e1fZt29TR0SFDUm5Xlyr/4i9UOm1aoqsDAAAA\nAAAYNQiZAYxK3a2t+rCqSt3d3ZKk9PR03XDDDSooKEhwZQAAAEhWDy26L9ElAACQkgiZAYw6HR0d\neuPtt+UMBGRIcrlcWrZsmXK93vj8ZQAAAAAAAAwZQmYAo0pra6vefPNN9YTD6vV6NcGytGzpUmV7\nPJLPxwxmAAAAAACAIUbIDGB0sCydPHpUb1VXK2LbkqSsKVO04pZblGUY8Q5mAmYAAAAAAIAhR8gM\nIPX5/Tq5a5d27twpj20r4PUqd8YMrVmzRk6nM9HVAQAAAAAAjGqEzABSm2Xp8+pq7d+3T7Zty5BU\n5nRq8a23Ko2AGQAAAAAAYNgRMgNIaft37NCx2tr+f/b5fFq4cKEclsUlfwAAAAAAACOAkBlASrJt\nW9u3b1fdoUPKMwwZtq2p06ZpXkWFDIeDgBkAAAAAAGCEEDIDSDm9vb3aunWrGhoaJNNUwOvV9RMn\nqvyaayTDkHw+LvkDAAAAAAAYIYTMAFKHZSnc0aG3qqt16vRpSZJhGFq8dq2umTZNCoXiHcwEzAAA\nAAAAACOGkBlAavD7FTxyRNu3b1ekq0sur1e9eXm6+eabNWnSpPgewmUAAAAAAIARR8gMIPlZls4e\nPqzt27YpFArJkDQuENDiv/orjS8pSXR1AAAAAAAAYxohM4Ck90VDg3ZVVcmyLElSZlaWli9bJo/H\nk+DKAAAAAAAAQMgMIKk1NDRo69atyu3tlSEpJydHy5YvV2ZmZnz+MgAAAAAAABKKkBlA0jp8+LC2\nb98u2zAU8Ho1JS1NNyxZovSMDMnnYwYzAAAAAABAEiBkBpBcLEsKhbT38GHt/eij/uWJ8+Zp2fLl\nMiOReAczATMAAAAAAEBSIGQGkDz8fsVOnND+ffvUcPy4XF6venJyNGfOHN1www0yDENyuRJdJQAA\nAAAAAAYgZAaQHCxLvQ0N2rVzp1paWmRIcnd06LqbbtK8RYsSXR0AAAAAAAAugZAZQOJZlkLHj6vm\nvfd05uxZSZJhGFpQWanJ11yT4OIAAACAC0WjMYWtqJzppkzTkehyAABIKEJmAInl96urrk4fvv++\n0o4fV4bHo2hOjhYvXqyi4uL4/GUAAAAgSbS0BXSgvlVHmzsVi9lyOAyVleSqYkahivLdiS4PRCMZ\nlAAAIABJREFUAICEIGQGkDiWpdP792vHjh2yIhE5PR55IxHNXrZM4woLJZ+PC/4AAACQNA4da1NV\nbZNs2+5fi8Vs1Td26LOmTq2s9Gn2tPwEVggAQGIQMgNIDMtSw65dOlBVpahhSJIyiopUuXixsmbM\nkCZMIGAGAABA0mhpC1wQMA9k27aqapuUn+uioxkAMOYQMgMYeX6/6t97Tx/v26ec1laFPB7lTpmi\nxYsXK8PpJGAGAABA0jlQ33rJgLmPbds6UN9KyAwAGHMImQGMqFg4rAOvvabPjx2TTFM9Ho+mZGVp\n1vXXy3Q6GZEBAACApBONxnS0ufOK9h5t7lQ0GuMyQADAmELIDGDERCIRVb32mrqPHetfmzx/vmZf\nc40Mn48OZgAAACSdaDSmju6wotGYjHNj3i4nFrMVtqLKImQGAIwhhMwARkR3d7c2b96sM62tyjMM\nOSTNmzdPU6dOlQyDgBkAAABJpaUtoAP1rTra3KneaEyfNpyRx52u/JxMZbou/X+lHQ5DznRzBCsF\nACDxCJkBDDu/368tW7YoFApJpilr/HitnjlT4wsL4wEzIzIAAACQRA4dazvvkj+HYSg7K12d3RF1\ndkc0sSBb43KcF322rCSXURkAgDGHkBnA8LEsfX74sN6rqVHvuV8t9Hg8uu2b39S47GwpFJIyMwmY\nAQAAkDRa2gLnBcx98nNdOhuISJJOnu6WK8O8oKPZMAxVzCgcsVoBAEgWhMwAhoffr0/ffVeHPv5Y\nuYahgNernOnTddtttykzMzO+h3AZAAAASeZAfesFAbMkZbnSNbHArZOnA5KktrMh+Vye/s8Nw9DK\nSp+K8t0jVisAAMmCkBnAkIuFw9r/xz+q4fPPJUmGbas8O1uVt92mtL6AGQAAAEgy0WhMR5s7L/n5\nuByXnBmm2jp71BWwZNu2TNOhshKvKmYUEDADAMYsQmYAQyocDuu9V19V8FzALEnl5eWaNWuWDMuK\nj8cAAAAAklDYiioWu7CLeaAsV7qyXOmK2bbuva1c3mwnM5gBAGMeITOAIXP27Flt3rxZnW1tyjMM\nOQxDlfPna/LkyfEL/giYAQAAkMSc6aYcDuNLg2ZJSjMdBMwAAJxDyAzgq7MsfdHQoLeqqxXq7ZVM\nU70TJmj1zJkqLCiIB8w+HzOYAQAAkNTioy9yVd/Y8aV7y0pyCZgBADiHkBnAV+P3q3HHDu3Zs0dZ\nti3b61WGz6c1t9+u3KwsKRSKdzATMAMAACAFVMwo1GdNnRe9/K+PYRiqmFE4glUBAJDc+LErgKtm\nRyI6/NZb2r1rl+xYTIZta0pamr5xxx3Kzc2NB8s5OQTMAAAASBlF+W6trPTJMIyLfm4YhlZW+rjk\nDwCAAehkBnBVLMtS9RtvqKOurn9t0qRJmj9/vszLdH0AAAAAyW72tHzl57p0oL5VR5s7FYvZcjgM\nlZV4VTGjgIAZAIA/Q8gMYNC6urq0ZcsWnWltVZ5hyLBtXXvttSovL+eCPwAAAIwKRfluFeW7FY3G\nFLaicqabzGAGAOASCJkBDMqpU6f09ttvq6enRzJNRQoLdVNZmSYWF3PBHwAAAEYd03Qoi3AZAIDL\nImQGcGUsS5/u369te/cq6oh/k+3xeHTbX/6l8jweLvgDAAAAAAAYowiZAXypWEuLDrz+uj4/dkxe\nw1DA61VeebluvvlmuVyu+CbCZQAAAAAAgDGJkBnAZfV0dWnXiy/qdGurJMmwbV2Xl6frbrlFDqcz\nwdUBAAAAAAAg0QiZAVxSe3u73t24UWZfwOxwaF5FhaZOnSqFwxIhMwAAAAAAwJhHyAzgohoaGrR1\n61ZFIxHlGYac6elavGSJCgsK4hf8ZWYmukQAAAAAAAAkAUJmAH9iWVIopNq6Ou05cCC+ZprKmDpV\nq2bOlDsrKx4w+3zMYAYAAAAAAIAkQmYAffx+9TY0aO+ePWo6eVIur1c9OTmaOnWqVq5cqXRJCoXi\nHcwEzAAAAAAAADiHkBmAZFnq/uQT7aypUWdnpwxJ7o4OzV6xQpXXXy/DMOL7CJcBAAAAAADwZwiZ\nAajxyBHt37pVlmVJkkzT1MKFC1Uya1Z8PAYAAAAAAABwCYTMwBhm27Zqa2tVu2uX8np74x3MbrcW\nL14s77hxXO4HAAAAAACAL0XIDIxFlqVwR4eqdu7U8ZMnJdNUwOvVdJdLCxcsUIbTyeV+AAAAwDlP\n7X5uUPsfWnTfMFUCAEByImQGxhq/Xx0ff6ydNTXqDgb7L/ibs3q15s+ZI6Onh8v9AAAAAAAAcMUI\nmYGxxLJ04sMPta+2VtFoVIYkb3e35t19tyaVlcX3ZGQktEQAAAAAAACkFkJmYIyIxWLa9d57Orl7\nd/9abm6uFi9erOzCwgRWBgAAAAAAgFRGyAyMAcFgUG+//bb8J08qzzBk2LZKJ03S/HnzlJaezgV/\nAAAAAAAAuGqEzMAod+rUKb3zzjsKhUKSaSqUl6elkyZp2tSpkmFwwR8AAAAAAAC+EkJmYLSyLB3a\ns0c79u9XzDQlSVlZWbrlrrs0IS9PCoW44A8AAAAAAABfGSEzMApFmpq0f9MmNTU2apxhKOD1atw1\n1+jmm29WZt9oDMJlAAAAAAAADAFCZmCUOX3qlPb+9rcKdHdLkgzb1rzCQs259VY5nM4EVwcAAAAA\nAIDRhpAZGEUOHz6s3e++K8+5gDktLU2VlZXy+XxSOCwRMgMAAAAAAGCIETIDqc6yFOnsVPWePTp6\n4oSMtDTZhiFvTo6uX7xYnuzs+AV/fWMyAAAAAAAAgCFEyAykMr9fZw4e1K6dO9UdDMrl9aonJ0e+\nxYu1sKhIpsMRD5h9PmYwAwAAAAAAYFgQMgOpyrL0WVWVDh48KDsWkyHJ292tOWvXato110iWJYVC\n8Q5mAmYAAADgqj206L5ElwAAQFIjZAZSUDgc1rY33lDngQP9a16vV9dff72yi4vjC+nphMsAAAAA\nAAAYdoTMQIrx+/1699131d3RoTzDkGHbmjZtmubOnSszLY3ZywAAAAAAABhRhMxAKjg3+uKj+nrt\n2rdPsVhMMk1Z48drxdSpKpk4kdnLAAAAAAAASAhCZiDZ+f2KHDumvXv26GRLizLOXe5XWFior33t\na8rJzGT2MgAAAAAAABKGkBlIZpal1n37tGfPHoWCQRmS3B0dmnH99bp+2TKZphnfR7gMAAAAAACA\nBHEkugBJeumll3TbbbepoqJC99xzj/bv33/Z/bW1tfqbv/kbLVq0SCtWrNCPfvQjtbW1jVC1wMiI\nxWLaU12t6g8+UCgYlCSlp6frhsWLdcO8eX8KmAEAAAAAAIAESnjIvHHjRj3yyCO666679Pjjjysn\nJ0cPPvigmpubL7r/6NGjeuCBB+TxePTYY4/pxz/+sWpra/Xggw8qGo2OcPXA8Ojo6NArr7yifZ9+\nKtswJEnj8vK0evVqTSwp4XI/AAAAAAAAJI2Ej8t4/PHHdc899+g73/mOJGnp0qVas2aNnnnmGT38\n8MMX7H/uuec0fvx4/fu//3t/J+ekSZP0zW9+U9u3b9eNN944ovUDQ8qy9On+/fpw3z5ZkmSaCo4b\npwVFRSqfOVMO0+RyPwAAAAAAACSVhIbMx48f18mTJ7Vq1ar+tbS0NK1cuVLV1dUXfWbGjBmaPn36\neaMCpk6dKklqamoa3oKBYdRz4oRq//hHtZw6pRzDUMDrVYbPp9Xf+IbGjxvH5X4AAAAAAABISgkN\nmRsaGmQYhiZPnnzeus/nU2Njo2zblnFuVECfv/qrv7rg62zdulWGYWjatGnDWi8wXBqPHdNHzz2n\ncE+PJMmwbc3OzdV1/+f/KD0rK76JcBkAAAAAAABJKKEhc3d3tyTJ7Xaft+52uxWLxRQMBi/47M+d\nOnVKv/zlLzV37lwtWbLkquqoq6u7qucwuoRCIUkjex56e3t18OBBHT94UPnt7ZLil/uVz5qlvHHj\ndOzQIcWys0esHsQl4iwgeXEeMBDnAQP1nYdkwJmExDsK5+M8YCDOAwbiPGCgofqeNqEhs23bknRB\nt3Ifh+Py9xKeOnVK69atkyQ99thjQ1obMNw6OjpUU1Ojs2fPypGeLltSfl6eZs+eLZfLJRmGYk5n\nossEAAAAAAAALiuhIbPH45EkBQIB5eXl9a8HAgGZpqnMzMxLPnvkyBGtX79esVhMv/nNb+Tz+a66\njlmzZl31sxg9+n6CN9znwY5EdGjPHh3+6CO53W653W45HA7dsGqVrs3JkSFJhhG/4G/8+GGtBRc3\nUmcBqYHzgIE4Dxiorq5OwWAw0WVI4kwijncUBuI8YCDOAwbiPGCgofqeNqEh8+TJk2XbthobG1Va\nWtq/3tTUpClTplzyuQMHDmj9+vXKycnRb37zm/OeBZJZ4PPPVfvHP6rV75f33OV+mZMna/Xq1crP\nz5csiwv+AAAArtJTu58b1P6HFt03TJWMDtFoTGErKme6KdO8/G+ZAgCAsS2hIfOUKVNUXFysd955\nR0uXLpUkWZalqqoqrVq16qLPNDU16aGHHtL48eP1zDPPqKCgYCRLBq7aJwcP6sjLL6vXsiTFL/er\nyM/X7DvvVFpf1356OuEyAAAAEqqlLaAD9a062typWMyWw2GorCRXFTMKVZR/+TtzAADA2JTQkFmS\n1q9fr5/+9KfyeDyqrKzUs88+q46ODt1///2SpMbGRrW3t6uiokKS9LOf/UyBQED//M//rObmZjU3\nN/d/rYkTJ6qwsDAhfw7gUgKBgD744AO1HDmi3HMBs9Pp1IIFC1RUVBTvXr7MaBgAAABgpBw61qaq\n2qb++3MkKRazVd/Yoc+aOrWy0qfZ0/ITWCEAAEhGCQ+Z7733XkUiEW3YsEEbNmxQeXm5nn766f4Z\ny08++aReeeUV1dXVqbe3V9XV1YpGo/rhD394wdf6+7//ez3wwAMj/UcALnRu7MWnJ05ox549ikQi\nMjIyZBuGJvl8uu666+R0OuOzlwmYAQAAkARa2gIXBMwD2batqtom5ee66GgGAADnSXjILEnr1q3T\nunXrLvrZo48+qkcffVSSlJaWpo8//ngEKwOugt+vUH29avfuVYvfL4fXK+XkyJWdrUXf+IYmORyS\nbf/pcj/GYwAAACAJHKhvvWTA3Me2bR2obyVkBgAA50mKkBkYNSxLDdu26eBHH8myLBmS3B0d8s2d\nq6U33SSXy8XlfgAAAEg60WhMR5s7r2jv0eZORaMxLgMEAAD9CJmBIRIIBPTh5s3qqq3tX8vIyND8\n+fNVcsMNkssVX+RyPwAAACSZsBVVLHb5LuY+sZitsBVVFiEzAAA4h5AZ+CrOdSUfaWzUh7t3ywqF\nlGcY/5+9O4+Lqur/AP65DAzoyAyLIAooiAuogICKmCabW7ZnPzWXNBUtzUxz6/FJy1JTMTVwTTFT\nK9PseTK3Itce9wXTEAVB2QRFQXZm4P7+QMYZGVZhWPy8Xy9fOmfOvfc7d45w+HLmeyCIIuzs7ODu\n7g5jExPWXSYiIiKies3YSAIDA6FSiWYDAwHGRhI9REVEREQNBZPMRNX1qPbyxQsXkJySAgMzM4hy\nOQptbPBcmzawbdWKdZeJiIiIqEGQSAzgZKvAjfj0Cvs62SpYKoOIiIi0MMlMVB1l1F627dIFz/n6\nwkQiYd1lIiIiImpQ3NtbIToho9zN/wRBgHt7Kz1GRURERA0Bk8xEVfTw4UP878AB5EREqNukUim6\ndu0Ku169tGsvExERERE1EDaWMvh62uHIhQSdiWZBEODraQcbS1kdREdERET1GZPMRJVUVFSEy5cv\n4/z58ygqKFDXXra1tUXXrl1Ze5mIiIiIGrzObS1hqTBBxI27iEnMQFGRCAMDAU62ZnBv35wJZiIi\nItKJSWaiiiiVuBcfj2Nnz+JeRkZxm0QCsVUr9GrTBi1tbFh7mYiIiKgeCOo+oq5DaBRsLGWwsZSh\nsLAI+cpCGBtJWIOZiIiIysUkM1E5lImJiPz9d8RER0MEYGJmhjy5HJ07d0b37t0hFQTWXiYiIiKi\nRkkiMUBTJpeJiIioEphkJipD3I0b+OfHH5GXmwsAEAC0LCyE2wsvoIWd3eOOTC4TEREREREREdEz\njElmoidkZmbir7/+QnJUFBQlCWYDAzg7O6ND+/aQyOV1HCEREREREREREVH9wSQz0SNF+fmIuXIF\np44fhxKAIJVCFARYN2+Orl27wtTUtLj2Mjf3IyIiIiIiIiIiUmOSmQhA6pUruPTdd8jOyoKllRWy\nzcwgtGgBz5degqORESCK3NyPiIiIiIiIiIhIByaZ6ZmWk5OD0ydO4P6xY8jOygIACKKILmZm6Pza\nazBu1gxQKrm5HxERERERERERURmYZKZnUlFREa5cuYLz588DDx9CIYoAgGbNmqFv376wtLQEioqK\nOxsZMblMRERERERERERUBiaZ6dmiVCL55k38deEC7mdmAiiuvWxoZISOHTvCzs6uOMHM2stERERE\nRERERESVwiQzPTOyY2Nx9eBBJMTHQxAEmJiZIU8uR3sXF/QYNAgp58+z9jIREREREREREVEVMclM\njZ5KpcLl8+cRv28fClUqAMV1l21FEZ0HDYKNvT0AIO/hQxjk5wOurkwwExERERERERERVRKTzNSo\n3bx5E6dOnUL+3btQPEowGxkZoVOnTmjbti0EheJxZyMjFLH+MhEREVGN2nB2e5X6B3UfUUuREBER\nEVFtYZKZGh+lEmkJCfjfxYtIvncPQHHdZQgCHB0d0cnFBcbGxqy7TEREREREREREVAOYZKZGJScu\nDtf++ANxsbEQNeout7S3Ry8/P1jk5LDuMhERERERERERUQ1ikpkahbLqLlsXFKCjry8cO3Qo7qhU\nArm5xSuYmWAmIiIiIiIiIiJ6akwyU8OlVELMycGNhAScuXgRyrQ0dd1liUSCDh07on27djC0sXl8\nDGsuExERERERERER1SgmmalhSk1F6oUL+PvyZaQ/fIgiMzOoZDJAEODQpg1cOnVCExMT1l0mIiIi\nIiIiIiKqZUwyU4OTducOInfuRGpKCgBAACBLT4dVhw7o6e8P8+xs1l0mIiIiIiIiIiLSEyaZqcHI\nzMzE2bNncevvv6FITVW3y+VyuLq6okXv3oBczrrLREREREREREREesQkM9VvSiVy79/HpagoXL1+\nHUVFRRCkUoiCgKYmJnB2cYFDmzYQDAwel8Vg3WUiIiIiIiIiIiK9YZKZ6q2ChAREHz2K6OvXoSws\nhNTMDHlyOYyaNIFzQAA6ymQwlEhYFoOIiIiIiIiIiKgOMclM9Y5KpcLVS5dw+7ffoCwoAFBcd1n+\n8CGcfXzg3q0bjI2NWRaDiIiIiIiIiIioHmCSmeoHpRKFWVmIjIvDxStXoLp/H4qSBLMgoE2bNnBx\ncUETV1fA2Lj4GJbFICIiIiIiIiIiqnNMMlOdK7pzB7f++gvXrl1DTm4uRDMzqGQyiIIAe1tbuLi4\nwNTUtLgsRkndZSIiIiJqEIK6j6jrEIiIiIioljHJTHWmqKgI169eRdyvvyInOxtAcVkMWXo6bFxc\n0M3PDxY5OYAosu4yERERERERERFRPcUkM+nPoxrKRcbGuB4bi4sXLyIvNRWKRwlmALC2tkanTp1g\n4e0NyOWsu0xERERERERERFTPMclM+pGaiqLbt3Hr1i1cu3YNd42NkSeXQ5BKIQoCrCwt4eLiAisr\nK+2yGKy7TEREREREREREVK8Z1HUA1PipcnMRc/QoDh48iIsXLiA3Jwey9HQIhYVoaW+P3kOH4vm+\nfR8nmFkWg4iIiIiIiKjBKSwsQk6eEoWFRXq/trOzM8LCwvR+XX2pT6+vNmKpT6+vxKhRozBp0qQq\nHRMeHo5PPvmkRq4fFRWFTz75BP3794erqys6d+4MDw8PDBo0CLNmzUJkZGSNXKemcCUz1ZqCggJE\nRkYi8vRpSG/d0nrOunlzPBcQAJsOHYobWBaDiIiIiIiIqEG6k5aNiBt3EZOYgaIiEQYGApxsFXBv\nbwUbS5leYti5cydatWqll2s963ivy7ZlyxbIZE8/5jdu3IjMzExMmTIFBgYGiI6OxrZt25CcnIwT\nJ05gw4YN2LdvH1auXInAwMAaiPzpMclMNUupRN6DB7h68yb+vnYNBQUFEAoLYSEIEEQRVtbWcHF2\nRnMrK8DR8fFxLItBRERERERE1OBcvZmGIxcSIIqiuq2oSMSN+HREJ2TA19MOndta1nocbm5utX4N\nKsZ7XbuOHTuGw4cPY8eOHQCAO3fuwNbWFgDQsmVLvPnmm+jXrx+GDh2K+fPnw8/PDxKJpC5DBsBy\nGVSDsmNjcXn7dhwMCUHc3r0wuHcPACBKJLB0c4Ovnx/69O5dnGBmSQwiIiIiIiKiBu1OWnapBLMm\nURRx5EIC7qRl13osmuUWnJ2dsWfPHkyfPh2enp7o2bMnFi1ahKKi8st4REREYOTIkfD09IS3tzc+\n+OADJCUlqZ/PysrC559/Dn9/f3Tp0gU+Pj6YM2cOsrKytOLYvXs3pk6dCg8PD/Tp0wfff/89UlJS\nMHHiRHh4eGDAgAE4duxYqfh/+OEHTJo0CV27dkVAQAC2b99ebrxbt27FgAED4OrqihdffBH79u2r\n8B7t2bMHwcHBGD58uM77olKpsGHDBgwcOBBubm546aWXsHfv3jLvdWXuW3Virah/RdesTEyacnJy\nMG/ePHh7e8PHxwcbN24s1aei93/UqFE4e/Ysjhw5AhcXF/X1KjNuNDVt2hRr165VP05OTkbr1q21\n+piZmeG9997D/fv3cePGjXLvpb4wyUxPLS0tDYcPHcLBTZsQfeMGCgsLIYgimqWno72DA4YMGQLf\n//s/WPTtC7RvD7i6AtbWdR02ERERERERET2FiBt3y0wwlxBFERE37uoposcWL14MCwsLrFmzBiNH\njsTWrVuxc+fOMvtnZWUhKCgINjY2WLduHT7//HP8888/mD59urrPjBkzcPjwYXz00UcICwvDuHHj\nsHfvXoSGhmqda8mSJXBwcMC6devg4eGBhQsXYuzYsfDy8sKaNWsgl8sxc+ZM5Ofnax0XHBwMU1NT\nhISEoH///li4cCF++uknnfGGhIRg6dKlePHFF7F+/Xo899xzmDFjBg4ePFjhfVEoFPj444913pdZ\ns2Zh7dq1GDZsGNatWwcvLy989NFH2LVrV7XvW1Vjrah/RdesTExP+vDDDxEeHo45c+bgiy++wG+/\n/YaLFy9q9ano/V+wYAE6deoELy8v/Pjjj8V7j1XiuCd169YNCoUCQHHSPzY2Fi4uLqX6derUqcL/\nf/rEchlUPUolkmJiEHH9OuLv3IFRbi4Ujwa2YGAAhzZt0L59ezTz8ADk8uJjWBKDiIiIiPSssLAI\n+cpCGBtJIJFwjQ0RUU0pLCxCTGJGpfrGJGagsLBIr1+HPT09MW/ePABAz5498eeff+Lo0aMYNmyY\n7hhjYpCRkYFRo0bB3d0dAGBubo5Tp04BKN53SqVS4bPPPsNzzz0HAOjevTsuXLiAs2fPlrp2SULT\n2toahw4dgqenJ4KCggAA06dPxzvvvIPY2Fg4Ozurj3NycsKyZcsAAL1790ZSUhI2bNiAN998U+v8\nmZmZ2LhxI4KCgvD+++8DAHr16oWsrCwEBwdjwIAB5d6X8ePHAwBcXFy07ktUVBT27duHhQsXqq/Z\nq1cvZGZm4quvvsIbb7wBQRCqdN+qGmtl+ld0zYqef1JUVBSOHj2KlStXYuDAgQAAV1dXBAQEqPtU\n5v13cnKCTCaDTCZTlxSpyrjRJSYmBkqlEp07dy71nFKphIGBAezs7Co8jz4wyUxVUlRUhLgzZxB3\n4gTSHzyAKAgwMTNDvkwGQyMjtHV0hFO7dmhiYgIIQvFGfkREREREelYfNqEiImrM8pWFKCqq3CrK\noiIR+cpCNNVjkvnJusEtWrRAbm4ugOLV1ZolIgRBQLt27aBQKDBx4kQMHjwYffv2Rc+ePdGtWzcA\ngFQqxaZNmwAAiYmJiIuLw40bNxATEwNjY2Ota7m6uqr/3bx5cwDQShKam5tDFEVkZmZqHTd48GCt\nxwEBATh06BBSUlK02i9duoSCggL07dsXhYWF6vY+ffpg9+7dSExMVNfwrcp9OXfuHARBKJX4feGF\nF7Bv3z7ExMSgXbt2Ws9VdN+qGmtl+ld0zYqef9KFCxcgCAL69OmjbrOyskLXrl3Vj6vy/muq7nEl\nrl69Cnt7e7Ro0aLUc9euXYOPjw+aNWtW4Xn0gUlmqpS8vDxERkbin4gImERHQyhZtSyKsMrPh52/\nP5xbtIBRSgogisUJZtZdJiKiZ0BycjI+/PBD/PPPP3BycsKePXvK7Pvll19CJpNhypQpAIo/rvjz\nzz9DFEVs3LgRHh4e+gpbp59++gmJiYmYNm0aAGDOnDm4evUqfv311xq9zpkzZzB69Gjs3r1b56qM\nmpaYmIiAgACsXr0a/fv3x5EjR7BlyxZs2bKl1q9NdaO+bEJFRNSYGRtJYGAgVCrRbGAgwNhIvxuT\nNXli0ZuBgYE6sRwaGoqQkBD1c7a2tggPD8eOHTsQGhqKX375BTt27ICpqSmCgoLUK3/Dw8OxZMkS\nJCQkwNzcHF26dIGJiUmpWs8yWelfZj4Zjy4lCekSFhYWAID09HSt9vT0dIiiiGHDhpUql2BgYIC7\nd++WmWQu7748fPgQEokE8pJPpGvEJYqizhrCMpms3PtW1Vgr27+8a1YU05MePnwIQ0PDUu+blZUV\nsrMf1xOv7Pv/pOoeBwCnTp2Cj4+Pzud+/vlnfPDBBxWeQ1+YZKayKZV4kJSEKzExuB4bi8LCQhjl\n5qLJo//kcrkcHTp0gJ2dHQzatSsui2FtDeTmFq9gZoKZiIieAVu3bkVUVBRWrVqlc4VBicuXL2Pf\nvn04dOgQAOD69ev49ttvMXbsWAQGBuqss6Zva9euhb+/v/rxkx+HrEm1ee6K+Pr6Iiw36kdvAAAg\nAElEQVQsDD/99FOpj59Sw1fZTagsFSZc0UxE9BQkEgM42SpwIz69wr5Otop6VbJo6NCh8PPzUz+W\nSqUAissdrFixAiqVCufOncPWrVsRHByMHj16QKFQYNq0aXj99dcxefJkWD/aa2ratGmIiYmpkbie\nTCanpaUBACwttX8xampqCqA4Wa5r/uno6Fit6ysUChQWFuLhw4daiea7d+9CEASYm5vrPK68+1bV\nWCvbv7xrurm5Vfi8JjMzM6hUKmRlZWmtCk5PT4fRo9zWrVu3qvX+V/e4EidPnsT8+fNLte/atQtd\nu3ZF9+7dKzyHvtSf/+FUb4iiiPjz53Fi7Voc3rABqX/+CaMHDwAAKqkUNi1bonfv3ggMDETr1q1h\nIJE8LothZFScbGaCmYiInhHp6emws7ODn58fOnXqVGa/4OBgjBgxQv2xuPT0dAiCgMGDB8PLywsm\nJib6CpkAjBs3DqtWrYJSqazrUKiG1edNqIiIGhv39lYV/uJYEAS4t7fSU0SVY2Vlhc6dO6v/tG/f\nHsePH0evXr3w4MEDGBoaomfPnpg3bx5EUURycjKuXr0KlUqFCRMmqBOFOTk5OH/+fI3FdeTIEa3H\nf/zxB5ycnEqtcHZzc4OhoSHS0tK0XkdUVBRCQkKqvRmcl5cXRFHEgQMHtNr37dsHS0tLtGnTptQx\nFd23qsZamf4VXbOi55/Uo0cPiKKoXgwCABkZGbh06ZL6cWXff4lEe8X+04ybiIgI5OTkoG/fvlrt\nP/30E27fvo2PPvqownPoE1cyE6BUArm5yBMERN28icjLl2EUFaVVEkORmQmnbt3QxcMDivx8ICGB\nZTGIiOiZ5+/vj+TkZIiiCBcXFyxevBivvvpqqX7//PMPzpw5gy+++AJA8Y7ZISEhEAQBQ4YMQY8e\nPbB48WIEBATg448/xpYtW5CZmYn169fD09MTv//+O9avX4+YmBgoFAq89tprmDJlinoS6+/vj+HD\nh+P27dvYv38/DA0NMXLkSIwZMwYLFixAeHg4zM3N8f777+O1114r97Vs27YN27dvR2RkpPq57777\nDmFhYUhLS4Obmxs+/fRTtG3bVv38X3/9hVWrViEqKgpmZmZ44403MGXKFBgYPN16hrNnz2LVqlWI\njIyEiYkJBg4ciBkzZqBp06YAgFGjRsHR0RGJiYk4d+4c3nzzTcybNw8RERFYsmQJIiMj0bp1a/Wm\nMZqee+45qFQq/PLLL1zN3EBUZgO/+r4JFRFRY2NjKYOvp12ZnyARBAG+nnYN4pMjJatbp0yZggkT\nJsDQ0BDffvstFAoFvL29kZ6eDgMDAyxbtgzDhw/H/fv31fOjytTWrYzjx49j4cKF8Pf3x+HDhxEe\nHo5Vq1aV6mdhYYFRo0ZhyZIlSE9Ph5ubGyIjI7Fy5UoEBgbqLNdRGR07dkT//v2xePFiZGVloWPH\njvjjjz+wf/9+natpgYrvm5mZWZVircxrq+iaJb/4KOv5Jzk6OuLll1/GokWLkJeXh5YtW2LDhg1a\nNaE7depUqfdfLpfj2rVrOHPmDNzd3St9nC4HDhyAv78/jIyMkJaWhtOnT+PYsWMYNGhQvZy/Msn8\nrEtNxYO//8bNmBjEJyTgoVyOQiMjSB99c2jSpAmcnJzg4OAAaefOxauUAcDcnGUxiIjombdmzRp8\n9dVXiI2NxfLly2Fvb6+z32+//YaOHTuqd35+8803YWFhgYULF2LJkiVam8OsXbsWn3zyCQoKCuDq\n6ooff/wR8+fPx8iRIzF9+nRERkZi9erVSExMxNKlS9XHrV+/HgMGDEBoaCgOHjyIkJAQ7N27F/7+\n/li7di3CwsLwySefwMfHBzY2Njpfy/jx49GtWze888476vaYmBj88ssv+Pe//428vDwsWrQIM2fO\nxO7duwEUf4QvKCgIAwcOxNSpUxEbG4sVK1YgIyMD//73v6t9b48ePYp3330XgwYNwsSJE5GUlIQV\nK1bg+vXr+O6779T9fv75Z4wYMQLjxo2DXC5HYmIixowZA09PT6xevRqxsbGYM2dOqVVWEokEfn5+\n2LdvX72cpNNjVdnAr75vQkVE1Bh1bmsJS4WJjq/VZnBv31xvCWZBENTf7zX//WSfsigUCnzzzTcI\nDg7G7NmzUVBQAHd3d4SFhcHMzAxmZmZYunQpQkJCMHHiRDRv3hy+vr4YMmQIPvvsM9y9exdWVlY6\nr13ZWMaPH4/IyEhMnjwZ9vb2WLlyJfr166fzNc2ePRvNmzfHzp078fXXX8PKygpjxozB5MmTK3WP\nyoolODgYq1evxrfffov09HS0bdsWy5cv19qUUPM8Fd23ysaqec5Zs2aV278y16zo+SctWrQIwcHB\nCAkJgVKpxJAhQ2BjY6PeFNHBwaFS7/+YMWMwffp0TJgwAd9++y26du1aqeOetHXrVmzfvh2GhoYY\nMGAAunTpggEDBmDx4sV1WnauPIJY3TX0jcT58+fh5eVV12HonVKpRHRkJJIPHUL6o1IYACAKAh7Y\n2KCDSoV2Tk6wsbEpXoUkCICra6NOKJes2KoPNTGpbnEskCaOB/2IiYnBuXPn6rR0gZGREbp16wYn\nJ6cy++gaD3PnzsWVK1fK3RxvyJAh6NChAxYtWqRuO3PmDN5++23s2rULnTt3Vm9O9/bbb2Pu3LkA\ngKKiIvTu3Ru9evXC8uXL1cf++OOPWLBgAf7zn/+gQ4cO8Pf3R9OmTbF3714AQH5+Pjw8PODt7Y2w\nsDAAQHx8PPr164fQ0FAEBATojNPf3x/+/v6YN2+e+rX997//xdGjR9Uf09yyZQu+/PJLnDt3DjKZ\nDEOHDoWRkRG2bdumPs9///tfzJ07F7///jtatWpV6jpPvnZdXn/9dRgbG+P7779Xt504cQLjx4/H\nunXr4Ovri1GjRuH69es4ffq0us/ixYvxn//8B8eOHVPXVyyJedWqVejfv7+677Zt27Bs2TKcP38e\nhoZVX3sRGRmJnJycOp9LNub5rK4N/EqUrI7T3MCvsLAI63/5u9KbUE181bVRrWTm9yzSxPFAmvQ1\nHirzqRPSzdnZGbNnz8bYsWNr/Vr8+kCaampOy//xzwqlEnj4EKmJiTh27Bi+++47nDp8WCvBbGho\nCCdHR7zx0kt4/q230MrW9nGCmSUxiIioFkVERCAjIwM5OTl19icjIwOXL1+uldeXmJiIli1bVqqv\ng4OD+t83b97E/fv3MXDgQK0+gwcPhiiKOHv2rLpNczW0sbExZDKZVgK3ZNVGZmZmlWJv1aqVVh3A\nkt2/MzMzkZeXh7///ht9+/ZFYWGh+k/v3r1RWFiolfytipycHERGRmLAgAFa7b1794ZCocCZM2fU\nbU/WBrx48SJ69OihTjADQP/+/XUmKVu1aoWCggLcu3evWnFS7arsBn530h7v+l6yCVVl1LdNqIiI\nGgOJxABNTYz49ZXoGcRyGc+A/Ph4xJ88ibjYWGRkZiLbzAwquRyCVApRECA3NUVbR0e0bt0aRlIp\n0KpVcUKZJTGIiEhP3N3d68VKZnd391o5d2ZmZqU39tPcPTwjIwOCIJTaUbxZs2aQSqXIzn6cXNNV\ne68mNhN88hwlH88rKipCRkYGioqKsGLFCgQHB5fqd/du9TZWy8zMhCiKpTa5AYrr9GVlZWk91pSR\nkQFnZ2etNl3nAYrLgpVcT1cJEapbVdnAT/Oj2O7trRCdkFHusfVxEyoiInq2lVXKgqihYJK5MXm0\ngV9JUjgpKQlRV64g48QJFD0qVi4AkKWno1AuR9tOndDp+edhlZ+vexM/IyMml4mISC+cnJzKLVPR\n0JmZmWklRqtynCiKSEtL02rPzMxEQUEBzM3NayrEamnWrBkA4N1339VZgqNkB+2qMjU1hSAIOlcY\n37t3r9zXbW5ujvv372u1paen6+ybkVG8QVxZtfmo9lT0ceqn2cCvMW1CRUREzw7NTZeJGiImmRuL\n1FQgIQF5ubm4HR+Pfx4+RCoAo9xcKDR2wzQzM4OjoyNsfX0hLVnV80RymoiIiGpWy5YtcefOnSof\n5+joCHNzc+zfvx+BgYHq9t9++w2CIMDT07Mmw4REIqlSf5lMBmdnZ9y+fVurNMe1a9ewdOlSTJs2\nTedGJhVp2rQpXFxccODAAYwZM0bdfvz4cWRmZpb7ur29vbFjxw5kZWWpk+BHjx7VuTIoJSUFUqm0\nzJXOVPMqu4nf027gV182oSIiIiJ6VjDJ3AgU5uUh+dQpxMfH486dOxCLiiAKAgRbW6ikUhgaGcHe\n3h4ODg4wNzMrXrGs0KhVxxXLREREtcrHxwcHDx4s1V5RKQADAwNMmTIFn3/+ORQKBQICAnDt2jWE\nhIRg0KBBNb7629TUFFeuXMHZs2fRvXv3Mvtpxj116lRMmTIFzZo1Q79+/XD//n2sWrUKEokEHTt2\nLPcce/fuxblz57TaFQoFXn31Vbz//vuYPHkyPvzwQ7z++utISkrCV199BU9PTzz//PNlnvftt9/G\nzp07MX78eEyaNAnJyckIDQ3V2ffSpUvw9vbmR1P1RNcmfkVFIm7EpyM6IUNrEz9jIwkMDIRKb+Bn\nbFT6FyQ2ljLYWMq4CRURERGRHjDJ3BAplRBzcpCcno7oW7cQf/UqmiQkaHURRBG25uZo5+mJts2a\nwfDOHd0lMYiIiOipVZSk7NevHzZu3Ij4+HjY29uXeZyu84wYMQJNmjTB5s2bsWvXLlhZWWHcuHF4\n9913yz1OV12/iuKcNGkSFixYgKCgIBw4cKDcc5fw9/fHmjVrEBoaij179qBZs2Z47rnnMGPGDBgb\nG5d5LUEQsGXLllLtjo6OePXVV+Hn54fQ0FCEhIRg8uTJUCgUeOmll/Dhhx9qXf/J+CwsLLBt2zZ8\n8cUX+PDDD9GiRQt89tlnmDx5slY/lUqF06dPY/r06eXeE6oZld3Ez1JhAhtLmXoDvxvxukudaKpo\nAz+JxEBrlTMRERER1TxBrGgJTSN3/vx5eHl51XUYlfYgKgqJp08j/vZt5OTlIdvMDPkyGSwSEyGI\nIqRSKdq0aQMHR0eY9ur1OJnMkhgVKql/5OLiUseRUF3jWCBNHA+k6WnGw+jRo+Hl5YUPPvigpsOi\najh06BAWLlyI8PBwSKXSap0jMjISOTk5dT6XbAjz2YOn4iqVMG5vb4YBPR0AFCemdx+OrnADvzf8\n2rH8xSP8nkWaOB5IE8cDaeJ4IE01NaflSub6SiMpnF1QgOjoaERHRgJXrkB4NNHW3MTP2sMD7UxM\n0MLaGgYSSenVyiyJQUREVKemTZuGqVOnYsKECWjatGldh/PM27JlCyZPnlztBDNVXnU38eMGfkRE\nREQNB5PM9VFqKpSxsUhMSMDt+HjEqVTIk8uLN/ErSTALAqysrNC6dWu0fP55GFlacrUyERFRPebp\n6YkXX3wRmzZtwvvvv1/X4TzTwsPDYWhoiGHDhtV1KM+Ep9nEjxv4ERERETUMTDLXNY3EcF5hIW5F\nRyPtyBGkpKRALCoCAMgEAfkyGVRSKczMzWFvbw87Ozs0MTEprrEslxefi6uViYiI6rU5c+bUdQgE\nICAgAAEBAXUdxjPjaTfx4wZ+RERERPUfk8x1KTUVedHRSEpMRGJSEuJUKqgMDaFITdXq1rRJEzg4\nO8PJwwNmBQVAQgI38SMiIiKiBqGmNvHjBn5ERERE9ReTzHUgOzsbsdev4/7Ro7h39666vakg4IGN\nDURBgIlUila2trC3s4Nl8+YQ3NweJ5PNzVkWg4iIiIgaDPf2VohOyKhwEz/39lZ6jIo0bTi7vUr9\ng7qPqKVIiIiIqCFiklkflEpkpqYi9s4d3IyPR2pqanF9ZY0EMwA0NTGBXceOcPT1hVV+PgRA92pl\nlsUgIiIiogaEm/gRERERNW5MMteUJzbdE0URd+/eRdKlS0iLiEBGejpEQUC2mRkgl0MllUIUBMia\nNIGtrS1sbW1hbmHxeMUyN/EjIiIiokaEm/gRERERNV5MMteE1FQgIQHKggKkpKYiTqXCzaws5Gdn\nwyIxEcKj1RqCKEKWno4mrVrBoX17tPX1hWVuru76ylytTERERESNDDfxIyIiImqcmGSuqidWGKff\nvYvUP//EneRkpKWlQRRFiIKAfFtbGBYUqBPMcrlcvWJZ7uUFyOU6z0dERERE1NhVtIkf6wMTEdV/\n9e1rtbOzM2bPno2xY8fW6nXqSn16fXURy6hRoyCTybBu3bpKHxMeHo6jR4/is88+e+rrR0VFYfv2\n7Th16hSSk5NRVFQEqVQKGxsbuLq6YuzYsXBxcXnq6zRkTDJXRWoqCm/dwt3UVNxJScHNggJk5OdD\nkZqq1U0QRRgXFqKFkxPa29rCpkULNG3a9NGTQnFCuQRXLBMRERERERERPZWdO3eiVatWdR3GM6Gh\n3OstW7ZAJnv6clwbN25EZmYmpkyZAgMDA0RHR2Pbtm1ITk7GiRMnsGHDBuzbtw8rV65EYGBgDUTe\nMDHJrIvG6mLR0BBpaWlIjItD5v/+h7R791BYWAgAEAUBhTY2EAUBgiiiSdOmsLGxgY2NDaz8/WHY\npIm6lIbOkhhERERENejrr7/G5s2bcfHixUofc/78eXz77bdYvXo1AGDPnj34+OOPcfLkSZiZmdVW\nqEREREQ1ys3Nra5DeGY8S/f62LFjOHz4MHbs2AEAuHPnDmxtbQEALVu2xJtvvol+/fph6NChmD9/\nPvz8/CCRSOoy5DrDAmhPSk1F1smTiD10CKe/+QY/hYbi559/xoW//kJqSoo6wQwU37xWzZujo78/\nAgIDMWjgQHh4eKBl9+7FCWYAsLYGXF2B9u2L/7a2rpvXRURERI2eIAgQBKFKx+zatQuxsbHqx76+\nvvjxxx8hLyntRURERNQAODs7IywsTP3vPXv2YPr06fD09ETPnj2xaNEiFBUVlXuOiIgIjBw5Ep6e\nnvD29sYHH3yApKQk9fNZWVn4/PPP4e/vjy5dusDHxwdz5sxBVlaWVhy7d+/G1KlT4eHhgT59+uD7\n779HSkoKJk6cCA8PDwwYMADHjh0rFf8PP/yASZMmoWvXrggICMD27eWXJNm6dSsGDBgAV1dXvPji\ni9i3b1+F92jPnj0IDg7G8OHDdd4XlUqFDRs2YODAgXBzc8NLL72EvXv3lnmvK7pvX375Jby9vaFS\nqbTO8c4772Dq1Kk648zJycG8efPg7e0NHx8fbNy4sVSfit6LUaNG4ezZszhy5AhcXFyQlJRUqffv\nSU2bNsXatWvVj5OTk9G6dWutPmZmZnjvvfdw//593Lhxo8xzNXZcyQwg9+FDJKamIvn2bWSdPInc\nnBz1cxJBgGBrC5VUClEQYCKVwrpFC9jY2KBFixaQenkVr0wur7YyS2IQERFRA2Fubg5zc/O6DoOI\niIjoqSxevBgvv/wy1qxZg3PnziEkJARt27bFsGHDdPbPyspCUFAQ+vTpg6lTpyIjIwNLly7F9OnT\n8cMPPwAAZsyYgejoaHz00UewsrJCREQEVq5cCXNzc8yePVt9riVLlmD48OEYMWIEtm/fjoULF+K7\n777Dq6++ijFjxmDFihWYOXMmjh07BmNjY/VxwcHB8PX1RUhICP766y8sXLgQUqkUb775Zql4Q0JC\nsG7dOkycOBFeXl44evQoZsyYAYlEggEDBpR7X/r06YOPP/4Yqamppe7LrFmzcPjwYXzwwQfo0KED\nDh06hI8++gh5eXkYMmRIle/bK6+8gi1btuDEiRPw9fUFANy7dw+nT59GSEiIzhg//PBDXL58GXPm\nzIFCocDq1asRHR2N3r17q/tU9F4sWLAAM2fORJMmTTB79mw0b94c77//fqXeP03dunVT/1ulUiE2\nNlZn7eVOnTpBfLQv27OKSWYA+5YuRbaZGQqNjKDQSDADgJFEAgdra9h06AA7qRTm2dm6S18wkUxE\nRFR36nAjXWdnZyxYsABHjhzBqVOnYGlpiXfeeQcjRjze3CYnJwdff/01Dh06hHv37qFDhw6YNm0a\nnnvuOQDAmTNnMHr0aGzcuBHBwcGIjY1Fu3btMHPmTPTs2RMA8PPPP+Pjjz/GqVOn1GUsMjMz0b17\ndyxZsgSvvvpqqdhUKhXWrFmD3377DUlJSWjSpAm8vb0xb948tGjRAnPnzsWePXsAAC4uLti6dSsS\nEhIwd+5crevs3LkT3333HW7fvg0bGxu89dZbePvtt7XuweLFi3H8+HEcOXIEUqkUL7/8MubMmQMD\nA35wjoiIiPTP09MT8+bNAwD07NkTf/75J44ePVpmkjkmJgYZGRkYNWoU3N3dART/8v3UqVMAgIKC\nAqhUKnz22WfqOVz37t1x4cIFnD17ttS1p0+fDgCwtrbGoUOH4OnpiaCgIADA9OnT8c477yA2NhbO\nzs7q45ycnLBs2TIAQO/evZGUlIQNGzaUSjJnZmZi48aNCAoKwvvvvw8A6NWrF7KyshAcHFxuktnT\n0xPjx48HUDz/07wvUVFR2LdvHxYuXKi+Zq9evZCZmYmvvvoKb7zxRqlPzVV035ydndGxY0f8+uuv\n6iTz3r17IZfL8fzzz5eKLyoqCkePHsXKlSsxcOBAAICrqysCAgLUfSrzXjg5OUEmk0Emk8HNza1K\n719ZYmJioFQq0blz51LPKZVKGBgYwM7OrlLnaoyYZEbxRn2y9HQ8sLGBYGAAC3NzWLdoAavmzWFh\naQkDd/fHP7DW4Q+xREREpIOu/Q/0XJ6qvFUnoihi3LhxiIuLw/Tp02FjY4Ndu3YhKCgIGzZsUE9y\nAWDmzJkYPXo0unTpgm3btmHChAnYs2cP2rVrV61SGIsWLcJvv/2GOXPmwN7eHjdu3EBwcDC++OIL\nrF69Wv2xvtjYWCxfvhxOTk5ISEjQuk5wcDA2b96MiRMnolu3bjh9+jS+/PJLpKen44MPPlD3q+pq\nISIiIqLa9GTd4BYtWiA3NxcAIIqiVokIQRDQrl07KBQKTJw4EYMHD0bfvn3Rs2dP9UpWqVSKTZs2\nAQASExMRFxeHGzduICYmRms1MlCcFC3RvHlzANBKTJqbm0MURWRmZmodN3jwYK3HAQEBOHToEFJS\nUrTaL126hIKCAvTt21errGufPn2we/duJCYmqusGV+W+nDt3DoIglEpSv/DCC9i3bx9iYmLQrl07\nrecqum8A8Oqrr2LVqlXIy8uDiYkJfv31V7zwwgs6axdfuHABgiCgT58+6jYrKyt07dpV/bgq78XT\nHPOkq1evwt7eHi1atCj13LVr1+Dj44NmzZpV6lyNEZPMAORyOVq0aAHzHj3QQqGAUUpK2Rv1ccUy\nERFR/aFUPk4wA8V/JyQA5uZ6/X5d3qqTw4cP4+LFi9i8eTN69eoFoPgHgGHDhmHFihVaSeahQ4fi\nvffeAwD4+PggMDAQmzdvxqJFi6oVV3p6OubMmYPXXnsNQPHH/W7evKmuq2dvbw8LCwskJSXp3MAl\nPT0dW7Zswfjx49U183r16gVRFLFp0ya8/fbb6tXOVV0tRERERFSbmpTslfWIgYGBOrEcGhqqVarB\n1tYW4eHh2LFjB0JDQ/HLL79gx44dMDU1RVBQkHrlb3h4OJYsWYKEhASYm5ujS5cuMDExKVXrWSaT\nVRiPLiUJ6RIWFhYAiudkmtLT0yGKIoYNG1aqRIOBgQHu3r1bZpK5vPvy8OFDSCSSUntzNG/eHKIo\n6qxdLJPJKrxvL730EpYvX44///wTLi4uuHr1KubPn68zvocPH8LQ0LDUPbSyskJ2drb6cWXfC03V\nOUbTqVOn4OPjo/O5n3/+WWsBxrOISWYAgYGBxQnl9u2LfyC1tuZqZSIiooYgN/dxgrmEKBa36/F7\neHmrTs6dO4dmzZqpE8wlXnjhBSxZsgQ5j0p1CYKAQYMGqZ83MjJCnz59Kv3xPV1WrFgBAEhJSUFs\nbCxiYmJw/vx5FBQUVOr4iIgIqFQq9UcVNWPfsGEDIiIi0LdvXwDlr4ohovovqPuIijsRETUSQ4cO\nhZ+fn/qxVCoFULxwYMWKFVCpVDh37hy2bt2K4OBg9OjRAwqFAtOmTcPrr7+OyZMnw/rRJ+emTZuG\nmJiYGonryWRyWloaAMDS0lKr3dTUFEBxslzXqlpHR8dqXV+hUKCwsBAPHz7USjTfvXsXgiCUuW9H\neffNzc0NlpaWeO6553DgwAHEx8ejTZs2Ohc4AMWb6KlUKmRlZWmtCk5PT4fRo/n9rVu3qvxeVOeY\nJ508eVJncnzXrl3o2rUrunfvXqnzNFYskgforq8slzPBTEREVN81aVL8fVyTIBS361FZq04yMjLw\n8OHDUj8YlBwjiqLWigzrJ8p8WFhYlPphoyouXLiAl19+GX379sXUqVNx6NAhmJiYVHpTkoyMDACl\nf7Apeb2aq1nKWxVDREREVJ9YWVmhc+fO6j/t27fH8ePH0atXLzx48ACGhobo2bMn5s2bB1EUkZyc\njKtXr0KlUmHChAnqOVtOTg7Onz9fY3EdOXJE6/Eff/wBJyenUnNNNzc3GBoaIi0tTet1REVFISQk\npNob0Hl5eUEURRw4cECrfd++fbC0tESbNm1KHVPRfSvxyiuv4Pjx4zh48CBeeeWVMmPo0aMHRFHE\noUOH1G0ZGRm4dOmS+nFl3wvNchxP+/5FREQgJydHvcCixE8//YTbt2/jo48+qtR5GjOuZAYAV1cm\nlImIiBoiI6PiXxQ/WZNZz9/Xy1p1YmFhAYVCoX6sKTU1FUDxipESDx48UCeoS85TkuAtqZOsmbjN\neWLDYk1ZWVl499130a1bN4SGhsLe3h4AsGzZMly7dq1Sr6sktrS0NK0E+L179wCgzNUsRERERA1N\nycraKVOmYMKECTA0NMS3334LhUIBb29vpKenw8DAAMuWLcPw4cNx//59hIWFIS0trdI1fSty/Phx\nLFy4EP7+/jh8+DDCw8OxatWqUv0sLCwwatQoLFmyBOnp6XBzc0NkZCRWrlyJwFt7JLMAABRaSURB\nVMBAneU6KqNjx47o378/Fi9ejKysLHTs2BF//PEH9u/fX2Z5i4ruW4nAwEDMnz8fkZGRWL16dZkx\nODo64uWXX8aiRYuQl5eHli1bYsOGDVq1pzt16lSp90Iul+PatWs4c+YM2rZt+1Tv34EDB+Dv7w8j\nIyOkpaXh9OnTOHbsGAYNGlRqY8ZnFVcyA0wwExERNWTW1sW/MG7fvvhvPW/6B+heddK2bVs0b94c\nXl5eyM7Oxl9//aXVZ//+/ejSpYv645miKGqdp6CgAMeOHUPPnj0BQP1xwZLkNACcPXu2zM0Ab968\niYyMDIwePVqdYC4qKsJff/2ltbrFwKDs6aCbmxskEkmp1Sy//fYbDA0Ny/yYIxEREZG+aW6SXNaG\nyeVtoqxQKPDNN9/AxMQEs2fPxvvvvw+lUomwsDCYmZnBwcEBS5cuxfXr1zFx4kQEBwfDzc0N8+fP\nR3JyMu7evVvmtSsby/jx43H79m1MnjwZp0+fxsqVK9GvXz+d5509ezbee+897Nq1CxMmTMB3332H\nMWPGYPHixZW6R2XFEhwcjJEjR+Lbb7/Fe++9h0uXLmH58uVa+2xonqei+1ZCKpXC29sbnp6esLOz\nKzNGoHjz6jfffBMhISGYNWsWunbtqlXepLLvxZgxY1BQUIAJEyYgLy+vUsfosnXrVmzfvh3h4eEY\nMGAAFi1aBENDQyxevLjUyuZnGVcyExERUcNXxxvzlrfqxNfXF25ubpg5cyamTZuGli1bYvfu3fj7\n77+xdu1arfOEhoZCIpHA0dERW7duRW5uLsaNGwcA8Pb2hlQqxRdffIF3330XiYmJWLt2rTpJ/aS2\nbdtCJpMhNDQUhYWFyM3NxY4dO3D9+nWtHyTkcjlSUlLwv//9D126dNE6h7m5OUaNGoVNmzbBwMAA\n3bt3x5kzZ7B582a88847z/Tu2VS7WB+YiKj+q29fqyMjI3X+u0RoaGiF5+jUqRM2bdpU5vODBw8u\ntRcHUFzjuaxrm5qalmpzdnbWGaO5uTk2btyo89q6+o8bN049V6yMknNonuvJ+2JkZIQZM2ZgxowZ\nFZ6nREX3DQDy8/Nx9uxZzJo1q8I4DQ0NMXv2bMyePbvMPpV5Lzw9PbUWcXTt2rXCY3QZPXo0Ro8e\nXWHczzquZCYiIiJ6SuWtOjEwMMCmTZvQr18/rFy5ElOnTkVKSgo2btyotfJBEATMnj0bu3btwrRp\n01BYWIjt27erdwY3NTXFqlWr8ODBA0yaNAnff/89li1bhqZNm+qMqVmzZggJCUFmZibee+89fP75\n57C0tMSqVatQVFSEy5cvAyieVFtaWmLSpEmlVlsDxatkpk2bhr1792LSpEk4ePAg5s6dq/WDR3VW\nCxERERFR4/fw4UOEhIRg/PjxMDIywosvvljXIVEt4UpmIiIioqdU3qoToDjh++mnn+LTTz8t9zxd\nunTB3r17y3ze19cXvr6+Wm0nT55U/3vKlCmYMmWK+rGPjw/27NlT6jyaq08cHBywf/9+redfe+01\nrcfjx4/H+PHjy4yruquFiIiIiKhYWb+0b+iMjY2xY8cOmJiYYPny5TVWv5rqHyaZiYiIiOqB6u4C\nTkREREQNn65f2jcGxsbG+N///lfXYZAesFwGERER0VOoqVUnjXHlChERERERPRu4kpmIiIjoKdTE\nqpMePXo02tUrRERERETU+HElMxERERERERERERFVG5PMRERERERERERERFRtTDITERERERERERER\nUbUxyUxERERERERERERE1cYkMxERERERERERERFVG5PMRERERERERERERFRt9SLJvHPnTgwYMADu\n7u4YNmwYLl26VG7/Gzdu4O2334aHhwf8/PywceNGPUVKRERERERERERERJrqPMm8Z88eLFiwAK+8\n8gq+/vpryOVyjB8/HomJiTr7379/H2PHjoWhoSFWrVqFoUOHYuXKlQgLC9Nz5ERERERERERERERk\nWNcBfP311xg2bBjee+89AECvXr0wcOBAbNmyBf/6179K9d+2bRsKCwuxdu1aSKVSPP/888jPz8f6\n9esxevRoSCQSfb8EIiIiIiIiIiIiomdWna5kvnXrFpKSkuDn56duMzQ0hK+vL44fP67zmJMnT8LH\nxwdSqVTdFhgYiIyMDPz999+1HjMRERERERERERERPVanSea4uDgIgoA2bdpotdvZ2SE+Ph6iKOo8\npnXr1lpt9vb2EEURcXFxtRkuERERERERERERET2hTpPMWVlZAACZTKbVLpPJUFRUhJycHJ3H6Oqv\neT4iIiIiIiIiIiIi0o86rclcslJZEASdzxsYlM6Bi6JYZv+y2isSGRlZreOoccnNzQXA8UAcC6SN\n44E0cTyQppLxUB9wTBLAr1GkjeOBNHE8kCaOB9JUU3PaOk0ym5qaAgCys7NhYWGhbs/OzoZEIkGT\nJk10HpOdna3VVvK45HxVpWvFND27OB6oBMcCaeJ4IE0cD1TfcEySJo4H0sTxQJo4HkgTxwPVpDpN\nMrdp0waiKCI+Ph729vbq9oSEBDg4OJR5THx8vFZbyWNHR8cqx+Dl5VXlY4iIiIiI6gvOZ4mIiIio\nrtVpTWYHBwe0bNkSf/zxh7pNqVTiyJEj8PHx0XmMj48PTp48iby8PHXb77//DnNzc7i4uNR6zERE\nRERERERERET0mGTBggUL6jIAqVSKNWvWoKCgAAUFBVi8eDHi4uKwZMkSyOVyxMfHIy4uDjY2NgAA\nJycnbN26FSdPnoSFhQX279+PdevWYerUqfD09KzLl0JERERERERERET0zBHEkt336tCWLVuwdetW\nPHjwAM7Ozpg7dy7c3NwAAHPnzsUvv/yiVYz86tWr+OKLL3D16lVYWlpixIgRGDduXF2FT0RERERE\nRERERPTMqhdJZiIiIiIiIiIiIiJqmOq0JjMRERERERERERERNWxMMhMRERERERERERFRtTHJTERE\nRERERERERETVxiQzEREREREREREREVUbk8xEREREREREREREVG1MMhMRERERERERERFRtTXqJPPO\nnTsxYMAAuLu7Y9iwYbh06VK5/W/cuIG3334bHh4e8PPzw8aNG/UUKelDVcfDhQsXMHr0aHTv3h19\n+vTB7NmzkZaWpqdoqbZVdTxoCgkJgbOzcy1GR/pW1fFw//59zJo1C97e3ujevTveffddxMfH6yla\nqm3V+X7x1ltvwdPTE4GBgQgJCYFKpdJTtKQv4eHh8PT0rLBfbcwnOaelEpzPkibOZ0kT57OkifNZ\n0qW257ONNsm8Z88eLFiwAK+88gq+/vpryOVyjB8/HomJiTr7379/H2PHjoWhoSFWrVqFoUOHYuXK\nlQgLC9Nz5FQbqjoeYmJiMHbsWJiammLFihWYM2cOLly4gPHjx6OwsFDP0VNNq+p40HT9+nWsX78e\ngiDoIVLSh6qOB5VKhbFjx+LKlSv44osvsGTJEsTHx2PChAmciDUCVR0P8fHxGDduHJo1a4aQkBCM\nHTsW33zzDVasWKHnyKk2XbhwAbNmzaqwX23MJzmnpRKcz5ImzmdJE+ezpInzWdJFL/NZsZHy8/MT\nP/30U/VjpVIpBgQEiJ9//rnO/qtWrRJ79uwp5ufnq9tWrlwpent7iyqVqtbjpdpV1fHw6aefioGB\ngVrv/eXLl8WOHTuKR48erfV4qXZVdTyUKCwsFIcMGSL27dtXdHZ2ru0wSU+qOh527twpdu3aVbxz\n5466LTIyUuzTp4949erVWo+XaldVx8P69etFd3d3MS8vT922YsUK0cvLq9ZjpdqXn58vbtiwQezS\npYvYo0cP0cPDo9z+tTGf5JyWSnA+S5o4nyVNnM+SJs5nSZM+57ONciXzrVu3kJSUBD8/P3WboaEh\nfH19cfz4cZ3HnDx5Ej4+PpBKpeq2wMBAZGRk4O+//671mKn2VGc8tG/fHmPHjoVEIlG3OTo6AgAS\nEhJqN2CqVdUZDyXCwsKQk5ODkSNH1naYpCfVGQ/h4eHo06cPWrRooW5zdnbGsWPH0KlTp1qPmWpP\ndcaDUqmEoaEhjI2N1W0KhQI5OTkoKCio9Zipdh07dgzffPMN5syZU6mv/TU9n+SclkpwPkuaOJ8l\nTZzPkibOZ+lJ+pzPNsokc1xcHARBQJs2bbTa7ezsEB8fD1EUdR7TunVrrTZ7e3uIooi4uLjaDJdq\nWXXGw/Dhw/HWW29ptf35558QBAFt27at1XipdlVnPADF36xDQkLw+eefw8jISB+hkh5UZzxERUXB\n0dERISEh6N27N1xdXTFx4kQkJyfrK2yqJdUZDy+//DIkEgmWL1+OjIwMXL58GVu3bkW/fv20JmbU\nMLm5uSE8PBwjRoyo1MfKa3o+yTktleB8ljRxPkuaOJ8lTZzP0pP0OZ9tlEnmrKwsAIBMJtNql8lk\nKCoqQk5Ojs5jdPXXPB81TNUZD09KTk7G0qVL4erqip49e9ZKnKQf1R0P8+bNw2uvvQYPD49aj5H0\npzrj4f79+9i9ezdOnDiBRYsWYdmyZYiOjsbEiRNRVFSkl7ipdlRnPNjb22PmzJnYvHkzvL298X//\n93+wtLTEokWL9BIz1S5ra2s0a9as0v1rej7JOS2V4HyWNHE+S5o4nyVNnM/Sk/Q5nzWsenj1X8lv\nZsrK0BsYlM6ti6JYZn9uiNCwVWc8aEpOTsaYMWMAgIXvG4HqjIfvv/8e8fHxWL9+fa3GRvpXnfGg\nUqmgUqnwzTffqL9Z29nZYciQITh06BAGDhxYewFTrarOePjpp5/w73//G8OGDcOgQYOQmpqK1atX\nIygoCFu2bOFKsWdMTc8nOaelEpzPkibOZ0kT57OkifNZelpPM5dslCuZTU1NAQDZ2dla7dnZ2ZBI\nJGjSpInOY3T11zwfNUzVGQ8lrl+/jmHDhiEnJwdhYWGws7Or1Vip9lV1PNy5cwfLly/Hv/71Lxgb\nG6OwsFD92/3CwsIyP45IDUN1vj40bdoU7u7uWr8N7tKlC+RyOa5fv167AVOtqs542LhxI3x9fbFg\nwQJ4e3vjpZdewvr163H+/Hn8+uuveomb6o+ank9yTkslOJ8lTZzPkibOZ0kT57P0tJ5mLtkok8xt\n2rSBKIqIj4/Xak9ISICDg0OZxzzZv+RxyQYZ1DBVZzwAQEREBEaOHAkjIyPs2LED7du3r+VISR+q\nOh5OnjyJnJwcTJ06FZ07d0bnzp3x5ZdfQhRFdOnSBaGhoXqKnGpDdb4+tG7dGkqlslS7SqXiKsEG\nrjrjITk5Ge7u7lptbdu2hZmZGaKjo2srVKqnano+yTktleB8ljRxPkuaOJ8lTZzP0tN6mrlko0wy\nOzg4oGXLlvjjjz/UbUqlEkeOHIGPj4/OY3x8fHDy5Enk5eWp237//XeYm5vDxcWl1mOm2lOd8ZCQ\nkICgoCBYW1vjhx9+gL29vb7CpVpW1fHg7++PXbt2YdeuXdi9ezd2796NsWPHQhAE7N69G0OHDtVn\n+FTDqvP1oXfv3rhw4QLu3r2rbjtz5gxycnLg6elZ6zFT7anOeHBwcMDFixe12m7duoX09HR+73gG\n1fR8knNaKsH5LGnifJY0cT5Lmjifpaf1NHNJyYIFCxbUcnx1QiqVYs2aNSgoKEBBQQEWL16MuLg4\nLFmyBHK5HPHx8YiLi4ONjQ0AwMnJCVu3bsXJkydhYWGB/fv3Y926dZg6dSq/yDYCVR0Ps2fPRnR0\nND7++GMAQEpKivqPRCIpVQSdGpaqjAcTExNYW1tr/YmJicGJEyfw6aefciw0AlX9+tCxY0fs3r0b\n4eHhaN68Oa5evYoFCxbA2dkZ06ZNq+NXQ0+rquPBwsICGzZswJ07d9CkSRNcvHgRn3zyCeRyORYs\nWMAado3ImTNncPHiRUycOFHdpo/5JOe0VILzWdLE+Sxp4nyWNHE+S2Wp9fms2IiFhYWJfn5+Yteu\nXcVhw4aJERER6ufmzJkjOjs7a/W/cuWKOHz4cNHNzU308/MTv/nmG32HTLWosuNBqVSKnTt3Fp2d\nnXX+2bx5c129BKpBVf36oGnLli3lPk8NT1XHw+3bt8XJkyeLnp6eYo8ePcS5c+eKmZmZ+g6baklV\nx8Pvv/8uvvbaa6Krq6vo5+cnzps3T0xLS9N32PT/7dyhSmRhHMbhd2DBYhgGppqMBxFRxOA9eAEW\ntXgfXoLNahmweAFmQSwWwSTCgBoNikU8m3ZwYA8sH3g+WZ4nDTPlH19+DN83Oz4+btfW1ua+62tP\n2rT8Yc/ylT3LV/YsX9mz/M1379lB23rlHwAAAACAMv/lm8wAAAAAAPRDZAYAAAAAoJjIDAAAAABA\nMZEZAAAAAIBiIjMAAAAAAMVEZgAAAAAAionMAAAAAAAUE5kBAAAAACgmMgMAAAAAUExkBgAAAACg\nmMgMAAAAAEAxkRkAAAAAgGIiMwAAAAAAxX7VPgCAn2cymeTl5SX39/fZ3d3Nzc1N3t/fM51Oc3R0\nlMFgUPtEAADoZM8C9Ms/mQGYc3Z2lqZpcnh4mJ2dnRwcHGR1dTWj0Sjn5+d5e3urfSIAAHSyZwH6\n55/MAMx5fX1N0zRJkufn54xGo6ysrGRpaSlN02RxcbHyhQAA0M2eBeifyAzAnL29vdnn6+vrbG5u\nJkmGw2GGw2GtswAA4J/YswD981wGAJ2urq6ysbFR+wwAAChizwL0Q2QGYObz8zOXl5dp2zbT6TSP\nj4+zUf7x8ZHT09PKFwIAQDd7FqAOkRmAmclkkv39/Tw8POTi4iILCwsZj8ez37a3tytfCAAA3exZ\ngDoGbdu2tY8A4Ge4u7vLyclJlpeX0zRNnp6ecnt7m/F4nPX19WxtbdU+EQAAOtmzAHWIzAAAAAAA\nFPNcBgAAAAAAxURmAAAAAACKicwAAAAAABQTmQEAAAAAKCYyAwAAAABQTGQGAAAAAKCYyAwAAAAA\nQDGRGQAAAACAYiIzAAAAAADFfgPKFWF1lwCdcgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"axes=make_plot()\n",
"axes[0].plot(x,f, 'k-', alpha=0.4, label=\"f (from the Lord)\");\n",
"axes[0].plot(x,f, 'r.', alpha=0.2, label=\"population\");\n",
"axes[1].plot(df.x,df.f, 'o', alpha=0.6, label=\"in-sample noiseless data $\\cal{D}$\");\n",
"axes[1].plot(df.x,df.y, 's', alpha=0.6, label=\"in-sample noisy data $\\cal{D}$\");\n",
"axes[0].legend(loc=4);\n",
"axes[1].legend(loc=4);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testing and Training Sets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The process of learning has two parts:\n",
"\n",
"1. Fit for a model by minimizing the in-sample risk\n",
"2. Hope that the in-sample risk approximates the out-of-sample risk well.\n",
"\n",
"Mathematically, we are saying that:\n",
"\n",
"$$\n",
"\\begin{eqnarray*}\n",
"A &:& R_{\\cal{D}}(g) \\,\\,smallest\\,on\\,\\cal{H}\\\\\n",
"B &:& R_{out \\,of \\,sample} (g) \\approx R_{\\cal{D}}(g)\n",
"\\end{eqnarray*}\n",
"$$\n",
"\n",
"Hoping does not befit us as scientists. How can we test that the in-sample risk approximates the out-of-sample risk well?\n",
"\n",
"The \"aha\" moment comes when we realize that we can hold back some of our sample, and test the performance of our learner by trying it out on this held back part! Perhaps we can compute the error or risk on the held-out part, or \"test\" part of our sample, and have something to say about the out-of-sample error."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us introduce some new terminology. We take the sample of data $\\cal{D}$ that we have been given (our in-sample set) and split it into two parts:\n",
"\n",
"1. The **training set**, which is the part of the data we use to fit a model\n",
"2. The **testing set**, a smaller part of the data set which we use to see how good our fit was.\n",
"\n",
"This split is done by choosing points at random into these two sets. Typically we might take 80% of our data and put it in the training set, with the remaining amount going into the test set. This can be carried out in python using the `train_test_split` function from `sklearn.cross_validation`.\n",
"\n",
"The split is shown in the diagram below:\n",
"\n",
"\n",
"\n",
"We ARE taking a hit on the amount of data we have to train our model. The more data we have, the better we can do for our fits. But, you cannot figure out the generalization ability of a learner by looking at the same data it was trained on: there is nothing to generalize to, and as we know we can fit very complex models to training data which have no hope of generalizing (like an interpolator). Thus, to estimate the **out-of-sample error or risk**, we must leave data over to make this estimation. \n",
"\n",
"At this point you are thinking: the test set is just another sample of the population, just like the training set. What guarantee do we have that it approximates the out-of-sample error well? And furthermore, if we pick 6 out of 30 points as a test set, why would you expect the estimate to be any good?\n",
"\n",
"We will kind-of hand wavingly show later that the test set error is a good estimate of the out of sample error, especially for larger and larger test sets. You are right to worry that 6 points is perhaps too few, but thats what we have for now, and we shall work with them.\n",
"\n",
"We are **using the training set then, as our in-sample set, and the test set as a proxy for out-of-sample.**."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.cross_validation import train_test_split\n",
"datasize=df.shape[0]\n",
"#split dataset using the index, as we have x,f, and y that we want to split.\n",
"itrain,itest = train_test_split(range(30),train_size=24, test_size=6)\n",
"xtrain= df.x[itrain].values\n",
"ftrain = df.f[itrain].values\n",
"ytrain = df.y[itrain].values\n",
"xtest= df.x[itest].values\n",
"ftest = df.f[itest].values\n",
"ytest = df.y[itest].values"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABZkAAAI3CAYAAAD5glVPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0VPW9///XzGSYkJAbk3BLKEgMglEiAQ4gRwhyCyKC\nWkRBQUUEFLW2p66uc+13rbOO5/etVkUFLyAWRQWqgtQSBCUFWxAxEIVGCCCYACEXSICEDJPZ+/cH\nX6ZEcieTPUmej7/Me++Z/Q5rJDsvPvv9sZmmaQoAAAAAAAAAgCawW90AAAAAAAAAAKD1ImQGAAAA\nAAAAADQZITMAAAAAAAAAoMkImQEAAAAAAAAATUbIDAAAAAAAAABoMkJmAAAAAAAAAECTBVXI/Pnn\nnys1NbXe83JzczV79mwNHDhQo0eP1ptvvtkC3QEAAAAAAAAAfirE6gYuycrK0jPPPFPveadOndJD\nDz2k6667Ti+99JL+/ve/68UXX1RISIgeeuihFugUAAAAAAAAAHCJ5SHzhQsX9Ic//EGLFi1SWFiY\nvF5vnee/++678vl8WrJkiTp06KCRI0fK4/Ho9ddf16xZs+RwOFqocwAAAAAAAACA5eMytm7dqqVL\nl+o3v/mN7r///nrP3759u4YPH64OHTr4a2PHjlVZWZm+++67QLYKAAAAAAAAAPgJy0PmAQMG6PPP\nP9fMmTNls9nqPf/IkSP62c9+Vq3Ws2dPmaapI0eOBKhLAAAAAAAAAEBNLB+X0aVLl0adf+7cOYWH\nh1erXfr63LlzzdYXAAAAAAAAAKB+lq9kbizTNGtd8dyQldAAAAAAAAAAgOZj+UrmxoqIiFB5eXm1\n2qWvIyIiGv1+33zzTbP0BQAAgPZp0KBBll6f+1kAAABcrau9p211IXOvXr2Ul5dXrXbp62uuuaZJ\n72n1LwYIDjk5OZKk/v37W9wJrMZnAZfj84DL8XnA5XJyclRRUWF1G5K4n8VF/B2Fy/F5wOX4POBy\nfB5wuea6p2114zKGDx+u7du3q7Ky0l/btGmTYmJi+J8DAAAAAAAAAFpY0IfMeXl5ys7O9n89Y8YM\nXbhwQXPnzlVmZqaWLFmiN998U/PmzVNISKtbmA0AAAAAAAAArVrQhcw/3bxv8eLFuvfee/1fx8XF\n6e2335bP59NTTz2lNWvW6Je//KUefPDBFu4UAAAAAAAAABBUS38XLlyohQsXVqs9++yzevbZZ6vV\nkpOT9d5777VkawAAAAAAAACAGgTdSmYAAAAAAAAAQOtByAwAAAAAAAAAaDJCZgAAAAAAAABAkxEy\nAwAAAAAAAACajJAZAAAAAAAAANBkhMwAAAAAAAAAgCYjZAYAAAAAAAAANBkhMwAAAAAAAACgyQiZ\nAQAAAAAAAABNRsgMAAAAAAAAAGgyQmYAAAAAAAAAQJMRMgMAAAAAAAAAmoyQGQAAAAAAAADQZITM\nAAAAAAAAAIAmI2QGAAAAAAAAADQZITMAAAAAAAAAoMkImQEAAAAAAAAATUbIDAAAAAAAAABoMkJm\nAAAAAAAAAECTETIDAAAAAAAAAJosxOoGAAAAgNr4fIY8Xp9cToccDtZHAAAAIHhN/tW6Rp2//vkp\nAeqk5REyAwAAIOgUlJQrO7dIh46VyTBM2e02JcZHKSUpTt3c4Va3BwAAAOAyhMwAAAAIKvsOlygz\nK1+mafprhmEqN69UB/PLlJaaoOQ+bgs7BAAAAHA5njkEAABA0CgoKb8iYL6caZrKzMpXQUl5jcfy\n8/O1detW5efnB7pVAAAAoNmVl5frq6++0q5du2q9Jw5GrGQGAABA0MjOLar3Zto0TWXnFqmbO1ym\naero0aPKysrS7t27VVhYKEkKCwvTc889J4fD0RJtAwAAAE129uxZ7dmzR1lZWfr+++9lGIYkyefz\naejQoRZ31zCEzAAAAAgKPp+hQ8fKGnTu7r/nqfTHr5W9Z7dKSkquON6pUyfZ7Ty0BwAAgOC1ZcsW\nZWVlKTc394qFFjabTRERERZ11niEzAAAAAgKHq9PhlHLKmbTVFnZGRUXF6m4pEQXLlzQIU+O7PJV\nOy0xMVGpqakaPny4bDZbC3QNAAAANM0HH3xwRS0qKkqpqakaNmyYevfu3fJNNREhMwAAAIKCy+mQ\n3W7zB82maaq0tFTFxcUqKSmR1+u97GxTNhmy2Wzq27evUlNTddNNNyk6Otqa5gEAAIAmcrvdGjhw\noFJTU9WnT59WuViCkBkAAABBweGwq0+PKGV/f0wnC0+qsLDwJ8HyRTbZ9LOu4Zo8cqZuuummVvUY\nIQAAAHBJenq6UlNT9bOf/axVBsuXI2QGAACA5UpLS7Vz505t/es3OnS60xXH7TabYjp3VmxsrNzu\nzpo+rr+6ucMt6BQAAAC4UlVVVaNfc+eddwagE2sQMgMAAMASHo9He/bs0Y4dO5STk+Pf7KSjPUbn\nnfGyyabO7s6Ki4tT586d5XA4ZLPZlJaaQMAMAAAAy5mmqR9//FHbt2/X119/LWmk1S1ZhpAZAAAA\nzcbnM+Tx+uRyOuRw2K84bpqmDhw4oB07duibb76Rx+O54pzrfhalfjdeL3uneB0r8cgwTNntNiXG\nRyslKZaAGQAAAM1i8q/WNer89c9PkSSdPn1aX331lXbs2KETJ07844QrH8hrNwiZAQAAcNUKSsqV\nnVukQ8fKLguFo5SSFKdu7nCdPHlS27dv11dffaVTp05d8fqYmBgNHTpUw4YNU/fu3f31+kJrAAAA\noKXs2LFD27dv1/79+/1P4V3icDg0KemEhg8fruTkZIWEtK/YtX19twAAAGh2+w6XKDMrv9qNtmGY\nyvmhWFt35sgoPaBTx/5+xetcLpcGDhyo4cOHq2/fvrLbrwyRHQ67wgiXAQAAEASWL19+Ra1Pnz4a\nNmyYBg8erPDw9vvEHSEzAAAAmqygpLxawGwapk6dPqXCkydVcurU/6vb1cnWUSHmedlsNvXr10/D\nhg3TwIED5XK5rP0GAAAAgEbq3Lmzhg0bpmHDhqlr165WtxMUCJkBAADQZNm5RTJNU1Ver44dP67j\nx4/XuLN2aOdE3TGqr/7pn/5JMTExFnQKAAAAXJ0RI0Zo2LBhSkpKks1ms7qdoELIDAAAgCbx+Qz9\n/VChfszLU0FBgQzDqHbc6XQqLi5OXbt2VWREhMaOvZG5ygAAAGi1Zs2aZXULQYuQGQAAAI124sQJ\n/enPG/VV9jmZqr7pSazbra7duikmJsa/wsMwTXm8PuYrAwAAICh4PB6rW2hTCJkBAADQYD/88IMy\nMjK0Z88embLJdF0vySa7zaau3bopISFBoaGhV7zObrfJ5XS0fMMAAADAZcrLy7VlyxZ98cUXkm2U\n1e20GYTMAAC0QT6fIY/XJ5fTwXgCXDXTNJWTk6OMjAzt37/fX7fJVJj9vNzx1ym+R7ycHZy1vkdi\nfBSfRQAAUKvJv1rXqPPXPz8lQJ2grSotLdWmTZu0bdu2f6xi7mRtT20JITMAAG1IQUm5snOLdOhY\nmQzDlN1uU2J8lFKS4tTNHW51e2hlDMPQ7t27lZGRoR9//LHasYiICI0dO1b9bhyiT7fnyzTNWt5F\nstlsSkmKC3S7AAAAwBVOnjypjRs3aseOHfL5fP46G/c1L0JmAADaiH2HS5SZVT3sMwxTuXmlOphf\nprTUBCX3cVvYIVqLqqoq7dixQxs3blRhYWG1Y7GxsRo/frxuvvlmOZ0XVy6npeqKz94lNptNaakJ\n/CMHAAAAWtTRo0eVkZGh3bt3V7tPdTgcGj58uCZMmKA5/992CztsWwiZAQBoAwpKymsN+aSL4w4y\ns/Lljgol7EOtKisrtW3bNm3evFmlpaXVjsXHxys9PV2DBw+W3V597EVyH7fcUaE1rKKPVkpSLJ85\nAAAAtAjTNLV//35lZGQoJyen2jGXy6WRI0dq7Nixio6OtqjDtouQGQCANiA7t6jOcQXSxRuu7Nwi\nAj9c4ezZs9qyZYu2bNmiioqKaseuvfZapaen64YbbqjzkcJu7nB1c4czDxwAAAAtzjRN7dmzRxkZ\nGTpy5Ei1Y506ddKYMWM0atQohYdX/12I2d7Nh5AZAIBWzuczdOhYWYPOPXSsTD6fQfgHSdKpU6f8\nm594vd5qx2688Ualp6fr2muvbdR7Ohx2hfH5AgAAQAuoqqrSzp07tXHjRhUUFFQ71rlzZ40fP14j\nRoxQhw4dLOqw/SBkBgCglfN4fTKMulcxX2IYpjxeHyFgO3fixAllZGRo586dMgzDX7fZbBoyZIgm\nTJighIQECzsEAAAAaufxePTll19q06ZNOn36dLVj3bt3V3p6uoYMGSKHw2FRh+0PITMAAK2cy+mQ\n3W5rUNBst9vkcnKj1V798MMP2rBhg7Kzs6vVQ0JCNGLECI0fP16xsbEWdQcAAADUrby8XFu2bNEX\nX3yh8vLyaseuueYaTZw4UQMGDKhzzBsCg5AZAIBWzuGwKzE+Srl5pfWemxgfxaiMdsY0TeXk5GjD\nhg06cOBAtWOhoaFKS0vTmDFjFBkZaVGHAAAAQN1Onz6tzZs3a9u2bfJ4PNWOJScnKz09XUlJSYTL\nFiJkBgCgDUhJitPB/LI6N/+z2WxKSYprwa5gJcMwtHv3bmVkZOjHH3+sdiwyMlJjx47VyJEj1bFj\nR4s6BAAAAOp28uRJbdy4UTt27JDP5/PXbTabBg0apPT0dPXs2dPCDnEJITMAAG1AN3e40lITlJmV\nX2PQbLPZlJaaoG7u8BpejbakqqpKO3bs0MaNG1VYWFjtWGxsrCZMmKDhw4fL6XRa1CEAAABQt6NH\njyojI0O7d++u9vtNSEiIhg8frvHjx6tLly4WdoifImQGAKCNSO7jljsqVNm5RTp0rEyGYcputykx\nPlopSbEEzG1cZWWltm7dqs2bN6usrKzasYSEBKWnp2vQoEGy2xmXAgAAgOBjmqb279+vjIwM5eTk\nVDvmcrk0atQojRkzRtHR0RZ1iLoQMgMA0IZ0c4ermztcPp8hj9cnl9PBDOY27uzZs/riiy+UmZmp\nioqKaseuvfZaTZw4UcnJye1qPh2ffwAAWp/1z0+xugVYxDRN7dmzRxkZGTpy5Ei1Y506ddKYMWOU\nlpamsLAwaxoMsMm/Wteo84P1/xVCZgAA2iCHw64wwrU2raSkRJs2bdKXX34pr9db7diNN96o9PR0\nXXvttRZ1Z42CkvIaVvJHKSUpjpX8AAAAQaaqqko7d+7Uxo0bVVBQUO1Y586dNX78eI0YMUIdOnSw\nqEM0BiEzAABAK3L8+HFt3LhRO3fulGEY/rrdbteQIUM0fvx4JSQkWNihNfYdLrliJrlhmMrNK9XB\n/DKlpSYouY/bwg4BAAAgSR6PR19++aU2bdqk06dPVzvWvXt3paena8iQIXI4HBZ1iKYgZAYAAGgF\nDh8+rIyMDGVnZ1erO51OjRgxQuPGjVNsbKxF3VmroKS81k0vpYuPYGZm5csdFcqKZgAAAIuUl5dr\ny5Yt+uKLL1ReXl7tWJ8+fZSenq4BAwa0qzFvbQkhMwAAQJAyTVN///vflZGRoQMHDlQ7FhoaqtGj\nR+vWW29VZGSkRR0Gh+zcoloD5ktM01R2bhEhMwAAQAs7ffq0Nm/erG3btsnj8VQ7lpycrPT0dCUl\nJREut3KEzAAAAEHGMAxlZWUpIyNDeXl51Y5FRkZq7NixGjlypDp27GhRh8HD5zN06FhZg849dKxM\nPp/BZoAAAAAt4OTJk9q4caN27Nghn8/nr9tsNg0aNEjp6enq2bOnhR2iOREyAwAABImqqipt375d\nn332mQoLC6sdi42N1YQJEzR8+HA5nU6LOgw+Hq9PhlH3KuZLDMOUx+tjU0wAAIAAOnr0qDIyMrR7\n9+5qT5uFhIRo+PDhGj9+vLp06WJhhwgEQmYAAACLVVZWauvWrdq8ebPKyqqvyk1ISFB6eroGDRok\nu51w9KdcTofsdluDgma73SaXkw1kAAAAmptpmtq/f78yMjKUk5NT7ZjL5dKoUaM0ZswYRUdHW9Qh\nAo2QGQAAwCJnz57VF198oczMTFVUVFQ7lpSUpPT0dCUnJzOfrg4Oh12J8VHKzSut99zE+ChGZQAA\nADQj0zS1Z88eZWRk6MiRI9WORURE6NZbb1VaWprCwsKsaRAthpAZAACghZ09e1Z//vOftW3bNnm9\n3mrHBgwYoPT0dCUmJlrUXeuTkhSng/lldW7+Z7PZlJIU14JdAQAAtF2maWrXrl1av369Tp48We2Y\n2+3WuHHjNGLECHXo0MGiDtHSCJkBAABaSFVVlTIzM/WnP/1J58+f99ftdruGDBmiCRMmKD4+3sIO\nW6du7nClpSYoMyu/xqDZZrMpLTVB3dzhFnQHAADQthw+fFhr1qzR4cOHq9V79Oih9PR0DR48WA4H\nI8raG0JmAACAADNNU99++63++Mc/VtvQz+l0asSIERo3bpxiY2Mt7LD1S+7jljsqVNm5RTp0rEyG\nYcputykxPlopSbEEzAAAAFfp9OnT+uijj7Rz585q9T59+mjixIm68cYbGfPWjhEyAwAABFB+fr5W\nr16t/fv3V6sPGzZMU6dOVUxMjEWdtT3d3OHq5g6Xz2fI4/XJ5XQwgxkAAOAqeTwebdy4UZ999lm1\nUW9du3bVz3/+c8Llq7T++SlWt9AsCJkBAAAC4MyZM/rkk0/05ZdfVhvh0KdPH02fPl29e/e2rrk2\nzuGwK4xwGQAA4KqYpqkdO3Zo7dq1Ki39xybLYWFhuv322zVq1CiFhBAt4iI+CQAAAM3I6/Xqiy++\n0J///GdVVlb66507d9bdd9+tQYMGsdIDAAAAQe3gwYNavXq1jh496q/Z7XaNGjVKkydPVng4o8hQ\nHSEzAABAMzBNU7t379aHH36o4uJif93lcik9PV3jxo2T0+m0sEMAAACgbsXFxfroo4/0zTffVKsn\nJydr2rRp6t69u0WdIdgRMgMAAFylvLw8rVq1Srm5uf6azWbT8OHDNWXKFEVHR1vYHQAAAFA3j8ej\nDRs2aNOmTaqqqvLXu3fvrp///Oe64YYbLOwOrQEhMwAAQBOdP39en3zyibZs2VJt7nJSUpKmTZum\nXr16WdgdAAAAUDfTNLVnzx6tWrVKp0+f9tfDw8M1efJkjRw5Ug6Hw8IO0VoQMgMAADSSaZr6+uuv\ntWbNGp05c8Zfj42N1d13362BAwcydxkAAABBraioSB988IH27t3rr9ntdo0ePVq33367wsLCLOwO\nrQ0hMwAAQCMUFRVpw4YN2r9/v78WEhKiiRMnasKECcxdBgAAQFDzer3661//qr1791YbjdG3b1/N\nmDGDuctoEkJmAACABvB4PNq8ebP+9re/KTIy0l9PTk7Wfffdp7i4OAu7AwAAAOq3b98+LV68WKdO\nnVJMTIwkKTIyUtOmTdOQIUN4Gg9NRsgMAABQB9M0lZ2drVWrVunQoUP+ekxMjKZPn66bbrqJm3EA\nAAAEtdOnT2v16tXKysryz1622WxKS0vTlClT1LFjR4s7RGtHyAwAAFCL4uJiffDBB/ruu+/8Nbvd\nrgkTJmjSpElyuVwWdgcAAADUzefz6fPPP9ef/vQneTwefz0hIUFPP/20evbsaWF3aEsImQEAAH6i\nqqpKGzdu1IYNG+T1ev313r17a9KkSRo1apSF3QEAAAD1y83N1Xvvvafjx4/7a+Hh4frnf/5nDRo0\niIAZzYqQGQAA4DL79+/Xu+++q8LCQn8tIiJC06ZNU0REBKMxAAAAENTKy8u1evVq7dixo1p9xIgR\nuuuuu5SXl2dRZ2jLCJkBAAAkVVZW6sMPP9TWrVv9tUtz6u644w6FhYUpJyfHwg4BAACAumVlZem9\n997T2bNn/bWEhATNmDFDiYmJFnaGto6QGQAAtHv79u3TO++8498ERbo4GmPGjBnq1auXhZ0BAAAA\n9Ttz5ozef/99ZWVl+WuhoaG64447NHr0aNntdgu7Q3tAyAwAANqtiooKrVmzRn/729/8NafTqalT\np+rWW2/lZhwAAABBzTRNff311/rggw9UXl7ur99www26//77FRMTY2F3aE8ImQEAQLuUnZ2tlStX\nqqyszF9LSkrSrFmz1KVLFws7AwAAAOpXWlqqlStX6ttvv/XXwsLCdM8992jYsGHsJYIWRcgMAADa\nlXPnzumDDz7Q119/7a+5XC7dddddGjVqFDfjAAAACGqmaWr79u1avXq1zp8/76+npKRo5syZioqK\nsrA7tFeEzAAAoNn5fIY8Xp9cToccjsCOnGjMtb755hu9//771TZC6d+/vx544AG53e6A9gkAAIDg\nNflX6xp1/vrnp1hynVOnTundd9/Vvn37/LXw8HDdd999Gjx4MAsmYBlCZgAA0GwKSsqVnVukQ8fK\nZBim7HabEuOjlJIUp27ucMuuVdtGKNOmTdOIESO4GQcAAEBQM01T27Zt04cffqjKykp/ffDgwbr3\n3nsVERFhYXcAITMAAGgm+w6XKDMrX6Zp+muGYSo3r1QH88uUlpqg5D7Ns1q4odcyTVM7d+7UqlWr\n2AgFAAAArVJxcbFWrFih/fv3+2uRkZGaMWOGBg4caGFnwD8QMgMAgKtWUFJ+Reh7OdM0lZmVL3dU\n6FWvaG7otZy2C9r054+u2Ahl+vTpGjp0KKuXAQAAEPS++OILffzxx7pw4YK/NmzYMN1zzz0KD2/e\nJwWBq0HIDAAArlp2blGtoe8lpmkqO7foqkPmhlyr4ESB/ndRhpwVh/21m266STNmzGAjFAAAALQa\nq1at8v93dHS0Zs6cqQEDBljYEVAzQmYAAHBVfD5Dh46VNejcQ8fK5PMZTd4MsL5reSo9yj2Yq9On\nT0vqqCjZFNHp4kYogwYNavDq5ZbcuBAAAACoz4gRI/Tzn/9cYWFhVxxr7GaC//eRvs3VFuAXFCHz\n6tWrtWzZMhUUFKh///76zW9+o5tuuqnW87OysvTcc8/p+++/V+fOnTV16lTNnz9fISFB8e0AANCu\neLw+GUbdK4svMQxTHq9PYU0Mbuu61okTJ/TD4R/kM3z/r2LTwIGDdf/M6Q3eCKUlNy4EAAAA6tO5\nc2fNmjVL/fv3t7oVoE6Wp7Iff/yxfvvb32rhwoW64YYb9O677+qRRx7RunXrFB8ff8X5eXl5mjNn\njoYMGaJXXnlFP/zwg373u9+poqJCzzzzjAXfAQAA7ZvL6ZDdbmtQ0Gy32+RyOpr1WpWVlTpw4IDK\nyv6xwrmD06mkvkl69JHRDV6J3JDNBFnTDAAAgJb0X//1XwoNDbW6DaBelofML7/8su6991499thj\nkqSbb75Z6enpevvtt/Vv//ZvV5y/YcMGmaapl19+WS6XSzfffLMKCwu1cuVKQmYAACzgcNiVGB+l\n3LzSes9NjI+6qvETP73WyZMndejgoctWL0tdunRRYmKi+l8T2+BrNXQzwZSekjuyQ43nMGIDAAAA\nzS1QAfN/fbtI+rb+8y5ZPX1JQPpA22FpyHz06FEdP35co0eP9tdCQkKUlpambdu21fgar9erkJAQ\nuVwufy0qKkoVFRW6cOGCOnSo+Rc/AAAQOClJcTqYX1bnhnw2m00pSXHNcq2cH4qVe+CAiktK/PUO\nHTooKSlJnTt3bvS1Grpx4cHj568ImRmxAQAAAKC9s3SZzZEjR2Sz2dSrV69q9YSEBOXl5dX4y94d\nd9whh8Oh5557TmVlZfr222+1YsUKjRs3joAZAACLdHOHKy01odaN9Ww2m9JSE5oldC0+8YNyv9lQ\nLWDuEhenQYMG+QPmxlyrMRsXHi/xyHfZqI59h0v04ZaDys0r9Y/wuDRi48MtB7XvcEltbwUAAAAA\nbYalK5nPnTsnSQoPr/5LYHh4uAzDUEVFxRXHevbsqV//+tf6z//8Ty1dulSSlJycrP/5n/9pch85\nOTlNfi3ajvPnz0vi8wA+C6iOz0PD2SWl9JQOHj+v4yUeGaZkt0k93KG6tkdH2T2FyskpbPL7X7hw\nQZs2bdLOnTslSYajkxwRPZVwbYpiYjqrovxck65VecHQqVOnG3RuVVWVzp6rUE5OjkrOXFDmt3W/\n7uPPT+t0UUytIzbQul36+yEY8HcUJH5moTo+D7gcn4fm11J/loG4TlPuYfjstF3NdU9rach8aaVy\nbaue7PYrF1qvWbNG//Ef/6F7771XEydOVGFhoRYtWqRHH31Ub7/9tpxOZ0B7BgAAtXNHdpA7soN8\nhilvlSlniE0Oe80/5xujoKBAa9asUXFxsb92ba8umjp1ojpFRF7VtZwhNtltUgP2LZTdJoU4Ll7j\n4PGKBr3/weMVhMwAAABB7v8+0jeg7+/1evXZZ5+pY95Ofy0sLEyTJ0/W9ddfH9BrAy3B0pA5IiJC\nklReXq7OnTv76+Xl5XI4HOrYseMVr3nzzTeVlpam3/72t/5acnKybrvtNq1fv1533XVXo/vo379/\n45tHm3PpX+X4PIDPAi7H58Fapmlq27Zt+uMf/yifz6eYmBiFhITozjvv1JgxY2r9h+rGOnY2rEEb\nF3YKOa9O4WHq2/c6bfn7d4qOvvJe5acqDJv69r2OzQDboJycHFVUNOwfGwKNv6Mg8TML1fF5wOX4\nPFiroKBAb775pvLz8xUTEyNJuv766zV79mxFR0c3wxUONOrsmvK2+vDZabua657W0pC5V69eMk1T\neXl56tmzp7+en5+v3r171/iaEydO6M4776xW69Onj6Kjo3Xw4MFAtgsAAFpQRUWF3nnnHWVlZflr\nPXr00Ny5c9WjR49mvVZDNy68tkeYJMnj9flnMNfHMEx5vD6FETIDAAC0O9u3b9f7778vj8cjSQoJ\nCdFdd92lW2+9tdkWTADBwNKQuXfv3urevbs2b96sm2++WdLFxwcyMzM1evToWl+ze/fuarWjR4+q\ntLS0WlANAABaryNHjuiNN95QyWWb+91yyy2aPn16QEZjXdq4MDMrv8ag+dJmgnbPxTnPLqdDdrut\nQUGz3W6Ty+lo9p4BAAAQvDwej9577z3t2LHDX+vSpYseffRR8iu0SZaGzJI0d+5c/fd//7ciIiKU\nmpqqd98N5JbIAAAgAElEQVR9V6WlpZo9e7YkKS8vT6dOnVJKSook6fHHH9fTTz+tf//3f9ekSZNU\nVFSkV199VT179tSUKVOs/FYAAMBVMk1TmzZt0scffyzDMCRJoaGheuCBBzR48OCAXju5j1vuqFBl\n5xbp0LEyGYYpu92mxPhopSTFqps73L+ZoMNhV2J8VINGbCTGRzEqAwAAoB3Jz8/XG2+8oZMnT/pr\nQ4cO1YwZMxQaGmphZ0DgWB4yz5gxQxcuXNCKFSu0YsUK9evXT2+99ZYSEhIkSYsXL9batWv984PS\n09MVEhKixYsX65NPPlFsbKxGjBihp59+WmFhYVZ+KwAA4CqcPXtWb7/9tvbu3euv9erVS48++qhi\nY2NbpIdu7nB1c4fL5zPk8frkcjpqDYgbOmIjJSkuUO0CAAAgiJimqb/85S9as2aNqqqqJEkdOnTQ\nfffdp+HDhwdsPMb65xu36PJSxgY0J8tDZkl68MEH9eCDD9Z47Nlnn9Wzzz5brTZ27FiNHTu2BToD\nAAAt4cCBA1q2bJlKS/+xMnjs2LG68847FRLS8rcrDoe93hnKDR2x0c0dHqg2AQAAECRq20/k0Ucf\nVffu3S3sDGgZQREyAwCA9skwDH366af69NNP/UFteHi4HnzwQQ0YMMDi7urXkBEbAAAAaNsOHz6s\npUuXVttPZOTIkbrnnnsCsp8IEIwImQEAgCVKS0u1bNkyHThwwF9LSkrSnDlzFBMTY2FnjdOYERsA\nAABoO6zcT+Rq/Z8BT6p///5Wt4E2hJAZAAC0uL1792r58uU6d+6cpIujJW677TbdfvvtsttbZ0Db\nkBEbAAAAaBvOnj2r5cuXa9++ff5a7969NXfu3BbbTwQIJoTMAACgxVRVVWnt2rXatGmTvxYZGak5\nc+aoX79+FnYGAAAANMz+/fu1bNkylZWV+Wvjxo3T1KlTLdlPBAgGfPIBAECLKC4u1ptvvqkjR474\na8nJyXrooYcUERFhXWMWYbwGAABA61LbfiIPPfSQbrzxRou7C6zJv1rXqPPXPz8lQJ0gWBEyAwCA\ngMvKytKKFSt0/vx5SZLdbtfUqVM1fvx42Ww2i7trWQUl5TVsFBillKQ4NgoEAAAIUqWlpVq6dKly\nc3P9tda4nwgQKITMAAAgYLxer1avXq2tW7f6a263W4888oj69OnTbNdpLauC9x0uUWZWvn/liyQZ\nhqncvFIdzC9TWmqCkvu4LewQAAAAP/Xdd99p+fLlKi8vl3RxP5FJkyZp0qRJTdpPhFXBaIsImQEA\nQEAUFBTozTffVH5+vr82cOBAzZo1S2FhYc1zjVa0KrigpPyKgPlypmkqMytf7qjQoOsdAACgPaqq\nqtLHH3+szZs3+2tRUVGaM2eOrrvuOgs7A4IPITMAAGh2O3bs0MqVK3XhwgVJUkhIiKZNm6ZRo0Y1\n23iM1rYqODu3qNaA+RLTNJWdW0TIDAAAYLGSkhK98cYb7CcCNBAhMwAAaDZVVVVatWpVtfEYXbt2\n1dy5c9WzZ89mu05rWxXs8xk6dKys/hMlHTpWJp/PCOqxHwAAAG3Z3r17tWzZMlVUVEi6uJ/InXfe\nqXHjxrW7/USAhiJkBgAAzeLUqVN6/fXXq632GDp0qGbMmKHQ0NBmvVZrWxXs8fpkGHX3e4lhmPJ4\nfQojZAYAAGhRpmnq008/1Z/+9Cf/vWYg9hMB2iJCZgAAcNVycnK0dOlSnTt3TtLF8RjTp0/XLbfc\n0uyrPVrjqmCX0yG73dagoNlut8nldLRAVwAAALikoqJCy5Yt0969e/215ORkzZkzR+Hh1i9aAIId\nITMAAGgy0zSVkZGhdevW+Vd7xMTEaP78+erdu3dArtkaVwU7HHYlxkcpN6+03nMT46MsD8UBAADa\nk7y8PL322msqLi72126//XZNmjRJdjv3ZUBDEDIDAIAmOX/+vJYvX67s7Gx/rV+/fnrkkUcCshmK\nz2fI4/UpxG5rlauCU5LidDC/rM4xHzabTSlJcS3YFQAAQPu2fft2rVy5Ul6vV5IUFhamhx9+WDfe\neONVv/c9qxbUWO/4TzWff35n+lVfE7AKITMAAGi0Y8eO6bXXXlNhYaG/NnHiRN1xxx3NvtqjoKRc\n2blFOnSsTIZhym63qdJTJZ/PVMfQum9lgmlVcDd3uNJSE2rdsNBmsyktNSEoZkgDAAC0dTVtWJ2Q\nkKAFCxYoNjbWws6A1omQGQAANMquXbv0hz/8QRcuXJAkhYaG6uGHH1ZKSkqzX2vf4ZIrQlnDMFXl\nM3TkxBl1d3dSTKSrxtcG46rg5D5uuaNCrwjNE+OjlZIUS8AMAADQAkpLS/Xaa6/phx9+8NeGDx+u\nGTNmqEOHDhZ2BrRehMwAAKBBTNPU+vXr9emnn/prPXr00IIFC9SlS5dmv15BSXmtq37DQp3q7g7X\niZJzCu3guGJFczCvCu7mDlc3d7h//IfL6Qia1dYAAABt3ZEjR7RkyRKVll7cK8PhcOjee+8NyIbV\nbcn656dY3QKCHCEzAACol8fj0fLly7V7925/bfDgwZo1a5ZcrppXEl+t7NyiOucXx0SGytXBIYfj\nHzOaW9OqYIfDbvmGhAAAAO3Jzp07tWLFCv/85ejoaM2fP1/XXHONxZ0BrR8hMwAAqFNJSYkWL16s\n/Px8f23KlCmaOHFiwFZ7+HyGDh0rq/e8sFCn7HabHpmcrCrDZFUwAAAArmCaptatW6cNGzb4a717\n99aCBQsUHR1tYWfVsVoYrRkhMwAAqFVubq5ee+01nTt3TpLkcrk0Z86cgMxfvpzH65Nh1L6K+XKG\nYarKMBUW6gxoTwAAAGh9KisrtWzZMn377bf+2tChQ/XAAw/I6eT+EWguhMwAAKBGX375pd577z35\nfD5Jktvt1uOPP674+PiAX9vldPhHYNTHbrfJ5XQEvCcAAAC0LsXFxXr11Vd1/PhxSRf37bjzzjs1\nfvx45i8DzYyQGQAAVGMYhlavXq0tW7b4a0lJSZo3b54iIiJapAeHw67E+Cjl5pXWe25ifBQjMgAA\nAFDNgQMH9Nprr6m8vFySFBoaqjlz5mjAgAEWdwa0TYTMAADAr6KiQm+88YZycnL8tZEjR2r69OkK\nCWnZ24aUpDgdzC+rc/M/m82mlKS4FuwKAAAAwW7r1q16//33ZRiGJCk2NlaPP/64evToYXFnQNtF\nyAwAACRJBQUFevXVV1VYWChJstvtmj59ukaNGmXJ44Td3OFKS01QZlZ+jUGzzWZTWmqCurnDW7w3\nAAAABB+fz6fVq1crMzPTX7vuuus0b948hYdzzwgEEiEzAADQ3r179eabb6qyslKSFBYWpnnz5qlf\nv36W9pXcxy13VKiyc4t06FiZDMOU3W5TYny0UpJiCZgBAAAgSSovL9frr7+u/fv3+2tpaWm65557\n5HCwfwcQaITMAAC0Y6ZpavPmzfrwww/9q4W7d++uxx9/XHFxwTGGops7XN3c4fL5DHm8PrmcDmYw\nAwAAwO/48eN69dVXVVxcLOniE3n33XefRo4caWlfq6cvsfT6QEsiZAYAoJ3yer1auXKltm/f7q/d\neOONeuSRRxQaGmphZzVzOOwKI1wGAADAZb799lstW7bM/0ReeHi45s+fr759+1rcGdC+EDIDABDE\nArV698yZM1qyZIkOHz7sr02YMEFTp06V3U6QCwAAgKaZ/Kt1jTp//fNTmnQd0zT12Wef6eOPP/Y/\nkdejRw89/vjjio2NbdJ7Amg6QmYAAIJQQUl5DXOIo5SSFHfVc4h//PFHLV68WKdPn5YkhYSE6IEH\nHtCwYcOao3UAAAAgoLxer9555x199dVX/lpKSooefvjhoHwiD2gPCJkBAAgy+w6XKDMr378iQ5IM\nw1RuXqkO5pcpLTVByX3cTXrvXbt26e2335bX65UkRUZG6rHHHtM111zTLL0DAAAAgVRaWqolS5bo\nyJEj/tptt92mO+64QzabzbrGgHaOkBkAgCBSUFJ+RcB8OdM0lZmVL3dUaKNWNJumqfXr1+vTTz/1\n13r16qUFCxYoJibmqvsGAAAAAu3IkSNasmSJSktLJUlOp1OzZ8/WkCFDLO4MACEzAABBJDu3qNaA\n+RLTNJWdW9TgkNnj8Wj58uXavXu3vzZkyBDNnj1bTqfzqvoFAAAAWsLOnTu1YsUK/xN50dHReuyx\nx9SrVy+LOwMgETIDAGCpyzf2k6RDx8oa9LpDx8rk8xn1bgZYUlKixYsXKz8/31+bOnWq0tPTeZwQ\nAAAAjdbYjf2ulmmaWrdunTZs2OCvXXPNNVqwYIGioqJatBcAtSNkBgDAAjVt7NezSyeVV3jVMbT+\nH8+GYcrj9SmsjpD54MGDeu2113T27FlJksvl0pw5c5SSktJs3wcAAAAQKJWVlXrrrbeUnZ3trw0b\nNkz3338/T+QBQYaQGQCAFlbbxn4/nDijH06cUXd3uGIiXXW+h91u869+rslf//pXrVy5Uj6fT5Lk\ndrv1+OOPKz4+vnm+CQAAACCASkpK9Morr+j48eOSJJvNprvuukvjxo3jiTwgCBEyAwDQgura2M9u\nsykizKnjxecU2sFR54rmxPioGkdlmKaptWvXKiMjw1/r27ev5s2bp06dOjXPNwEAAAAE0JEjR/TK\nK6/4n8gLDQ3V3LlzdcMNN1jcGYDaEDIDANCC6tvYzx0VqjPlF1Ry5rwSQiNqPMdmsyklKe6Kutfr\n1dtvv61du3b5a7fccovuvfdehYTwIx8AAADBb/fu3Vq2bJl/g7/Y2FgtXLhQ3bt3t7gzAHXhN04A\nAFqIz2fUu7FfWKhTPWLDdaKkXKZpXvEooM1mU1pqgrq5w6vVz549q8WLF+vw4cP+8+6++26NHTuW\nxwkBAAAQ9EzT1KZNm/TRRx/5F2UkJiZqwYIFioioefEFgOBByAwAQAvxeH0yjNpXMV8SExkqVweH\nenePVF7hOf/GgInx0UpJir0iYC4oKNDLL7+s4uJiSZLT6dScOXM0cODAgHwfAAAAQHMyDEPvv/++\ntm7d6q8NHjxYDz74IBv8Aa0EITMAAC3E5XTIbrc1KGjuFNZBt918jaSL4bTL6ahxBvOBAwe0ZMkS\nVVRUSJIiIiK0cOFC9e7du1l7BwAAAJpi/fNT6jxeWVmpN954Q/v27fPXJk6cqClTpvBEHtCKEDID\nANBCHA67EuOjlJtXWu+5l2/sF1ZDuCxJX331lf7whz/I5/NJkrp3764nnnhCbre7+ZoGAAAAAqS0\ntFQvv/yy8vPzJUl2u13333+/RowYYXFnABqLkBkAgBaUkhSng/lldW7+V9vGfpeYpqmMjAytXbvW\nX+vXr5/mzZunsLCwZu0XAAAACIRjx47p5Zdf1unTpyVJoaGhmj9/vvr3729xZwCagpAZAIAW1M0d\nrrTUBGVm5dcYNNe2sd8lhmHovffe07Zt2/y1m2++WTNnzlRICD/WAQAAEPy+//57LVmyRJWVlZKk\nmJgYPfnkk+rRo4fFnQFoKn4bBQCghSX3ccsdFars3CIdOlZW78Z+l3g8Hr3xxhvau3evvzZ58mRN\nmjSJeXUAAABoFXbs2KEVK1b4R7717NlTCxcuVHR0tMWdAbgahMwAAFigmztc3dzh8vmMOjf2u+TM\nmTN65ZVXdPToUUkX59U98MADuvnmm1uqZQAAAKDejfxqY5qmNmzYoHXr1vlrycnJevTRRxUaGtpc\n7QGwCCEzAAAWcjjstW7sd0lBQYEWLVqkkpISSZLL5dL8+fN1/fXXt0SLAAAAwFWpaeTbiBEjNHPm\nTDkcDgs7A9BcCJkBAAhiubm5Wrx4sSoqKiRJUVFReuKJJ9SzZ0+LOwMAAADqx8g3oH0gZAYAIEhl\nZWVp2bJlqqqqkiT16NFDTzzxhDp37mxxZwAAAED9ahr5NmvWLA0fPtzizgA0N0JmAACC0JYtW7Rq\n1SqZpilJuu666zR//nyFhYVZ3BkAAABQv8LCQi1atEhFRUWSpNDQUM2fP1/9+/e3uDMAgUDIDABA\nEDFNU+vWrdOGDRv8tSFDhujBBx9USAg/tgEAABD8jh49qpdffllnz56VdHHk25NPPqmEhASLOwMQ\nKPy2CgBAkPD5fHrnnXe0fft2f23cuHG6++67mVcHAACAVmHfvn16/fXX5fF4JEldu3bVU089Jbfb\nbXFnAAKJkBkAgCDg8Xj0+uuva9++ff7atGnTNHbsWAu7AgAAABpu+/btWrFihQzDkCT16dNHCxcu\nVHh4uMWdAQg0QmYAACz20w1RHA6HHnroIQ0ZMsTizgAAAID6maapjIwMrV271l8bMGCA5s6dqw4d\nOljYGYCWQsgMAICFatoQZcGCBerXr5/FnQEAAAD1MwxDq1atUmZmpr92yy23aMaMGbLb7dY1BqBF\nETIDAGCRn26IEhkZqSeffFI9e/a0uDMAAACgfl6vV2+99ZaysrL8tcmTJ2vSpEnsKQK0M4TMAABY\nICcnR0uWLKm2IcqTTz6p2NhYizsDAAAA6nf+/HktXrxYBw4ckCTZbDbNnDlTt9xyi8WdAbACITMA\nAC1s165deuutt+Tz+SRJvXv31hNPPKFOnTpZ3BkAAABQvzNnzmjRokXKy8uTJDmdTs2dO1cpKSkW\ndwbAKoTMAAC0oMzMTH3wwQcyTVOSlJycrHnz5snlclncGQAAAFC/oqIivfjiiyouLpYkhYWF6bHH\nHlNSUpLFnQGwEiEzAAAtwDRN/fnPf9Ynn3zirw0dOlSzZ8+Ww+GwsDMAAACgYfLz8/XSSy/pzJkz\nkqTo6Gg99dRT6tGjh8WdAbAaITMAAAFmmqbWrFmjzz///OLXsilt9Bjd8/O7CJgBAAAQ1Cb/at1P\nKv8s/b8pb8erpHnPf13t6Prnp7RMYwCCCiEzAAABZBiG3nnnHf3tb39Tla2jPI5YJVybolOOnnpj\n3V4lxkcpJSlO3dzhVrcKAAAAAECTEDIDABAgXq9XS5cu1Z49e+Sxx+i8M17XXnutunfvLkkyDFO5\neaU6mF+mtNQEJfdxW9wxAAAAAACNR8gMAEAAVFZWasmSJfr+++9VZeuoSme8+vXrp7i4uCvONU1T\nmVn5ckeFsqIZAAAAQePLL7+0ugUArQQhMwAAzay8vFyLFi3SkSNHJElVHbrq+uRkde7cudbXmKap\n7NwiQuYm8PkMebw+uZwOORx2q9sBAABoEz777DN9+OGHUqfbrG6lTblyxnXdmHGN1oKQGQCAZlRa\nWqoXX3xRJ06ckCS5Qjuq94ARioiMrPe1h46VyeczCEobqKCkXNm5RTp0rEyGYcputzHjGgAA4CqZ\npqm1a9cqIyPD6lYAtCKEzAAANJPCwkK9+OKLKikpkSRFRERo3oKF2phV2qDXG4Ypj9ensFYQMlu9\nenjf4RJlZuXLNE1/jRnXAAAAV8cwDL3//vvaunWr1a00K1YPA4FHyAwAQDPIz8/XSy+9pDNnzkiS\nOnfurF/84heKjY2Tfc/Flbb1sdttcjkdgW71qgTD6uGCkvIrAubLMeMaAACg8aqqqrR8+XLt2rXL\nX5s2bZpe2lBuYVcAWovgXyoFAECQO3TokJ577jl/wNytWzc988wz6tq1qxwOuxLjoxr0PonxUUE9\nKmPf4RJ9uOWgcvNK/aH5pdXDH245qH2HS1qkj+zcoloD5ksuzbgGAABA/S5cuKDFixf7A2abzabZ\ns2dr7NixFncGoLVgJTMAAFdh3759WrJkibxerySpV69eeuKJJxQREeE/JyUpTgfzy+oMRm02m1KS\n4gLeb1MFy+phn8/QoWNlDTqXGdcAAAD1q6io0CuvvKJDhw5JkkJCQvTII49o4MCBFncGoDXhty4A\nAJpo165devXVV/0Bc9++ffXLX/6yWsAsSd3c4UpLTZDNZqvxfWw2m9JSE4J6tEOwrB72eH0NGj0i\n/WPGNQAAAGp25swZPf/88/6A2eVy6YknniBgBtBorGQGAKAJtm3bppUrV/qD1wEDBujRRx+V0+ms\n8fzkPm65o0JrmGccrZSk2KAOmINp9bDL6ZDdbmszM64BAACsUlJSohdffFGFhYWSpPDwcD355JPq\n3bu3tY0BaJUImQEAaKSNGzfqo48+8n89dOhQzZ49Ww5H3YFmN3e4urnD5fMZ8nh9cjkdrWKUQ1NW\nD4cF6Pu6NOM6N6+03nODfcY1AACAVU6cOKEXX3xRpaUX76mio6P11FNPqUePHlecu/75KS3dHoBW\niJAZAIAGMk1TH3/8sTZu3OivjR49WtOnT691FEZNHA57wELYQAi21cNtYcY1AACAVY4cOaJFixap\nvLxckhQXF6df/OIXio2NtbgzAK1Z6/kNFwAACxmGoXfffbdawDx58uRGB8yt0aXVww3REquH28KM\nawAAACvs379fv//97/0Bc0JCgp555hkCZgBXjZXMAADUo6qqSkuXLtU333zjr91zzz0aM2aMhV21\nrGBbPdyaZ1wDAABY4fvvv9fmzZtVVVUlSUpMTNTChQsVFhZmcWcA2gJCZgAA6nDhwgWtWrVKJSUl\nkiS73a7Zs2dr2LBhFnfWsi6tHs7Myq8xaLZi9XBrnXENAADQ0rKzs7V27VpFRV18Oi05OVnz5s2T\ny+WyuLP2hxnXaKsImQEAqMX58+f1zjvv6Mcff1RMTIxCQkL06KOPKiUlxerWLBGsq4db24xrAACA\nlrRly5Zqm1YPGjRIDz/8sEJCiIQANB/+RgEAWC4YV6KWl5frpZde0o8//ihJcrlcevzxx3XddddZ\n3Jm1WD0MAADau8m/Wteo861cubpx48ZqAfMtt9yiGTNmyG5vX/dvrB4GAo+QGQBgmYKS8hpWxUYp\nJSnO0pm6Z8+e1QsvvKBjx45Jkjp27Khf/vKX6t27t2U9BRtWDwMAAAQv0zT16aefav369f7aiBEj\nNHPmzDa/aTUAaxAyAwAsse9wyRXzfQ3DVG5eqQ7mlyktNUHJfdwt3ldpaaleeOEFFRQUSJLCw8M1\na9YsAmYAAAC0CqZpau3atcrIyPDX0tLSlJaWRsAMIGAImQEALa6gpLzWDeSkizfGmVn5ckeFtuiK\n5lOnTun3v/+9ioqKJElRUVG6/fbbFRcX12I9AAAAAE1lmqbWrFmjzz//3F+bOnUqCyYABBzPuQIA\nWlx2blGtAfMlpmkqO7eohTqSiouL9dxzz/kD5piYGP3Lv/wLATMAAABaBdM09d5771ULmO+55x5N\nnDjRwq4AtBeEzACAFuXzGTp0rKxB5x46ViafzwhwR9LJkyf1u9/9TiUlJZKk2NhY/frXv1aXLl0C\nfm0AAADgahmGoRUrVmjr1q3+2owZMzRmzBgLuwLQnjAuAwDQojxenwyj7lXMlxiGKY/XF9AN5o4f\nP64XXnhBZ86ckSR17dpVTz/9tGJiYgJ2TQAAAKC5+Hw+LV++XF9//bUkyWazadasWbr55pst7gxA\ne0LIDABoUS6nQ3a7rUFBs91uk8vpCFgveXl5euGFF1ReXi5J6tGjh55++mlFRkYG7JoAAABAc6mq\nqtLSpUu1e/duSZLdbtfDDz+sIUOGWNwZgPaGkBkA0KIcDrsS46OUm1da77mJ8VFyBGgV8w8//KBF\nixapoqJCktSzZ0/94he/UKdOnQJyvUDx+Qx5vD65nI6A/VkBAAAg+Hi9Xr3++uv67rvvJEkOh0Nz\n587VwIEDLe6sdvesWtCo81dPXxKgTgA0t6AImVevXq1ly5apoKBA/fv3129+8xvddNNNtZ5/6tQp\n/e///q/+8pe/yDAMDR48WP/6r/+qnj17tmDXAICmSkmK08H8sjo3/7PZbEpJCsymewcPHtTLL7+s\nyspKSVLv3r311FNPKSws7IpzfYYpb5Upn+//Z+/uo6Ku8/6Pv2YGBBkBaUBRUFTClUxZzVbXbhaz\n1qzMbtS1stQW0TQV9Wqvva6uc53O7+y17bWFd2gGmZpWluVdZmanG8vatFxN0ywRU7kRRRRQEISZ\n7+8PL77pegMUzHcGn49z9pzmzWeaV+d8d2BefPh8PT5V4hYWl2tndpFy8kvl8Riy222KjwlXUkKU\nol1Oq+MBAACgCVVVVWnBggXau3evJCkgIEATJkxQjx49NGTG2is8c99Fk3XpQ5soJYCrieWfllev\nXq1nnnlGQ4cOVUZGhsLCwpSSkqL8/PxLrq+pqdHYsWO1e/du/c///I/+9re/KTc3V+PGjVNNTY2X\n0wMAfo5ol1PJvWNls9ku+XWbzabk3rFNUpZ+//33mjNnjlkwX3vttZo2bdpFBXNhcbk2bjmod748\npvVfFSlzzbfauOWgCovLGz1TQ+05UKyVn+xXdm6JeeyIx2MoO7dEKz/Zrz0Hii1OCAAAgKZSWVmp\njIwMs2AODAzUk08+qR49elicDMDVzPKdzBkZGRo5cqQmTpwoSerfv7/uvPNOLVmyRE8//fRF61ev\nXq3Dhw/r/fffV9u2bSVJMTExSk1N1b59+3Tdddd5NT8A4Ofp3sUlV3jwJXbjtlZSQmSTFMy7d+/W\nggULzF9KduvWTRMnTlRQUNAF6/YcKNam7XkyDEO1R0fXlrj780qV3DtW3bu4Gj1ffRQWl5vZLsUw\nDG3anidXeDA7mgEAAJqZiooKZWRk6MCBA5KkoKAgTZ48WQkJCRYnA3C1s7RkPnTokAoKCjRgwABz\nFhAQoOTkZG3evPmSz/noo490yy23mAWzdK4k+Oyzz5o8LwCgcUW7nIp2Ob1yrvA333yjrKwsud1u\nSdL111+vCRMmKDAw8IJ1vl7i7swuuuIxI9K5jDuziyiZAQAAmoBVx0uUl5dr9uzZOnz4sCSpZcuW\nmjJlirp06WJJHgA4n6XHZRw8eFA2m01xcXEXzGNjY5Wbm3vJD9E//PCDOnfurHnz5unmm29Wjx49\nNH78eB05csRbsQEAjczhsCskOLDJCuZt27YpMzPTLJiTkpL0xBNPXFQwSw0rcb3N7fYoJ7+0Xmtz\n8ox1cK8AACAASURBVEvldnuaOBEAAAC8oaysTM8//7xZMDudTk2fPp2CGYDPsLRkPn36tKRzb47n\nczqd8ng8qqiouOg5J06c0MqVK/X555/rr3/9q5577jnt379f48ePl8fDh2kAwIW+/PJLLVy40Pwe\n0adPH40fP14BARf/MY+vl7hV1W7zDOa6eDyGqqrdTZwIAAAATa2kpETPP/+8CgoKJEmhoaGaMWOG\nOnbsaHEyAPiJpcdl1O4Uu9yNn+z2izvwmpoa1dTUaOHChWrVqpWkczufhw0bpg8++EB33nlng3PU\nHpaPq9uZM2ckcT2Aa6E52bZtm9atW2c+TkpKUv/+/bVv38V31ZakyrMenThx8oJZ7fnNJSUlF63f\ntXuvglt47/e1bo+hstIS1adnttukAznZctgv/T0WPw/vDzhf7fXgC7gmIfEehQtxPTQPJSUlWrJk\niU6ePPczalhYmO69916VlZWprKysUV7Dl68RX87mz3h/wPka62daS3cyh4aGSjp3rtD5ysvL5XA4\n1LJly4ueExISoqSkJLNgls6dqxkWFnbZ0gAAcPXZsmXLBQXzDTfcoPvvv/+Sv8CsFRhgU307Wbvt\n3Hpvcthtau8KqnuhpPauIApmAAAAP1ZcXKxFixaZBXN4eLjGjh2rqKgoi5MBwMUs3ckcFxcnwzCU\nm5urDh06mPO8vDx16tTpks/p2LGjqqurL5rX1NRcdkd0XRITE3/W89C81P4Gj+sBXAv+b+PGjdqy\nZYsiIiIkSbfddptGjBhRr+8T+adClJ37067l2h3MrVu3vmBdQofWur57p8YLXU8Rbcq18pP9Vzw3\n2maz6c5br+XGf02A9wecb+/evZc83s0KXJOQeI/Chbge/FthYaEWL14su92uiIgIRUVFadq0aXK5\nXPV4dsM24Hn1GtnVsOVcv02D9wecr7F+prV0J3OnTp3Url07ffjhh+asurpamzZt0m9/+9tLPufm\nm2/W9u3bVVT00w2XvvrqK1VUVKh3795NnhkA4LsMw9C7776rVatWmbNBgwbVu2CWpKSEqDrX2mw2\nJSVYs4Mk2uVUcu/Yy2a02WxK7h1LwQwAAOCn8vPz9fzzz6u09Ny9QqKjo/Vv//Zv9SyYAcAalu5k\nlqRx48bpL3/5i0JDQ9W7d2+9+uqrKikp0ejRoyVJubm5OnHihJKSkiRJo0eP1sqVKzVu3Dg9+eST\nOnPmjJ577jndcMMNuummm6z8TwEAeJHb7VFVtVtBgQ45HHYZhqHVq1dr48aN5pohQ4bo7rvvbtBf\nutSWuJu2511yt7AvlLjdu7jkCg/Wzuwi5eSXyuMxZLfbFB/TWkkJkRTMAAAAPmbIjLUNWt/+9ClJ\nUkxMjNLS0hQWFtYUsQCg0VheMj/88MM6e/asli5dqqVLl6pbt25atGiRYmNjJUkvvPCC1qxZY27l\nv+aaa7R8+XL97//+r/793/9dAQEBGjhwoP7zP//Tyv8MAICXFBaXX1Sudmkfrrx9X+nrf3xkrnvg\ngQc0aNCgn/Ua55e4//y/G+35Wokb7XIq2uW8qGwHAABA89CxY0elpaXJ6bT+Z8/GsuIPC6yOAKCJ\nWF4yS9KYMWM0ZsyYS37t2Wef1bPPPnvBrEOHDpo3b54XkgEAfMmeA8UX7TD2eAy9v2mbjhw5qpb2\nCAV5TmrEiBEaOHDgL3qt2hI3JrRC1TWGel6f6JMlrsNhV4gP5gIAAMDP16VLF02ePFkhISENfu66\n9KEXzTiDF0BT84mSGQCAuhQWl198hIVhaF92to4ePSpJOhMYowcGD9LAgQMa7XUddpscLWw+WTAD\nAACgeZo6daqCg4OtjgEA9UbJDADwCzuziy4omA3D0A8//HDBjWC7du2qoIjOVsQDAAAAGg0FMwB/\nQ8kMAPB5brdHOfml5mPDY2jv93tVXFwsSbLJpl91+5WioqKUk18qt9vDzmMAAAAAALyET+AAAJ9X\nVe2Wx3NuF7PhMfTd3u9+KphtNiUmJioqKkrSuTOaq6rdlmUFAAAAAOBqw05mAIDPCwp0yG63qabG\nrb3ffacTJ09Kkuw2m667rrsirokw19rtNgUFOqyKCgAAAADAVYedzAAAn+dw2NUpupW+O79gttvV\n/frrLyiYJSk+JpyjMgAAAAAA8CJ2MgMAfN7Zs2e188sNOnny3JEZdrtd3bt3V+vWrS9YZ7PZlJQQ\nZUVEAAAAAACuWmz1AgD4tKqqKs2fP18Hs79Vy+p82e12Xd/9+ksWzMm9YxXtclqUFAAAAACAqxM7\nmQEAPquqqkrz5s3Tvn37JElhgRV6aNTvVFbTSjn5pfJ4DNntNsXHtFZSQiQFMwAAAHzOF198YXUE\nAGhylMwAAJ9UVVWljIwMZWdnS5KCgoI0efJkJSQkSJLcbo+qqt0KCnRwBjMAAAB80ubNm/Xqq6+q\n/f89/t3vfqeHHnpINpvN0lwA0NgomQEAPqeyslJz585VTk6OJCk4OFhTpkxRfHy8ucbhsCuEchkA\nAAA+6tNPP9Xrr79uPk5OTtbIkSMpmAE0S5TMAACfUllZqTlz5ujAgQOSzhXMU6dOVZcuXSxOBgAA\nANTPpk2btHz5cvPxbbfdphEjRlAwA2i2KJkBAD7jzJkzmjNnjn788UdJUsuWLZWWlqZOnTpZGwwA\nAACop48++kgrVqwwH99+++0aNmwYBTOAZo2SGQDgEyoqKjRnzhwdPHhQkhQSEqK0tDTFxcVZGwwA\nAACopw8//FBvvfWW+fj3v/+9HnjgAQpmAM0eJTMAwHLl5eWaM2eODh06JOlcwTxt2jR17NjR4mQA\nAABA/XzwwQdauXKl+XjQoEG6//77KZgBXBUomQEAliovL9esWbOUm5srSXI6nZo2bZo6dOhgcTIA\nAACgfjZu3KhVq1aZj++66y7de++9FMwArhqUzAAAy1yqYJ4+fbpiY2MtTgYAAADUz4YNG7RmzRrz\n8T333KN77rmHghnAVYWSGQBgidOnT2vWrFnKy8uTJIWGhmratGmKiYmxOBkAAABQP++9957Wrl1r\nPh4yZIjuueceCxMBgDUomQEAXnepgnn69Olq3769xckAAACA+vnXgvnee+/V3XffbWEiALAOJTMA\nwKtOnz6tmTNnKi+/QIYcCmsVQsEMAAAAnzdkxtqLh63uMv/xxY9r9OLHP61Zlz7UG7EAwCdQMgMA\nvObUqVN6Nn2+DhfZVR10nVoEttCvkpL07eGzsgeVK9rltDoiAAAAAABoILvVAQAAV4dTp07p/z2X\npZwTTlU7wtUisIV69Oyp4JYtlZ1bopWf7NeeA8VWxwQAAAAAAA1EyQwAaHKnTp3Ss8/P0+GSFpKk\nFoGB6tGzp0JCQsw1hmFo0/Y8FRaXWxUTAAAAAAD8DJTMAIAmderUKc2cOVOHj7slXbpgrmUYhnZm\nF3k7IgAAAHBF69atszoCAPg0SmYAQJOpLZjzC46o2hGmFoGB6tkz6ZIFc62c/FK53R4vpgQAAAAu\nb926dXr33XetjgEAPo0b/wGAn3G7Paqqdiso0CGHw3d/V1hbMBcUFMiQQy0CW6hnzyS1DGl5xed5\nPIaqqt0K8eH/NgAAANTPkBlrG7R+XfrQJkry81AwA0D9UDIDgJ8oLC7Xzuwi5eSXyuMxZLfbFB8T\nrqSEKEW7nFbHu8D5BbMkhYc61S3p1woKDq7zuXa7TUGBjqaOCAAAAFyWYRh69913KZgBoJ7YJgYA\nfmDPgWKt/GS/snNL5PEYks7t+M3OLdHKT/Zrz4FiixP+pKysTOnp6T8VzOHheuqpf9P1CdH1en58\nTLhP79AGAABA82YYxkU7mB988EELEwGA7+NTPAD4uMLicm3anifDMC75dcMwtGl7ngqLy72c7GJl\nZWWaOXOmjhw5IulcwTxjxgy1bdtWSQlRstlsV3y+zWZTUkKUN6ICAAAAF6ktmNevX2/OHnzwQf3+\n97+3MBUA+D5KZgDwcTuziy5bMNcyDEM7s4u8lOjS/rVgbt26tVkwS1K0y6nk3rGXLZptNpuSe8f6\n3NEfAAAAuDoYhqF33nmHghkAfgbOZAYAH+Z2e5STX1qvtTn5pXK7PZYcNXGpgnn69OlmwVyrexeX\nXOHBlzhburWSEiIpmAEAAGCJ2oL5vffeM2cUzABQf5TMAODDqqrd5hnMdfF4DFVVuxXi5ZL5cjuY\n27Rpc8n10S6nol1Oud0eVVW7FRTo4AxmAAAAWOZSBfOwYcN0xx13XLBuXfpQb0cDAL9ByQwAPiwo\n0CG73Vavotlutyko0OGFVD9paMF8PofD7vVCHAAAADhffQtmAMCV8ekeAHyYw2FXfEx4vdbGx4R7\ndUfwLymYAQAAAKtRMANA46FkBgAfl5QQddmb5dWy2WxKSojyUiIKZgAAAPg3CmYAaFw/q2Q+c+aM\nKisrL5ofO3ZMZ86c+cWhAAA/iXY5ldw79rJFs81mU3LvWK/dNI+CGQAAAP6MghkAGl+DS+YvvvhC\nv/3tb9WvX78L3pAlKTQ0VCtXrmy0cACAc7p3cenBAdcqoUNr2e3nyma73aaEDhF6cMC16t7F5ZUc\nFMwAAADwZxTMANA0GnzjvzfffFPLly/X8ePHtWTJEiUlJenbb7/V4cOHFRERoX379jVFTgC46kW7\nnIp2OeV2e1RV7VZQoIMzmAEAAODT1qUPtTqCiYIZAJpOg0vm+Ph4JSYmSpJ69eqladOmKTY2VqdO\nndLevXt1//33N3pIAMBPHA67QrxYLksUzAAAAPBvFMwA0LQaXDK3aNHC/OdWrVrppptu0pgxYxoz\nEwDAh1AwAwAAwJ9RMANA02twybxmzRpJ0g033KCkpKSLSgaPxyO73bs77AAATYOCGQAAAP7sUgXz\n8OHDdfvtt1uYCgCanwaXzB07dlRJSYn+/ve/a//+/WrTpo127NihG264QTfccINWrFihSZMmNUVW\nAGg2rDpXuSEomAEAAFBryIy1DVrvC2cxUzADgPc0uGSeMGGCbrjhBklSZWWlvvnmG/3zn//UW2+9\npaefflpVVVWUzABwGYXF5dqZXaSc/FJ5PIbsdpviY8KVlBClaJfT6ngmCmYAAAD4MwpmAPCuBpfM\ntQWzJAUHB6tfv37q16+fJMntduuZZ55ptHAA0JzsOVCsTdvzZBiGOfN4DGXnlmh/XqmSe8eqexeX\nhQnPoWAGAACAP6NgBgDva9S/0XY4HBo61Po/iQEAX1NYXH5RwXw+wzC0aXueCovLvZzsQmVlZUpP\nT6dgBgAAgF8yDENr166lYAYAL2vQTuaamhq9/vrr2rJli5xOp/r166e77rpLLVu2NNf06dOn0UMC\ngL/bmV102YK5lmEY2pldZNmxGbUFc2FhoSQKZgAAAPiX2oJ5w4YN5oyCGQC8o0E7mf/7v/9bn376\nqVq0aKE9e/bo6aef1uDBg7V169amygcAfs/t9ignv7Rea3PyS+V2e5o40cUomAEAAODPKJgBwFoN\n2skcERGhv/71r+bjY8eOaf369Xrqqac0f/589ejRo9EDAoC/q6p2y+O58i7mWh6Poapqt0IcjXqa\n0RVRMAMAAMCfUTADgPUa1GKcfyyGJLVp00Zjx47V66+/rqVLlzZqMABoLoICHbLbbfVaa7fbFBTo\naOJEP6FgBgAAgD+jYAYA39CgkvmOO+5QVlbWRfPY2FjFxcU1WigAaE4cDrviY8LrtTY+JlwOL+1i\npmAGAACAP6NgBgDf0aDjMjZs2KCXXnpJy5Yt029+8xvzf8XFxRfc0Co/P18xMTGNHhYA/FVSQpT2\n55Ve8eZ/NptNSQlRXslDwQwAAAB/RsEMAL6lQdvlTpw4odWrV2vGjBlq0aKFMjMzNXjwYD366KP6\n8ccftXr1ah09elTp6elNlRcA/FK0y6nk3rGy2S59bIbNZlNy71hFu5xNnoWCGQAAAP6MghkAfE+D\ndjJ369ZNO3bsUHJysu677z5JUm5urrZs2aItW7Zo5syZ+o//+A/Z7XbNnDmzSQIDgL/q3sUlV3iw\ndmYXKSe/VB6PIbvdpviY1kpKiPRKwVxaWqqZM2c2acHsdntUVe1WUKDDa0d/AAAA4OrQ2AXzkBlr\nG7R+XfrQn/U6ANDcNahkfvjhh3XkyBFt375dgwcPliR16NBBHTp00PDhwyVJOTk5mjZtWuMnBYBm\nINrlVLTLaUkR29QFc2Fx+SUK9HAlJUR5pUAHAABA0/GFcpUdzADguxpUMktSu3bt1K5du8t+PT4+\nXlOmTPlFoQCguXM47Arx4i7fpi6Y9xwo1qbteRecOe3xGMrOLdH+vFIl945V9y6uRnktAAAAXH0o\nmAHAtzVJw8GbPAD4Dm/sYP7Xgvl8hmFo0/Y8FRaXN8rrAQAA4OpCwQwAvo/DMgGgGfPGGcw7s4su\nWzDXMgxDO7OLGu01AQAAcHWgYAYA/0DJDADNlLdu8peTX1qvtTn5pXK7PY322gAAAGjeKJgBwH9Q\nMgNAM+SNglmSqqrd8niuvIu5lsdjqKra3aivDwAAgOaJghkA/AslMwA0M94qmCUpKNAhu91Wr7V2\nu01BgY5GzwAAAIDmhYIZAPwPJTMANCOlpaVKT083C+aIiIgmK5glyeGwKz4mvF5r42PC5XDwbQcA\nAACXZxiG1qxZQ8EMAH6GT/sA0EzUFsxHjx6VdK5gnj59epMVzLWSEqJks115N7PNZlNSQlST5gAA\nAIB/qy2Y33//fXM2YsQICmYA8AOUzADQDFhVMEtStMup5N6xly2abTabknvHKtrlbPIsAAAA8E+X\nK5gHDhxoYSoAQH0FWB0AAPDLWFkw1+rexSVXeLB2ZhcpJ79UHo8hu92m+JjWSkqIpGAGAADAZVEw\nA4D/o2QGAD/mCwVzrWiXU9Eup9xuj6qq3QoKdHAGMwAAAK7I6oJ5XfpQr7wOADR3lMwA4Kd8qWA+\nn8NhVwjlMgAAAOpgdcEMAGg8tAAA4Id8tWAGAAAA6oOCGQCaF0pmAPAzFMwAAADwZxTMAND8cFwG\nAPiRkpISzZw5k4IZAAAAfskwDK1evVobN240ZxTMAOD/KJkBwE+UlJQoPT1dx44dk0TBDAAAAP9i\nGIZWrVqlDz74wJxRMANA80DJDAB+4OTJk0pPT1dRUZEkCmYAAAD4F8Mw9Pbbb+vDDz80ZxTMANB8\nUDIDgI87ceKE0tPTdfz4cUnSNddcoxkzZigyMtLiZAAAAEDdDMPQihUr9PHHH5uzkSNHasCAARam\nAgA0JkpmAPBhxcXFSk9PV3FxsSTJ5XJpxowZcrlcFicDAAAA6mYYht544w1t2rTJnD300ENKTk62\nLBMAoPFRMgOAjzp+/LjS09N14sQJSVJkZKSmT59OwQwAAAC/YBiGXn/9dX322WfmbNSoUbrlllss\nTAUAaAqUzADgg4qKipSenq6TJ09KkqKiojRjxgxFRERYnAwAAACom2EYevXVV/X5559Lkmw2m0aN\nGqWbb77Z4mQAgKZAyQwAPubYsWNKT09XSUmJJKlNmzaaPn06BTMAAAD8gmEYWrZsmb744gtJ5wrm\nxx57TP3797c4GQCgqVAyA4APOXr0qGbOnGkWzG3bttX06dPVunVri5MBAAAAdfN4PFq6dKm+/PJL\nSecK5jFjxqhfv34WJwMANCVKZgDwEYWFhUpPT1dZWZkkKTo6WtOnT1d4eLjFyQAAAIC6eTweLVmy\nRFu3bpV0rmAeO3as+vbta3EyAEBTo2QGAB9w5MgRzZw50yyY27Vrp+nTpyssLMziZAAAAEDdPB6P\nFi1apK+//lqSZLfb9fjjj+vGG2+0OBkAwBsomQHAYgUFBZo5c6ZOnTolSYqJidG0adMUGhpqcTIA\nAACgbm63W4sWLdK2bdsknSuYU1JSdMMNN1icDADgLZTMAGChvLw8zZo1S6dPn5YkxcbGatq0aWrV\nqpXFyQAAAIC6ud1uLVy4UNu3b5d0rmAeN26cevfubXEyAIA3UTIDgEVyc3M1a9YslZeXS5I6dOig\nadOmyel0WpwMAAAAqFtNTY0WLlyoHTt2SJIcDodSU1P161//2uJkAABvo2QGAAscPnxYs2bNUkVF\nhSQpLi5OU6dOpWAGAACAX6ipqVFWVpZ27twp6VzBPGHCBPXs2dPiZAAAK1AyA4CXHThwQBkZGWbB\n3KlTJ02dOlUhISEWJwMAAADqdvbsWWVmZmr37t2SpICAAE2YMEE9evSwOBkAwCqUzADgRd99950W\nLFigs2fPSpI6d+6sqVOnqmXLlhYnAwAAAOpWUVGh+fPna//+/ZLOFcwTJ05U9+7dLU4GALASJTMA\neMn27du1cOFCud1uSVJCQoKefPJJBQcHW5wMAAAAqFtZWZnmzp2r3NxcSVJQUJCeeOIJJSYmWpwM\nAGA1u9UBJGnFihUaNGiQkpKSNHLkSH3zzTf1fu68efPUrVu3JkwHAL/cF198oaysLLNg7tmzp6ZO\nnUrBDAAAAL9QXFys5557ziyYQ0JCNG3aNApmAIAkHyiZV69erWeeeUZDhw5VRkaGwsLClJKSovz8\n/Dqfu2/fPmVmZspms3khKQD8PB988IGWLl0qwzAkSX379tWECRMUGBhocTIAAACgboWFhXruued0\n7NgxSVJ4eLieeuopde7c2eJkAABfYXnJnJGRoZEjR2rixIm69dZb9cILL6h169ZasmTJFZ/n8Xj0\n9NNPy+VyeScoADSQYRhas2aNVq5cac6Sk5M1duxYORwOC5MBAAAA9XPo0CE999xzOnnypCQpMjJS\nf/rTn9S+fXuLkwEAfImlJfOhQ4dUUFCgAQMGmLOAgAAlJydr8+bNV3zu4sWLVVFRoVGjRjV1TABo\nMMMwtHz5cm3YsMGc3XXXXRo5ciR/fQEAAAC/sG/fPs2cOVOnT5+WJLVv315PPfWUIiMjLU4GAPA1\nlt747+DBg7LZbIqLi7tgHhsbq9zcXBmGccky5tChQ5o3b54WLVqkXbt2eSsuANSL2+3W4sWL9fXX\nX5uz4cOH6/bbb7cwFQAAAFB/u3btUlZWlqqrqyVJnTt31uTJk+V0Oi1OBgDwRZbuZK79bei/fpNy\nOp3yeDyqqKi45PP+67/+S/fff7969erV5BkBoCHOnj2rF154wSyYbTabHnvsMQpmAAAA+I2tW7dq\nwYIFZsGcmJioadOmUTADAC7L0p3MtTfButyfjtvtF3fgy5cvV25urjIzMxstx969exvt3wX/debM\nGUlcD/j510JlZaVef/11HTp0SNK5438efPBBXXPNNVxXfoz3BpyP6wHnq70efAHXJCTeo3Chn3s9\nfPXVV1q/fr35ODExUQMHDtSBAwcaNR+8i/cHnI/rAedrrJ9pLS2ZQ0NDJUnl5eW65pprzHl5ebkc\nDodatmx5wfrCwkI9//zz+tvf/qagoCC53W55PB5J5/483W63c9YpAEuUl5dr2bJlOnLkiCSpRYsW\nGjlypOLj4y1OBgAAANTNMAx99tln+vjjj81Zr169dO+9915yAxgAAOeztGSOi4uTYRjKzc1Vhw4d\nzHleXp46dep00fovv/xSFRUVmjJlirkLutb111+vSZMm6cknn2xwjsTExAY/B81P7W/wuB7Q0Gvh\nxIkTmj17tiorKxUREaGQkBBNnjxZXbp0acqY8BLeG3A+rgecb+/evZc93s3buCYh8R6FCzXkejAM\nQ2+//bZ27NihiIgISdLtt9+uYcOGsZGrmeD9AefjesD5GutnWktL5k6dOqldu3b68MMP1b9/f0lS\ndXW1Nm3apAEDBly0/rbbbtPbb799wezdd9/VkiVLtHLlSkVFRXklNwDUOnr0qGbNmqWTJ09KksLC\nwpSWlqaYmBiLkwEAAAB183g8WrZsmf7xj3+Ys6FDh2rw4MEUzACAerO0ZJakcePG6S9/+YtCQ0PV\nu3dvvfrqqyopKdHo0aMlSbm5uTpx4oSSkpIUHh6u8PDwC56/bds2SdJ1113n9ewArm6HDx/WnDlz\nzJuYRkZGKi0tjV94AQAAwC/U1NRo4cKF2rFjhzl76KGHlJycbF0oAIBfsrxkfvjhh3X27FktXbpU\nS5cuVbdu3bRo0SLFxsZKkl544QWtWbOGw8gB+JTs7GzNmzdPlZWVkqT27dtr6tSpat26tcXJAAAA\ngLpVVVVpwYIF5mdtu92uMWPGqG/fvhYnAwD4I8tLZkkaM2aMxowZc8mvPfvss3r22Wcv+9zRo0eb\nu54BwBu+/fZbZWZmqrq6WtK5o3+mTJkip9NpcTIAAACgbuXl5crIyNCPP/4oSQoMDFRqaqp69uxp\ncTIAgL/yiZIZAPzF119/rUWLFsnj8UiSunXrpokTJyooKMjiZAAAAEDdSktLNXv2bBUUFEiSgoOD\nNWnSJHXt2tXiZAAAf0bJDAD19Omnn2r58uUyDEOS1KtXL6WkpCgggLdSAAAA+L7jx49r1qxZOn78\nuCTJ6XRq6tSpiouLszgZAMDf0YwAQB0Mw9D777+vNWvWmLP+/fvr0Ucfld1utzAZAAAAUD8FBQWa\nPXu2SktLJUkRERGaOnWq2rVrZ3EyAEBzQMkMAFdgGIZWrVqlDz74wJwNHDhQw4cPl81mszAZAAAA\nUD8//vij5s6dq4qKCklSmzZtlJaWJpfLZXEyAEBzQckMAJfh8Xj06quv6osvvjBnQ4cO1eDBgymY\nAQAA4Bf27t2rBQsWqKqqSpLUoUMHTZkyRWFhYRYnAwA0J5TMAHAJNTU1eumll7R9+3ZzNnLkSA0Y\nMMDCVAAAAED9fffdd/r4449VU1MjSYqPj9eTTz6pkJAQi5MBAJobSmYA+Bdnz57VG2+8oRMnTkiS\n7Ha7xowZo759+1qcDAAAAKifHTt2aO3atWrdurUkqXv37powYYJatGhhcTIAQHNEyQwA56moqNDS\npUuVm5uriIgIBQQEaPz48erZs6fV0QAAAIB6+eijjy64aXWfPn00duxYBQRQAQAAmgbfYQDgmBq3\n0wAAIABJREFU/5SWlmrOnDnKzc2VJAUHB2vSpEnq2rWrxckAAACAuhmGoXXr1mn9+vXm7NZbb9VD\nDz0ku91uYTIAQHNHyQygybjdHlVVuxUU6JDD4ds/1B4/flyzZ89WUVGRJCkkJETTp09XXFycxckA\nAADgLUNmrG3Q+nXpQ5soScMZhqE333xTn3zyiTm75ZZb9PDDD3PTagBAk6NkBtDoCovLtTO7SDn5\npfJ4DNntNsXHhCspIUrRLqfV8S5SUFCg2bNnq7S0VJIUFhamxx57jIIZAAAAfsHtduuVV17R1q1b\nzdkdd9yhm2++mYIZAOAVlMwAGtWeA8XatD1PhmGYM4/HUHZuifbnlSq5d6y6d3FZmPBCBw8e1Ny5\nc1VeXi5JatOmje666y7zBikAAACAL6uurlZWVpZ27dolSbLZbHrkkUcUGRlpcTIAwNXEt/9+HYBf\nKSwuv6hgPp9hGNq0PU+FxeVeTnZp33//vWbOnGkWzLGxsXrqqacomAEAAOAXKisrNXfuXLNgdjgc\nSklJ0S233GJxMgDA1YaSGUCj2ZlddNmCuZZhGNqZXeSlRJf3zTffKCMjQ1VVVZKk+Ph4zZgxQ2Fh\nYRYnAwAAAOp26tQpzZw5U/v27ZMkBQYGatKkSerTp4/FyQAAVyOOywDQKNxuj3LyS+u1Nie/VG63\nx7KbAX755Zd65ZVXzEK8e/fumjBhglq0aGFJHgAAAKAhTp48qdmzZ6uwsFCS1LJlS02ePFnx8fEW\nJwMAXK0omQE0iqpqtzyeK+9iruXxGKqqdivEgpL5o48+0ooVK8zHffr00dixYxUQwNshAAAAfN+x\nY8c0a9YsnThxQpIUGhqqtLQ0xcbGWpwMAHA1o1UB0CiCAh2y2231KprtdpuCAh1eSPUTwzD07rvv\n6t133zVnt9xyix5++GHZ7ZwcBAAAAN+Xm5urOXPm6NSpU5Ikl8ultLQ0tWnTxuJkAICrHSUzgEbh\ncNgVHxOu7NySOtfGx4R79agMwzD05ptv6pNPPjFngwYN0v333y+bzea1HAAAAMDPtX//fs2bN09n\nzpyRJLVr105Tp05VRESExckAAKBkBtCIkhKitD+v9Io3/7PZbEpKiPJaJrfbraVLl2rLli3m7IEH\nHtCgQYO8lgEAAAD4Jfbs2aMFCxaourpakhQXF6cpU6aoVatWFicDAOAc/kYcQKOJdjmV3Dv2sruD\nbTabknvHKtrl9Eqe6upqZWZmmgWzzWbTqFGjKJgBAADgN7Zt26b58+ebBXPXrl01ffp0CmYAgE9h\nJzOARtW9i0uu8GDtzC5STn6pPB5DdrtN8TGtlZQQ6bWCubKyUvPnz9e+ffskSQ6HQ48//rj69Onj\nldcHAAAAfqnNmzfrtddeM/9SsGfPnkpNTVVgYKDFyQAAuBAlM4BGF+1yKtrllNvtUVW1W0GBDq+e\nwXz69GnNnTtXhw4dkiQFBgbqiSeeUPfu3b2WAQAAAP5nXfpQqyOYNm7cqFWrVpmP+/btq9GjR8vh\n8O4NtAEAqA9KZgBNxuGwK8SL5bIknTx5UnPmzNGRI0ckSS1bttSTTz6pa6+91qs5AAAAgJ/DMAyt\nXr1aGzduNGcDBgzQH/7wB25aDQDwWZTMAJqNY8eOafbs2SouLpYkhYaGaurUqerQoYPFyQAAAIC6\neTwevf7669q8ebM5u+eee3TPPfdQMAMAfBolM4BmIS8vT3PmzFFZWZkk6ZprrlFaWpratm1rcTIA\nAACgbjU1NVq8eLG2bdtmzkaMGKGBAwdamAoAgPqhZAbg93JycpSRkaEzZ85IkqKjo5WWlqaIiAiL\nkwEAAAB1O3v2rF588UXt2bNHkmSz2fTYY4+pf//+FicDAKB+KJkB+LU9e/ZowYIFqq6uliTFxcVp\n8uTJCg0NtTgZAAAAULeKigrNmzdPOTk5kqSAgAClpKSoV69eFicDAKD+KJkB+K1t27Zp0aJFcrvd\nkqSuXbtq0qRJCg4OtjgZAAAAULeysjLNmTNHeXl5kqSgoCBNnDhR3bp1szgZAAANQ8kMwC9t3rxZ\nr732mgzDkCT17NlTqampCgwMtDgZAAAAULfi4mLNnj1bx44dkySFhIRoypQp6ty5s8XJAABoOEpm\nAH5n48aNWrVqlfm4b9++Gj16tBwOh4WpAAAAgPo5cuSIZs+erZKSEklSeHi40tLS1L59e4uTAQDw\n81AyA/AbhmFozZo1ev/9981ZcnKyRo4cKZvNZmEyAAAAoH4OHTqkOXPmqLy8XJIUGRmpadOmKTIy\n0uJkAAD8fJTMAPyCx+PR8uXL9dlnn5mzu+++W0OGDKFgBgAAgF/Yt2+f5s+fr8rKSklS+/btlZaW\npvDwcIuTAQDwy1AyA/B5NTU1Wrx4sbZt22bOhg8frttvv93CVAAAAED97dq1S5mZmaqpqZEkdenS\nRU8++aScTqfFyQAA+OUomQH4tLNnzyozM1O7d++WJNlsNj322GPq37+/xckAAACA+tm6dauWLFki\nj8cjSUpMTNQTTzyhoKAgi5MBANA4KJkB+KyKigrNmzdPOTk5kqSAgAClpKSoV69eFicDAAAA6ueT\nTz7RG2+8YT7u3bu3/vjHPyoggI/jAIDmg+9qAHxSWVmZ5s6dq9zcXElSUFCQnnjiCSUmJlqcDAAA\nAKibYRh677339M4775izm266SaNGjZLdbrcwGQAAjY+SGYDPKS4u1uzZs3Xs2DFJUkhIiKZMmaLO\nnTtbnAwAAACom2EYevvtt/Xhhx+as9tvv13Dhg3jptUAgGaJkhmATyksLNTs2bN18uRJSVJ4eLjS\n0tLUvn17i5MBAAAAdfN4PFq2bJn+8Y9/mLOhQ4dq8ODBFMwAgGaLkhmAzzh06JDmzp2r06dPS5Ii\nIyM1bdo0RUZGWpwMAAAAqFt1dbVefvll7dixQ9K5m1aPHDlSycnJ1gYDAKCJUTID8An79u3T/Pnz\nVVlZKUlq37690tLSFB4ebnEyAAAAoG5VVVV64YUX9P3330uS7Ha7xo4dq9/85jcWJwMAoOlRMgOw\n3K5du5SVlaXq6mpJUufOnTV58mQ5nU6LkwEAAAB1Ky8vV0ZGhn788UdJUmBgoFJTU9WzZ0+LkwEA\n4B2UzAAstXXrVi1ZskQej0eSlJiYqCeeeEJBQUEWJwMAAADqVlJSojlz5qigoECSFBwcrEmTJqlr\n164WJwMAwHsomQFYZtOmTVq+fLn5uFevXkpJSVFAAG9NAAAA8H1FRUWaPXu2jh8/Lklq1aqVpk6d\nqo4dO1qcDAAA76LJAeB1hmFow4YNWrt2rTnr37+/Hn30UdntdguTAQAAAPVTUFCgWbNmqaysTJIU\nERGhtLQ0RUdHW5wMAADvo2QG4FUej0dvvvmmNm3aZM5uv/12DRs2TDabzbpgAAAAQD3t27dPCxYs\nUEVFhSSpTZs2SktLk8vlsjgZAADWoGQG4DWVlZV66aWXtHv3bnM2dOhQDR48mIIZAAAAfuHLL7/U\nsmXL5Ha7JUkdOnTQ1KlTFRoaanEyAACsQ8kMwCtKSko0b9485ebmSpLsdrsefvhh3XLLLRYnAwAA\nAOpmGIbWrVun9evXm7PExESNHz9eLVu2tDAZAADWo2QG0OTy8vKUkZGhkpISSefuuD1+/Hhdd911\nFicDAAAA6lZTU6NXXnlFX331lTm76aab9Mgjj8jhcFiYDAAA30DJDKBJ7d69W1lZWaqqqpJ07oYo\nkydPVkxMjMXJAAAAgLqVl5drwYIFys7ONmf33Xef7rzzTo58AwDg/1AyA2gShmHo008/1RtvvCHD\nMCRJcXFxmjRpksLDwy1OBwAAANTt6NGjmjdvno4dOyZJCggI0NixY9WnTx+LkwEA4FsomQE0uqqq\nKr322mvaunWrOUtKStIf//hHBQUFWZgMAAAAqJ/t27frlVdeUWVlpSSpVatWmjhxouLj4y1OBgCA\n76FkBtCoCgsLlZmZqYKCAnM2cOBADRs2THa73cJkAAAAQN1qamq0atUqffTRR+asbdu2mjx5sqKi\noixMBgCA76JkBtBovv76ay1btsw8f7lFixZ65JFH1K9fP4uTAQAAAHU7efKksrKydODAAXPWu3dv\nPfbYY2rZsqWFyQAA8G2UzAB+sZqaGr311lvatGmTOWvbtq0mTJig9u3bWxcMAAAAqKc9e/bo5Zdf\nVnl5uSTJbrdr2LBhuu2227jBHwAAdaBkBvCLFBcXKysrSwcPHjRnN954o0aNGqXg4GDrggEAAAD1\n4PF4tH79eq1fv968YXVERITGjRvH+csAANQTJTOAn+3bb7/VokWLVFFRIUlyOBwaMWKEfve737Hb\nAwAAAD7v1KlTevnll7V3715zdt111+nxxx9XaGiohckAAPAvlMwAGszj8eidd97Rhg0bzJnL5VJq\naqo6depkXTAAAACgnvbv36+XXnpJJSUlkiSbzaZ77rlHd911FzesBgCggSiZATRIWVmZXnrpJe3b\nt8+c9ejRQ2PHjpXT6bQwGQAAAFA3wzD04YcfatWqVfJ4PJKkVq1aKSUlRYmJiRanAwDAP1EyA6i3\nffv26aWXXlJZWZmkc7s97rvvPg0aNIjjMQAAAODzKioq9Morr+ibb74xZ/Hx8Ro3bpwiIiIsTAYA\ngH+jZAZQJ8MwtHHjRq1Zs8a8GUpYWJjGjRunrl27WpwOAAAAqFtubq5efPFFHT9+3Jzdcccduv/+\n++VwOCxMBgCA/6NkBnBF5eXlWrJkiXbt2mXOunbtqpSUFIWHh1uYDAAAAKibYRj6/PPP9cYbb6im\npkaSFBwcrDFjxqhXr14WpwMAoHmgZAZwWYcOHVJmZqaKi4vN2Z133qmhQ4dyMxQAAAD4vKqqKr3+\n+uvasmWLOevQoYNSU1PVpk0bC5MBANC8UDIDuIhhGPrss8+0YsUKc7dHSEiIxo4dq549e1qcDgAA\nAKjb0aNH9eKLL6qgoMCc3XzzzRo5cqQCAwMtTAYAQPNDyQzgAlVVVVq2bJm+/vprcxYXF6fU1FRF\nRkZamAwAAACon23btmnp0qWqqqqSJAUGBuqRRx7Rb3/7W4uTAQDQPFEyAzAdOXJEmZmZOnLkiDlL\nTk7W8OHDFRDA2wUAAAB8W01Njd5++2198skn5qxt27YaP368YmJiLEwGAEDzRmsEQJK0detWvfrq\nqzp79qwkKSgoSKNGjdJvfvMbi5MBAAAAdSsuLlZWVpYOHjxozvr06aNHH31UwcHB1gUDAOAqQMkM\nXOWqq6u1YsUKffbZZ+asXbt2Gj9+vNq1a2dhMgAAAKB+du/erZdfflkVFRWSJIfDoeHDhys5OVk2\nm83idAAANH+UzMBV7Pjx48rMzNThw4fNWd++ffXII48oKCjIwmQAAABA3Twej9555x1t2LDBnF1z\nzTVKTU1V586dLUwGAMDVhZIZuErt3LlTixcv1pkzZyRJAQEB+sMf/qBbbrmF3R4AAADweWVlZVq4\ncKF++OEHc3b99dfr8ccfl9PptDAZAABXH0pm4Crj8Xi0Zs0abdy40ZxFRkYqNTVVcXFxXsvhdntU\nVe1WUKBDDofda68LAAAA/5edna2srCyVlZVJkmw2m+69914NHjy4STZMDJmxtkHr16UPbfQMAAD4\nMkpm4CpSUlKihQsXKjs725wlJSVpzJgxCgkJ8UqGwuJy7cwuUk5+qTweQ3a7TfEx4UpKiFK0ix0n\nAAAAuDzDMPTBBx9ozZo18ng8kqTQ0FClpKSoW7duFqcDAODqRckMXCW+//57LVy4UKdOnZIk2e12\n3X///brjjju8djzGngPF2rQ9T4ZhmDOPx1B2bon255UquXesundxeSULAAAA/EtFRYUWL16sXbt2\nmbOEhASlpKSodevWFiYDAACUzEAzZxiGNmzYoHfeeccsd8PDwzVu3DglJCR4LUdhcflFBfO/5ty0\nPU+u8GB2NAMAAOAChw4dUmZmpoqLi83ZoEGDdN9998lu5+g1AACsRskMNGPl5eVatGiRdu/ebc5+\n9atfKSUlRWFhYV7NsjO76LIFcy3DMLQzu4iSGQAAAJLO/Xy4efNmvfnmm6qpqZEktWzZUmPHjlVS\nUpLF6QAAQC1KZqCZ+vHHH5WVlaUTJ06Ys7vuuktDhgzx+m4Pt9ujnPzSeq3NyS+V2+3hZoAAAABX\nuaqqKr322mvaunWrOevYsaPGjx+vyMhIC5MBAIB/RckMNDOGYWjTpk1666235Ha7JUlOp1OPP/64\nrr/+eksyVVW75fFceRdzLY/HUFW1WyGUzAAAAFetI0eOKDMzU0eOHDFnt956q0aMGKHAwEALkwEA\ngEuhZAaakcrKSi1dulT//Oc/zVmnTp2Umpoql8u6G+oFBTpkt9vqVTTb7TYFBTq8kAoAAAC+6Kuv\nvtKyZct09uxZSVKLFi00atQo9e3b1+JkAADgciiZgWYiPz9fmZmZOnr0qDkbMGCAhg0bpoAAa/+v\n7nDYFR8TruzckjrXxseEc1QGAADAVaimpkYrVqzQp59+as6io6M1YcIEtWvXzsJkAACgLpTMQDPw\n5Zdf6rXXXlN1dbUkKSgoSI899pj69OljcbKfJCVEaX9e6RVv/mez2ZSUEOXFVAAAAPAFx48fV1ZW\nlg4dOmTObrzxRj366KMKCgqyMBkAAKgPSmbAj1VXV+uNN97Q559/bs7at2+vCRMmqG3bthYmu1i0\ny6nk3rHatD3vkkWzzWZTcu9YRbucFqQDAACAVXbt2qXFixeroqJCkhQQEKARI0bo1ltvlc1mszgd\nAACoD0pmwE8VFRUpMzNTubm55qxfv3565JFH1KJFCwuTXV73Li65woO1M7tIOfml8ngM2e02xce0\nVlJCJAUzAADAVcTj8WjNmjXauHGjOXO5XBo/frzi4uIsTAYAABqKkhnwQzt27NCSJUtUWVkp6dxu\nj4ceekg33XSTz+/2iHY5Fe1yyu32qKraraBAB2cwAwAAXGVKS0v10ksvKTs725z17NlTY8aMkdPp\nexsP1qUPtToCAAA+jZIZ8CNut1urVq3Shx9+aM6ioqI0fvx4dejQwcJkDedw2BVCuQwAAHDV+eGH\nH7Rw4UKVlZVJOnds2n333adBgwb5/IYJAABwaZTMgJ8oKSlRVlaWcnJyzNmvf/1rjR49WiEhIRYm\nAwAAAOpmGIbef/99rV271rxHR1hYmMaNG6euXbtanA4AAPwSlMyAH9i7d68WLlyo06dPS5Lsdrse\nfPBBDRw4kN0eAAAA8Hnl5eVatGiRdu/ebc66du2qlJQUhYeHW5gMAAA0BkpmwId5PB699957evfd\nd83dHq1bt1Zqaqri4+MtTgcAAADU7eDBg8rMzNSJEyfM2eDBg3XvvffKbuf4NAAAmgNKZsBHnTp1\nSosWLdJ3331nzhITE/XHP/5RoaGhFiYDAAAA6mYYhjZt2qS33npLbrdbkhQSEqLHH39cPXr0sDgd\nAABoTD5RMq9YsUIvv/yyCgsLlZiYqD//+c/69a9/fdn127dv1+zZs7V3714FBwerf//++tOf/iSX\ny+XF1EDTycnJUVZWlkpKSiSduxnK3XffrbvvvpvdHgAAAPB5lZWVWrZsmbZt22bOOnXqpNTUVD63\nAQDQDFneVq1evVrPPPOMhg4dqoyMDIWFhSklJUX5+fmXXJ+Tk6OxY8cqNDRUM2fO1J///Gdt375d\nKSkp5m/HAX9lGIY++ugjPf/882bB7HQ6NWXKFA0ZMoSCGQAAAD6voKBAf/3rXy8omJOTk/XUU09R\nMAMA0ExZvpM5IyNDI0eO1MSJEyVJ/fv315133qklS5bo6aefvmj9a6+9pjZt2mju3LlyOBySpI4d\nO2r48OH64osvdOutt3o1P9BYzpw5o6VLl2r79u3mrEuXLkpNTVVERISFyQAAAID62bJli1599VVV\nV1dLkoKCgvToo4/qxhtvtDgZAABoSpaWzIcOHVJBQYEGDBhgzgICApScnKzNmzdf8jkJCQm69tpr\nzYJZkjp37ixJysvLa9rAQBPJy8tTZmamjh07Zs4GDhyoBx54QAEBlv8uCAAAALii6upqvfnmmxd8\njmvXrp3Gjx+vdu3aWZgMAAB4g6Xt1cGDB2Wz2RQXF3fBPDY2Vrm5uTIMQzab7YKvPfTQQxf9ez7+\n+GPZbDZ16dKlSfMCTeGLL77Q8uXLzd0ewcHBGj16tHr37m1xMgAAAKBuRUVFyszMVG5urjnr27ev\nHnnkEQUFBVmYDAAAeIulJfPp06clnTtz9nxOp1Mej0cVFRUXfe1fHTlyRH//+9/Vo0cP9evX72fl\n2Lt37896HpqXM2fOSPLe9XD27Fm999572rFjhzmLjo7W8OHD1bJlS65LC3n7WoBv43rA+bgecL7a\n68EXcE3i/7N353FRle3/wD/DsCjDDoILJkIUiIoCLqjJpqipqKhlmVu4ZJqpbWqpVJpWbhhqRimR\n9X1SWXLf8AE1UTQUizARl5BNRSEEZZk5vz/8cZ6ZQDaZGZbP+/XqVXPNfc65Zrybub3mvu8DaOcz\nKjU1FTExMXj06BGAxytThw0bBnd3d1y7dk1jeVBl/M4iZewPpIz9gZQ11JhWq0VmQRAAoNJs5Qo1\n3eQsOzsbU6dOBQCsW7euQXMjUqe8vDzs3LkTOTk5YszNzQ0vvvgi9PT0tJgZEREREVHN5HI5YmNj\n8euvv4oxc3NzvPTSS2jfvr0WMyMiIiJt0GqR2djYGABQVFQECwsLMV5UVASpVIrWrVs/8dgrV65g\nxowZUCgU2L59O2xtbeudh7Ozc72Ppeaj4hc8dfeHpKQk7Nq1CyUlJTA3N4eenh5effVV9OvXT63X\npdrTVF+gpoH9gZSxP5Cy1NRUFBcXazsNAOyT9JimPqPy8/MRFhaGq1evijeodnV1xdSpU2FoaKjW\na1Pt8TuLlLE/kDL2B1LWUGNarRaZO3XqBEEQkJGRgY4dO4rxW7duwc7O7onHJScnY8aMGTAxMcH2\n7dtVjqWGI5crUFImh4GeFFJp9bPKqWbl5eWIiopCbGysGLO2tsasWbOe6kcSIiIiInps5Du/1Kn9\n3rWj1JRJ85WamorvvvsOhYWFAB6vPh0zZgwGDx78xBWqRERE1PxptchsZ2eHdu3a4dixY+IszrKy\nMsTFxcHHx6fKY27duoWZM2fC2toa4eHhsLKy0mTKLUJOXhGS0+4gPbMACoUAHR0JHDqYwtWxDdpa\nVr9HNlXt3r17CAsLU9mXzs3NDVOmTEGrVq20mBkRERERUc0EQcCBAwewd+9ecdtDU1NTzJgxA46O\njlrOjoiIiLRNq0VmAJgxYwZWrFgBY2NjuLm5YceOHcjPz8eUKVMAABkZGbh37x5cXV0BACtXrkRR\nURGWL1+OzMxMZGZmiudq37492rRpo5XX0VykXMtDXNItceAIAAqFgLSMfFy9VQBvN1u42FtqMcOm\nJyUlBd999x2KiooAPJ7tMX78ePj4+HC2BxERERE1eg8ePMC2bduQkpIixpycnBAUFAQTExMtZkZE\nRESNhdaLzK+++ipKS0sRERGBiIgIODk5Ydu2beL2AZs3b0ZMTAxSU1NRXl6OkydPQi6X45133ql0\nrvfffx/Tpk3T9EtoNnLyiioVmJUJgoC4pFuwNG3FGc21oFAosG/fPhw4cEB8T83NzTFz5kzY29tr\nOTsiIiIioppdu3YN33zzDe7fvy/Ghg8fjhEjRtR4o3YiIiJqObReZAaAqVOnYurUqVU+t2rVKqxa\ntQoAoKuriz/++EODmbUsyWl3nlhgriAIApLT7rDIXIPCwkJ8++23uHz5shhzcXHB66+/DiMjIy1m\nRkRERERUM0EQ8N///he7du2CQqEAAMhkMrz++uvo2rWrlrMjIiKixqZRFJlJ++RyBdIzC2rVNj2z\nAHK5gjcDrEJ5eTni4uKwf/9+8c6cEokEI0eOxIsvvsjtMYiIiIio0UtPT0dkZCTS09PFWOfOnTFz\n5kxYWFhoMTMiIiJqrFhkJgBASZkcCkX1s5grKBQCSsrkMGSRWSQIAs6fP4/o6Gjk5eWJcWNjYwQF\nBcHZ2VmL2RERERER1ez27duIjo5GUlKSStzX1xdjx46Fri7/+khERERV4yiBAAAGelLo6EhqVWjW\n0ZHAQE+qgayahitXrmD37t24efOmStzDwwPjx4+HmZmZljIjIiIiIqpZYWEh9u3bhxMnTohbYwBA\nmzZtMH78ePEm7ERERERPwiIzAQCkUh04dDBFWkZ+jW0dOphyqwwAWVlZiIqKwu+//64Sd3R0xLhx\n42BnZ6edxIiIiIiIaqG0tBTHjh3D4cOH8ejRIzEuk8kwYsQIDBw4kLOXiYiIqFY4YiCRq2MbXL1V\nUO3N/yQSCVwd22gwq8YnPz8fe/bswenTp1Xeq3bt2iEwMBDdunXj3stERERE1GgpFAokJCRgz549\nyM//3yQTPT09DBo0CEOGDEHr1q21mCERERE1NSwyk6itpQzebraIS7pVZaFZIpHA280WbS1lWshO\n+x49eoTDhw/j6NGjKCsrE+MmJiYICAhA//79oaPDGd5ERERE1DgJgoCUlBRERkYiKytLjEskEnh6\neiIgIADm5uZazJCIiIiaKhaZSYWLvSUsTVshOe0O0jMLoFAI0NGRwKGDGVwdrVpkgVkul+PkyZPY\nt28fCgsLxbiBgQH8/f0xePBgGBgYaDFDIiIiIqLq3bx5E5GRkfjrr79U4i4uLggMDIStra2WMiMi\nIqLmgEVmqqStpQxtLWWQyxUoKZPDQE/aIvdgFgQBFy9eRFRUFG7fvi3GdXR08MILL2DEiBEwMTHR\nYoZEREREpGzv2lHaTqHRuXv3LmJiYnDu3DmVeMeOHTF27Fg4OztrKTMiIiJqTlhkpieSSnVg2AKL\nywCQnp6O3bt349q1ayrxHj16IDAwEDY2NlrKjIiIiIioZkVFRThw4ADi4uJQXl4uxi3l2q3OAAAg\nAElEQVQsLDB69Gj07t2b9xEhIiKiBsMiM5GSu3fv4uuvv8aFCxdU4vb29hg7diyeffZZLWVGRERE\nRFSzsrIyHDlyBAcPHkRxcbEYNzQ0xLBhw+Dj4wM9PT0tZkhERETNEYvMRAD++ecf7N+/H+fPn4ep\nqakYt7a2xpgxY9CzZ0/O9CAiIiKiRksQBCQnJyM2NlblZtS6urrw9vbGiy++CJms5d1fhYiIiDSD\nRWZq0UpKSnDs2DEcPnwYOTk5YtzIyAgjRozACy+8AF1d/m9CRERERI1XamoqIiMjcenSJQCAubk5\nAKB3794YNWoUrKystJkeERERtQCsnlGLpFAocPr0aezZswcFBQViXE9PDy+++CKGDBmCVq1aaTFD\nIiIiIqLq3bp1C1FRUUhJSVGJP/fccxg3bhw6deqkpcyIiIiopWGRmVoUQRDwxx9/ICoqCllZWWJc\nIpHAzc0N3t7e6Nu3rxYzJCIiIiKq3v3797Fnzx4kJCRAEAQxbm1tDX9/f4wcOZJbvREREZFGschM\nLcbNmzexe/duXLlyRSXetWtXBAYG4p9//tFSZkRERERENXv48CEOHz6MY8eOoaysTIybmZkhICAA\nZmZm0NHRYYGZiIiINI5FZmr27t69i5iYGJw7d04l/swzz2Ds2LFwcnICABaZiYiIiKhRKi8vx4kT\nJ7Bv3z4UFRWJ8VatWmHIkCHw8/ODgYEBUlNTtZglERERtWQsMlOzVVRUhAMHDuC///0v5HK5GLe0\ntMTo0aPRq1cvzvIgIiIiokZLEAQkJSUhOjoad+7cEeM6Ojrw8vLC8OHDYWxsrMUMiYiIiB5jkZma\nnbKyMhw/fhwHDx7Ew4cPxbihoSGGDx8OLy8v6OnpaTFDIiIiIqLqpaWlITIyEtevX1eJu7m5YcyY\nMbC2ttZSZkRERESVscjcBMnlCpSUyWGgJ4VUqqPtdBoNQRBw9uxZxMTE4P79+2JcV1cXvr6+GDZs\nGAwNDbWYIREREVHL89LPs+vUfufLW9SUSdOQk5ODqKgoJCcnq8QdHBwwbtw42NvbaykzIiJqrrKz\ns7FgwQL8+eefcHBwQHR09BPbfv7555DJZJg7dy4AYNWqVYiKioIgCAgLC0PPnj01lXaVdu3ahczM\nTMyfPx8AsGjRIqSkpGDv3r0Nep3ExERMnjwZkZGRcHFxadBzVyUzMxN+fn7YuHEj/P39ERcXh/Dw\ncISHh6v92rXFInMTkpNXhOS0O0jPLIBCIUBHRwKHDqZwdWyDtpYybaenVampqYiMjERGRoZKvE+f\nPhg1ahQsLS21lBkRERERUc3++ecf7N27F6dOnYJCoRDjNjY2CAwMhKurK7d6IyIitYiIiMBff/2F\nkJAQ2NjYPLHdpUuXcODAARw5cgQAcOXKFXz//feYNm0aBg0aBGdnZ02l/ERbtmyBr6+v+Fid353a\n/F729vbG9u3bsWvXLowfP15reShjkbmJSLmWh7ikWxAEQYwpFALSMvJx9VYBvN1s4WLf8gqpt27d\nQlRUFFJSUlTiTk5OGDt2LJ555hktZUZEREREVLOSkhIcPXoUR44cQUlJiRg3NjbGyJEjMWDAAEil\nUi1mSEREzV1+fj5sbW3h4+NTbbu1a9di4sSJMDAwEI+TSCQYPnw4unbtqolUSUlQUBCWLFmC0aNH\nN4ptYbnXQhOQk1dUqcCsTBAExCXdQk5eUZXPN0f3799HeHg4VqxYoVJg7tChA+bNm4f58+ezwExE\nREREjZZCocCJEyfw0UcfYe/evWKBWV9fH8OHD8eKFSvg5eXFAjMREamVr68vYmJikJaWBmdnZ8TE\nxFTZ7s8//0RiYiJefPFFAEBoaCgmT54MABg3bhwmT56MzMxMODk5ISIiAr6+vujVqxeSkpIAAEeP\nHsW4cePQs2dPeHt7IyQkBHK5XCWPsLAwLF26FB4eHujbty9CQ0Px4MEDvPvuu+jZsyd8fX2r3crD\n19cX2dnZ2LFjR6VZ1T/88AN8fX3h6uqKSZMm4dq1ayrP//rrr3jppZfg6uoKLy8vbNy4UWVlUX2d\nO3cOr732Gtzd3dG/f398+umnKC4uFp+fNGkSli1bhqCgILi6umLFihUAgOTkZLzyyivo0aMHAgIC\n8Oeff1Y6d//+/VFeXv7EPzNN40zmJiA57c4TC8wVBEFActqdZr9txsOHD3Hw4EEcP34cZWVlYtzM\nzAyjRo1C3759oaPD306IiIiIqHESBAGXLl1CVFQUcnJyxLhEIsGAAQMwYsQImJmZaTFDIiKqr/Pn\nz2PPnj149OiR1nJo1aoVAgIC4OHhUav2mzdvxvr163H9+nWsWbMGHTt2rLLd/v378fzzz8PW1hYA\nMH78eFhYWODTTz/F6tWr0a1bN7Htli1bsGzZMpSWlqJbt274+eefsXz5crz22mtYuHAhUlNTsXHj\nRmRmZuKLL74Qj9u6dSuGDBmCTZs24fDhwwgNDcW+ffvg6+uLLVu2YPv27Vi2bBk8PT3Rtm3bKl/L\n9OnT4eHhgddff12Mp6enIyYmBkuXLsWjR4/w2Wef4b333kNkZCQAICEhATNnzsTQoUMxb948XL9+\nHevWrUNBQQGWLl1aq/exKvHx8Zg9ezaGDRuGWbNmISsrC+vWrcOVK1fwww8/iO2ioqIwceJEBAUF\nwcTEBJmZmZg6dSrc3NywceNGXL9+HYsWLaq0PYdUKoWPjw8OHDjQKLbMYJG5kZPLFUjPLKhV2/TM\nAsjlimZ5M8Dy8nLEx8dj//79KCr634ztVq1aYejQofDz84O+vr4WMyQiIiIiqt7169cRGRmJtLQ0\nlXj37t0RGBiIdu3aaSkzIiJqCEeOHEFubq5WcygoKMCRI0dqXWR2cnKChYUFsrKy0L179ye2O3v2\nLLp06SI+trGxwbPPPgsAcHR0hIODAzIzMwEAAQEBGDZsGIDHK3dCQkIwYsQIfPTRRwCAfv36wcjI\nCMHBwZg+fTqee+45AEDbtm2xcuVKAECPHj3wn//8B+3atcP7778P4PHq9cGDByMlJaXKIrOTkxP0\n9fVhZWWl8lokEgm2bt0KKysrAEBubi4+//xzFBUVQSaTYcOGDejZsyfWrl0LABgwYABMTU2xePFi\nBAUFoX379rV6L/8tJCQErq6u4nkrXsP06dMRFxcHb29vAIBMJsPixYvFNqtWrYKBgQG2bNkCfX19\nDBw4EIIg4PPPP690DRcXFxw4cADl5eXQ1dVumZdF5kaupEwOhaL6WcwVFAoBJWVyGDajIrMgCPjt\nt98QHR2Nu3fvinEdHR14eXlh+PDhMDY21mKGRERERETVu337NmJiYvDbb7+pxDt16oRx48aJf7km\nIqKmzd/fv1HMZPb392/w82ZmZsLLy6tWbe3s7MT/vnbtGu7du4ehQ4eqtBk+fDiWL1+Oc+fOid+D\nyrOhDQwMIJPJ4OLiIsYqVvoUFhbWKff27duLBWbgcaG34jxSqRS///47FixYoLJ9x4ABAyCXy3H2\n7FmMGTOmTtcDgOLiYqSmpuKDDz5QiVcUsBMTE8Uic6dOnVTaXLhwAb1791aZTOnv74/Vq1dX+dpK\nS0tx9+7dKgvvmsQicyNnoCeFjo6kVoVmHR0JDPSaz55taWlp2L17N27cuKESd3d3x+jRo2Ftba2d\nxIiIiIiIauHBgwfYv38/4uPjVf7iamVlhTFjxsDd3V2rd6YnIqKG5eHhUesZxE1NYWEhWrVqVau2\nlpaW4n8XFBRAIpGoxADAyMgI+vr6KqvVZbLKW8DW9prV+fc5Kr57FQoFCgoKoFAosG7dOpUZxxXt\n7ty5U69rFhYWQhAEleJ2BQsLCzx48EDlsbKCggI4OTmpxKo6DwC0bt1avB6LzFQtqVQHDh1MkZaR\nX2Nbhw6mzWKrjOzsbERFReHSpUsq8WeffRZjx46Fvb29ljIjIiIiIqpZWVkZjh07hkOHDqnMZpPJ\nZBg+fDi8vLy0vqSViIioLszMzFQKo3U5ThAE5OXlqcQLCwtRWloKc3PzhkqxXoyMjAAAs2fPhp+f\nX6Xn6zvB0djYGBKJRGVVfoW7d+9W+7rNzc1x7949lVh+ftV1wYKCx1vsNob7OXBk0wS4OrbB1VsF\n1d78TyKRwNWxjQazangFBQXYu3cvTp06pfJabWxsMHbsWHTv3p0zPYiIiIio0VIoFDhz5gz27NmD\n+/fvi3FdXV34+flh6NChMDQ01GKGRERE9dOuXTuVG9bWVufOnWFubo6DBw9i0KBBYnz//v2QSCRw\nc3NryDQhldZthb9MJoOTkxP+/vtvla05Ll++jC+++ALz589HmzZ1r7cZGhrC2dkZhw4dwtSpU8X4\nyZMnUVhYWO3r7tOnD3766Sc8ePBALILHx8dXWRPLzc0V96HWNhaZm4C2ljJ4u9kiLulWlYVmiUQC\nbzdbtLWsvKygKXj06BGOHj2KI0eOoLS0VIybmJhg5MiRGDBgAHR0mv4MbSIiIiJqngRBwJ9//onI\nyEjxpkfA43F6nz59MGrUqEpLYYmIiJoST09PHD58uFK8ugmRwON7as2dOxcrVqyAqakp/Pz8cPny\nZYSGhmLYsGFwcHBo0DyNjY3xxx9/4Ny5c+jVq9cT2ynnPW/ePMydOxdGRkYYPHgw7t27h5CQEEil\nUjz//PPVnmPfvn04f/68StzU1BSjR4/GW2+9hTlz5mDBggUIDAxEVlYW1q9fDzc3NwwcOPCJ550y\nZQp27tyJ6dOn44033kB2djY2bdpUZduLFy+iT58+jWJSJovMTYSLvSUsTVshOe0O0jMLoFAI0NGR\nwKGDGVwdrZpkgVkul+PXX3/F3r178c8//4hxfX19+Pv7Y/DgwQ2y9w4RERERkbpkZGRg9+7duHz5\nskq8S5cuCAwMRMeOHbWUGRERUe3VVKQcPHgwwsLCkJGRofLd9u/jqjrPxIkT0bp1a2zbtg27d+9G\nmzZtEBQUhNmzZ1d7nEQiqdX5lb3xxhsIDg7GzJkzcejQoWrPXcHX1xebN2/Gpk2bEB0dDSMjI/Tv\n3x/vvPMODAwMnngtiUSC8PDwSvHOnTtj9OjR8PHxwaZNmxAaGoo5c+bA1NQUI0eOxIIFC1Su/+/8\nLCwssGPHDqxcuRILFiyAjY0NPvnkE8yZM0elXXl5Oc6ePYuFCxdW+55oikSo6SeHZu63336Du7u7\nttOoE7lcgZIyOQz0pE1yD2ZBEJCcnIyoqCjk5uaKcYlEggEDBmDkyJEwNTXVeF6pqakAAGdnZ41f\nmxoX9gVSxv5AytgfSFlqaiqKi4u1PpZsiuPZ5iAvLw+//PILzp49qxK3tbXF2LFj0aVLF43nxM8o\nUsb+QMrYH0hZffvD5MmT4e7ujrffflsdaVEdHTlyBJ9++iliY2Ohr69f7/M01JiWM5mbIKlUB4ZN\nsLgMANeuXUNkZCSuXr2qEnd1dcWYMWPQrl07LWVGRERERFSz4uJiHDx4EMePH0d5ebkYNzc3x+jR\no9G7d29u9UZERM3S/PnzMW/ePMyYMYP3GGgEwsPDMWfOnKcqMDckFplJI27fvo3o6GgkJSWpxO3s\n7DBu3Dg4OjpqKTMiIiIiopqVl5cjLi4O+/fvR3FxsRhv3bo1hg0bBl9fX+jp6WkxQyIiIvVyc3PD\niBEj8N133+Gtt97SdjotWmxsLHR1dTFhwgRtpyJikZnUqrCwEPv370d8fDwUCoUYt7KywpgxY+Du\n7t4oNicnIiIiIqqKIAg4f/48oqOjkZeXJ8alUim8vb0xfPhwyGRN7/4oRERE9bFo0SJtp0AA/Pz8\n4Ofnp+00VLDITGpRWlqK2NhYHDp0CI8ePRLjMpkMI0aMwMCBA6Gry+5HRERERI3XX3/9hcjISNy8\neVMl3qtXL4wePRpWVlZayoyIiIiocWGVjxqUQqHAmTNn8MsvvyA/P1+M6+npwc/PD0OHDkXr1q21\nmCERERERUfWysrIQFRWF33//XSX+3HPPYezYsbCzs9NOYkRERESNFIvM1CAEQUBKSgoiIyORlZUl\nxiUSCTw9PREQEABzc3MtZkhEREREVL38/Hzs2bMHp0+fhiAIYrxdu3YIDAxEt27duNUbERERURVY\nZKan9vfffyMyMhKXL19Wibu4uCAwMBC2trZayoyIiIiIqGaPHj3C4cOHcfToUZSVlYlxExMTBAQE\noH///tDR0dFihkRERESNG4vMVG95eXn45ZdfcPbsWZV4x44dMXbsWDg7O2spMyIiIiKimsnlcpw8\neRL79u1DYWGhGDcwMMCQIUMwaNAgGBgYaDFDIiIioqaBRWaqs+LiYhw8eBDHjx9HeXm5GLewsMDo\n0aPRu3dvLiMkIiIiokZLEARcuHAB0dHRuH37thjX0dHBwIEDMXz4cJiYmGgxQyIiIqKmhWu+qNbK\nyspw9OhRfPjhhzhy5IhYYG7dujXGjh2LTz75BH369GGBmYiIWpTs7GxMmDAB3bt3x5gxY6pt+/nn\nnyM0NFR8vGrVKvTq1QseHh64cOGCulOt0a5du7Bhwwbx8aJFizBy5MgGv05iYiKcnJyQkpLS4Oeu\nSmZmJpycnHDkyBEAQFxcHKZOnaqRa1Pjk56eji+++AJbt25VKTD37NkTwcHBeOWVV1hgJiIiIqoj\nzmSmGgmCgMTERPzyyy/Iy8sT47q6uvD29saLL74ImUymxQyJiIi0JyIiAn/99RdCQkJgY2PzxHaX\nLl3CgQMHxELnlStX8P3332PatGkYNGhQo9hmasuWLfD19RUfq/OHY23+KO3t7Y3t27dj165dGD9+\nvNbyIM3Kzc1FdHR0pR907O3tMW7cODg4OGgpMyIiaolGvvNLndrvXTtKTZk8Fhsbi/j4eHzyySf1\nPkdmZib8/PywceNG+Pv71+qYSZMmQSaT4euvv673dalxYJGZqnX58mVERkbi77//Von36tULo0eP\nhpWVlZYyIyIiahzy8/Nha2sLHx+fatutXbsWEydOFPd3zc/Ph0QiwfDhw9G1a1dNpEpKgoKCsGTJ\nEowePRp6enraTofU6J9//sH+/ftx4sQJKBQKMW5tbY3AwED06NGDK/GIiKjFCw8Pf+oJhG3atMHO\nnTthZ2dX62OCg4MhlUqf6rrUOHC7DKpEoVAgOTkZ69evx/r161UKzM899xyWLFmC6dOns8BMREQt\nnq+vL2JiYpCWlgZnZ2fExMRU2e7PP/9EYmIiXnzxRQBAaGgoJk+eDAAYN24cJk+eLG7pEBERAV9f\nX/Tq1QtJSUkAgKNHj2LcuHHo2bMnvL29ERISArlcrpJHWFgYli5dCg8PD/Tt2xehoaF48OAB3n33\nXfTs2RO+vr6Ijo6u9rVkZ2djx44dlWZV//DDD/D19YWrqysmTZqEa9euqTz/66+/4qWXXoKrqyu8\nvLywceNGlWJefZ07dw6vvfYa3N3d0b9/f3z66acoLi4Wn580aRKWLVuGoKAguLq6YsWKFQCA5ORk\nvPLKK+jRowcCAgLw559/Vjp3//79UV5e/sQ/M2r6cnNzsWvXLnz00UeIi4sT+6SxsTFeeeUVBAcH\no2fPniwwExERNRB9fX107969TttOOTg41KkoTY0XZzKTqKCgAKdOncLJkydx//59lefat2+PsWPH\nwsXFhQNxIiKi/2/z5s1Yv349rl+/jjVr1qBjx45Vttu/fz+ef/552NraAgDGjx8PCwsLfPrpp1i9\nejW6desmtt2yZQuWLVuG0tJSdOvWDT///DOWL1+O1157DQsXLkRqaio2btyIzMxMfPHFF+JxW7du\nxZAhQ7Bp0yYcPnwYoaGh2LdvH3x9fbFlyxZs374dy5Ytg6enJ9q2bVvla5k+fTo8PDzw+uuvi/H0\n9HTExMRg6dKlePToET777DO89957iIyMBAAkJCRg5syZGDp0KObNm4fr169j3bp1KCgowNKlS+v9\n3sbHx2P27NkYNmwYZs2ahaysLKxbtw5XrlzBDz/8ILaLiorCxIkTERQUBBMTE2RmZmLq1Klwc3PD\nxo0bcf36dSxatKjS+EUqlcLHxwcHDhzglhnNSMVkifj4eKSmpqo8p6enh8GDB2PIkCFo1aqVljIk\nIiJqfCZNmoRz584BAJydnTF69GhcuXIFHh4e2L17Nzp16oSoqCjcuXMH69atw6lTp3D//n2Ym5tj\n2LBheO+996Cnp1dpu4zFixejqKgIHh4eCA8PR15eHlxdXbF8+XJxmyrl7TLOnj2LKVOmYMeOHVi7\ndi1SUlJgbW2NWbNmqYzXLl++jM8++wy///47rKys8NZbbyE0NBQBAQGYO3euVt5DYpG5xRMEAWlp\naYiLi8OFCxcqzToyNzfHyJEj4enpCR0dTnwnIiL1OH/+PPbs2YNHjx5pLYdWrVohICAAHh4etT7G\nyckJFhYWyMrKQvfu3Z/Y7uzZs+jSpYv42MbGBs8++ywAwNHREQ4ODsjMzAQABAQEYNiwYQAeF8xC\nQkIwYsQIfPTRRwCAfv36wcjICMHBwZg+fTqee+45AEDbtm2xcuVKAECPHj3wn//8B+3atcP7778P\nAOjQoQMGDx6MlJSUKovMTk5O0NfXh5WVlcprkUgk2Lp1q7iCKTc3F59//jmKioogk8mwYcMG9OzZ\nE2vXrgUADBgwAKampli8eDGCgoLQvn37Wr+fykJCQuDq6iqet+I1TJ8+HXFxcfD29gYAyGQyLF68\nWGyzatUqGBgYYMuWLdDX18fAgQMhCAI+//zzStdwcXHBgQMHUF5eDl1dDoubsvz8fHGyRH5+vspz\nUqkUffv2RUBAAMzMzLSUIRERUeMVHByM9957D61bt8YHH3yAY8eOYe/evTA2NsamTZtQUlICQRAQ\nFBQEqVSK4OBgGBkZ4dSpUwgLC0OnTp0wceLEKs+dkJCAW7du4aOPPoJcLseKFSuwZMkS/Pzzz5Xa\nVkwKeOedd/D6669j/vz5+PHHH7Fs2TK4ubnBwcEBeXl5mDJlCuzt7bFhwwbk5uZi5cqVePjwoVrf\nI6oZR9Mt1MOHD3HmzBnEx8cjOzu70vMuLi7w8vJCt27dWFwmIiK1O3LkCHJzc7WaQ0FBAY4cOVKn\nInNtZWZmwsvLq1ZtlZcLXrt2Dffu3cPQoUNV2gwfPhzLly/HuXPnxCKz8mxoAwMDyGQyuLi4iLGK\n4lphYWGdcm/fvr3KFlkdOnQQzyOVSvH7779jwYIFKtt3DBgwAHK5HGfPnsWYMWPqdD0AKC4uRmpq\nKj744AOVeEUBOzExUSwyd+rUSaXNhQsX0Lt3b+jr64sxf39/rF69usrXVlpairt371ZZeKfGTRAE\n/PXXX4iPj8fFixcrTZawsLDAwIED0b9//zot2yUiImppHBwcIJPJIJPJ0L17d5w4cQJyuRyLFi2C\nk5MTACAnJwdmZmZYunQpHB0dAQB9+vTBiRMnkJiY+MQic3FxMcLCwmBpaSme57PPPkNBQQFMTU2r\nPGbKlCmYMmUKAKBLly44evQoTp48CQcHB0REREAQBISFhcHIyAjA43HuvHnzGvQ9obpjkbmFycjI\nQHx8PM6ePYvS0lKV52QyGfr3748XXngB1tbWWsqQiIhaIn9//0Yxk7m2d8Guq8LCwlovz68YgAOP\nC98SiUQlBgBGRkbQ19dHUVGRGKvqRi0NsSXAv89RMcNEoVCgoKAACoUC69atU5lxXNHuzp079bpm\nYWEhBEGo8v4PFhYWePDggcpjZQUFBeJfhio86T4SrVu3Fq/HInPTUVxcjISEBMTHx1f6cUoikYiT\nJbp27crJEkRERE9BefJD27ZtxQLvzZs3cePGDVy+fBl5eXnVrlxr3769yli2Ysz18OHDKovMEolE\nZVWdsbExDA0NxftyJCYmonfv3mKBGQAGDRrEVWmNAP8EWoCSkhIkJSXhxIkTlW7UAwD29vbw8vKC\nu7s7765ORERa4eHhoZYZxI2FmZmZSmG0LscJgoC8vDyVeGFhIUpLS2Fubt5QKdZLxeB+9uzZ8PPz\nq/R8fX+0NjY2hkQiwd27dys9d/fu3Wpft7m5Oe7du6cS+/f2CRUKCgoAgFsoNAGCIODGjRs4efIk\nEhMTUVZWpvK8TCbDgAEDMHDgQN6cmoiIqAG0bt260mSDXbt2ISQkBHl5eWjTpg1cXV1hYGAAQRCe\neJ7qJixUd21lOjo6Yvv79++LM6mVn+d4TvtYZG6mBEHA1atXkZCQgPPnz6OkpETleX19ffTp0wde\nXl5PvEkRERERNYx27dohJyenzsd17twZ5ubmOHjwIAYNGiTG9+/fD4lEAjc3t4ZME1KptE7tZTIZ\nnJyc8Pfff6tszXH58mV88cUXmD9/Ptq0aVPnPAwNDeHs7IxDhw5h6tSpYvzkyZMoLCys9nX36dMH\nP/30Ex48eCAWwePj46u8cXFubq64DzU1Tvn5+Th79iwSEhKq3OLNwcEBXl5ecHNz42QJIiIiNUpM\nTMSyZcswZ84cTJw4UfzRX9M3ULaxsak0oUAQhCdOKiDNYZG5mcnLy8OZM2eQkJBQ5RLVdu3awcvL\nC3379q30yxARERGph6enJw4fPlwpXt2sD+DxrIy5c+dixYoVMDU1hZ+fHy5fvozQ0FAMGzZMvCt3\nQzE2NsYff/yBc+fOoVevXk9sp5z3vHnzMHfuXBgZGWHw4MG4d+8eQkJCIJVK8fzzz1d7jn379uH8\n+fMqcVNTU4wePRpvvfUW5syZgwULFiAwMBBZWVlYv3493NzcMHDgwCeed8qUKdi5cyemT5+ON954\nA9nZ2di0aVOVbS9evIg+ffpUWYAm7SkrK0NycjISEhKQkpJS6f8TAwMDcbKEra2tlrIkIiJqXmqa\nbJCcnAwdHR3Mnj1bbJubm4srV67A09NTEykCeLwC8ocffhBvQg08nlBQXl6usRyoaiwyNwOlpaW4\ncOECTp8+jcuXL1d6Xl9fH+7u7ujXrx8cHR35FykiIqIGVtN36+DBgxEWFoaMjBJ73PkAAB0qSURB\nVAyVFUT/Pq6q80ycOBGtW7fGtm3bsHv3brRp0wZBQUGYPXt2tcdJJJJanV/ZG2+8geDgYMycOROH\nDh2q9twVfH19sXnzZmzatAnR0dEwMjJC//798c4778DAwOCJ15JIJAgPD68U79y5M0aPHg0fHx9s\n2rQJoaGhmDNnDkxNTTFy5EgsWLBA5fr/zs/CwgI7duzAypUrsWDBAtjY2OCTTz7BnDlzVNqVl5fj\n7NmzWLhwYbXvCWlGxf6OCQkJSExMFPddVGZvbw9PT0/07t27QfYbJyIiov8xMTHB5cuXkZiYWOV9\nUrp16waFQoGVK1di6NChyMrKwtdff42ysjI8fPiwTteqbqJFTZMwJk2ahB07dmDmzJmYMWMG8vLy\nsH79ekgkEt6LQctYZG6iBEFAeno6Tp8+jd9++63KD4DnnnsOnp6ecHNz40CciIhITVatWlVjm27d\nuqFXr16IiorC22+/DQDo3bs3UlNTxTYdOnRQeawsMDAQgYGBTzx/bGxspVhiYqLKY2Nj4yeev4K/\nv7/KzQ+rem2DBg2qdB5vb294e3tXe25l/37tT+Lj4wMfH58nPv/DDz9UGXdwcMC2bdtUYv++3vHj\nxyGVShEQEFCLjEldCgoKcPbsWZw+fbrK7TBMTU3Rt29f9OvXjzdnJCIiUqOpU6di4cKFmDFjBjw8\nPCr9kN+3b18sWrQIERERiIqKgo2NDYYNGwZdXV1ERESI90v490SHmiYs/PtxTZMnzMzMsH37dqxY\nsQJvv/02rK2tsWTJEixcuBCGhob1fwPoqbHI3MQIgoCjR4/i5MmTuH37dqXnLS0t4enpib59+9Zr\nD0QiIiJSj/nz52PevHmYMWMGB8CNQHh4OObMmQN9fX1tp9IiXbt2DQcOHEBKSkqlG//o6uqiR48e\n6NevH5ydnTkriYiImqW9a0dpOwUVbm5uiIuLq7bNlClTMGXKlErxuXPnAqg8aaI2ExaUJw08aSKC\n8uSJixcv4uHDh/jpp5/E2PXr1wEAnTp1qjZ/Ui8WmZuY+Ph4REZGqsT09PTE7TCee+45bodBRETU\nCLm5uWHEiBH47rvv8NZbb2k7nRYtNjYWurq6mDBhgrZTaZFKSkqwbt06ccZTBTs7O/Tr1w+9evXi\nDzFERERUpb///htLlizBO++8g27duuHOnTvYunUr7O3t0b9/f22n16KxyNzEmJiYiP/t6OgIT09P\nuLu7czsMIiKiJmDRokXaToEA+Pn5wc/PT9tptFgSiQRGRka4f/8+TExMxO0w2rVrp+3UiIiIqJEL\nCAhAfn4+fv75Z4SEhEAmk2HAgAF49913uUJNy1hkbmLc3NwQHBwMfX19WFpaajsdIiIiIqI60dfX\nx4cffoj8/Hx06NCB22EQERFRnUyePBmTJ0/Wdhr0LywyN0Gc5UFERERETZmxsTGMjY21nQYRERER\nNRAWmYnUQC5XoKRMDgM9KaRSzs4hIiIiosbtpZ9n16n9zpe3qCkTIiIiaopYZCZqQDl5RUhOu4P0\nzAIoFAJ0dCRw6GAKV8c2aGsp03Z6REREREREREREDY5FZqIGknItD3FJtyAIghhTKASkZeTj6q0C\neLvZwsWe+2gTEREREREREVHzwnX8RA0gJ6+oUoFZmSAIiEu6hZy8Ig1nRkREREREREREpF6cydxC\ncI9g9UpOu/PEAnMFQRCQnHaH22YQERER1YD7AxMRERE1LSwyN3PcI1j95HIF0jMLatU2PbMAcrmC\nhX4iIiIiIiIiImo2WGRuxrhHsGaUlMmhUFQ/i7mCQiGgpEwOQxaZiYgaVGNYsfPXX3/hxx9/xJkz\nZ5CdnQ2FQgF9fX20bdsW3bp1w7Rp0+Ds7KyV3IiIiIiocWlsq3ZiY2MRHx+PTz75pEHOl5ubiw8/\n/BBr1qyBmZkZMjMz4efnh40bN8Lf379BrkGNC4vMzVRt9wi2NG3FGc1PyUBPCh0dSa0KzTo6Ehjo\nSTWQFRFRy9BYVuyEhYWhsLAQc+fOhY6ODq5evYodO3YgOzsbp06dwjfffIMDBw5gw4YNGDRokMby\nIiIiIiKqjfDwcMhkDTd+Pn36NH799VfxcZs2bbBz507Y2dk12DWoceF0ymaqLnsE09ORSnXg0MG0\nVm0dOphyqwwiogaSci0Pkf+9irSMfPGHvooVO5H/vYqUa3kayePEiRP473//i4ULF8La2ho5OTno\n0KEDAKBdu3YYP348du3ahQ4dOmD58uWQy+UayYuIiIiISFsqalIV/9bX10f37t1hYmKizbRIjVjt\naobqs0cwPR1XxzaQSCTVtpFIJHB1bKOhjIiImrfartjJyStSey6GhobYsuV/yxezs7PxzDPPqLQx\nMzPDm2++iXv37iEtLU3tORERERER1dakSZNw7tw5xMXFwdnZGVlZWfj777/x5ptvws3NDb169cL7\n77+P+/fvi8c8fPgQH374IQYMGABXV1cEBgbi6NGjAIDo6GgsWbIEANCvXz+EhoYiMzMTTk5OOHLk\nCABg8eLFmDdvHiIiIuDr6wtXV1dMnjwZ6enpKrn9+OOP8Pf3h6urK15//XXExMTAyckJWVlZGnp3\nqLZYZG6G6rNHMD2dtpYyeLvZPrHQLJFI4O1my61JiIgaSGNasePh4QFT08crWsrLy3H9+vUq917u\n0qVLjTkTEREREWlacHAwunTpAnd3d/z8888wMDDAK6+8gpycHHz55Zf4+OOPcfHiRQQFBaG8vBwA\nsGLFCiQmJmLZsmUICwuDg4MD5s+fj2vXrsHb2xuzZz/ec/q7777D+PHjq7xuQkICYmJi8NFHH2HN\nmjW4efOmWJwGgJ9//hkrVqyAv78/Nm/ejI4dO2LZsmU1TvIj7eCezM0Q9wjWDhd7S1iatqpib1Az\nuDpascBMRNRA6rNiR1NbFaWnp6OsrAwuLi6VnisrK4OOjg5sbW01kgsRERERUW04ODhAJpNBJpOh\ne/fuWLt2LcrKyrB9+3ZxMoWrqyv8/f2xf/9+jBo1CklJSejXr594Ez83NzdYWVlBLpfD3NxcXNnX\npUsX8cZ//1ZcXIywsDBYWloCAHJycvDZZ5+hoKAApqam2Lx5M8aMGYN3330XANC/f3/k5uYiPj5e\nE28L1RGLzM1QxR7BaRn5NbblHsENq62lDG0tZZDLFSgpk8NAT8r3l4iogdVnxY6hhj6LU1JS0LFj\nR9jY2FR67vLly/D09ISRkZFGciEiqoudL2+puREREbUIiYmJ6NGjB4yMjMT7idjY2MDBwQFnzpzB\nqFGj4OHhgZ07d+L27dvw8fGBt7c3Pvjggzpdp3379mKBGQDatm0L4PFWHPn5+cjNzYWfn5/KMUOH\nDmWRuZFikbmZcnVsg6u3Cqpdlss9gtVHKtXRWEGDiKilacwrds6cOQNPT88qn4uKisLbb7+tsVyI\niIiIiOojPz8fly5dqrQ6TyKRwNraGgCwdOlS2NjY4JdffkFcXBwkEgkGDhyI1atXw8zMrFbXadWq\nVaXzA4BCoRD3f7awsFBpY2VlVa/XROrHInMzVbFH8JNuisQ9gomIqKlqzCt2EhISsHz58krx3bt3\no0ePHujVq5fGciEiIiIiqg8jIyMMHDgQb7/9dqWakkz2uI6kr6+PuXPnYu7cubhx4wYOHz6MTZs2\nISQkpMrxcF1VrAy8d++eSvzfj6nx4FTLZszF3hJjfZ6FY0cz6Og8/jVIR0cCx47mGOvzLFzsLWs4\nAxERUePk6timxht+aHrFTnJyMoqLi+Hl5aUS37VrF/7++29xLzkiIiIiosZGKv3f6j93d3dcu3YN\njo6OcHFxgYuLCxwdHfHVV1/ht99+g0KhwMiRI/H9998DAOzs7DBr1iz06NED2dnZAAAdnacrObZt\n2xYdOnTA8ePHVeLHjh17qvOS+nAmczPHPYKJiKg5aowrdg4dOgRfX1/o6ekhLy8PZ8+exYkTJzBs\n2LAn3lGbiKrG/YGJiIg0y8TEBJcvX0ZiYiKmTp2KX375BdOnT8fkyZOhq6uLbdu24dKlS5g/fz50\ndHTQvXt3bN68GQYGBrC3t8fFixeRlJSETz75RDwfABw5cgT9+/evdR4VY3uJRII333wTy5Ytg4WF\nBTw9PREXF4fY2FgAT1/EpobHInMLwT2CiYiouXGxt4SlaSskp91BemYBFAoBOjoSOHQwg6ujlUYL\nzBEREfjxxx+hq6uLIUOGoGvXrhgyZAhWrVpV44xrIiIiIiJtmzp1KhYuXIgZM2bg+++/x08//YQv\nv/wS77//PiQSCVxcXBAeHg4nJycAj/dkNjQ0xNatW5GXl4f27dtj0aJFCAwMBAB4enpiwIABWLFi\nBV566SVMmzYNEolEZWxc1ThZOTZ27Fg8ePAA33//PSIiIuDh4YHZs2dj06ZNMDQ0VPM7QnUlEaq7\nM1wL8Ntvv8Hd3V3baVAjkJqaCgBwdnbWciakbewLpIz9oWnQ1Iod9gdSlpqaiuLiYq2PJTmepQr8\njCJl7A+kjP2BlDWV/rBv3z706NEDtra2YmzdunXYuXMnzpw5o8XMmpeGGtNyJjMRERE1eVyxQ0RE\nRETUvERGRmLr1q146623YG5ujuTkZERERGD69OnaTo2qwCIzERERERERERERNSpr1qzBl19+iU8+\n+QSFhYXo0KED5s+fj6lTp2o7NaoCi8xERERERERERETUqFhaWmL16tXaToNqietKiYiIiIiIiIiI\niKjeWGQmIiIiIiIiIiIionpjkZmIiIiIiIiIiIiI6o1FZiIiIiIiIiIiIiKqNxaZiYiIiIiIiIiI\niKjeWGQmIiIiIiIiIiIionprFEXmnTt3YsiQIXB1dcWECRNw8eLFatunpaVhypQp6NmzJ3x8fBAW\nFqahTImIiIiIiIiIiIhImdaLzNHR0QgODsaoUaPw1VdfwcTEBNOnT0dmZmaV7e/du4dp06ZBV1cX\nISEhePnll7FhwwZs375dw5kTERERERERERERka62E/jqq68wYcIEvPnmmwCAfv36YejQoQgPD8eH\nH35Yqf2OHTsgl8uxZcsW6OvrY+DAgSgpKcHWrVsxefJkSKVSTb8EIiIiIiIiIiIiohZLqzOZb968\niaysLPj4+IgxXV1deHt74+TJk1Uek5CQAE9PT+jr64uxQYMGoaCgAL///rvacyYiIiIiIiIiIiKi\n/9FqkfnGjRuQSCTo1KmTStzW1hYZGRkQBKHKY5555hmVWMeOHSEIAm7cuKHOdImIiIiIiIiIiIjo\nX7RaZH7w4AEAQCaTqcRlMhkUCgWKi4urPKaq9srnIyIiIiIiIiIiIiLN0OqezBUzlSUSSZXP6+hU\nroELgvDE9k+K1yQ1NbVex1Hz8vDhQwDsD8S+QKrYH0gZ+wMpq+gPjQH7JAH8jCJV7A+kjP2BlLE/\nkLKGGtNqtchsbGwMACgqKoKFhYUYLyoqglQqRevWras8pqioSCVW8bjifHVV1YxparnYH6gC+wIp\nY38gZewP1NiwT5Iy9gdSxv5AytgfSBn7AzUkrRaZO3XqBEEQkJGRgY4dO4rxW7duwc7O7onHZGRk\nqMQqHnfu3LnOObi7u9f5GCIiIiKixoLjWSIiIiLSNq3uyWxnZ4d27drh2LFjYqysrAxxcXHw9PSs\n8hhPT08kJCTg0aNHYuzo0aMwNzeHs7Oz2nMmIiIiIiIiIiIiov+RBgcHB2szAX19fWzevBmlpaUo\nLS3FqlWrcOPGDaxevRomJibIyMjAjRs30LZtWwCAg4MDIiIikJCQAAsLCxw8eBBff/015s2bBzc3\nN22+FCIiIiIiIiIiIqIWRyJU3H1Pi8LDwxEREYH79+/DyckJixcvRvfu3QEAixcvRkxMjMpm5Ckp\nKVi5ciVSUlJgaWmJiRMnIigoSFvpExEREREREREREbVYjaLITERERERERERERERNk1b3ZCYiIiIi\nIiIiIiKipo1FZiIiIiIiIiIiIiKqNxaZiYiIiIiIiIiIiKjeWGQmIiIiIiIiIiIionpjkZmIiIiI\niIiIiIiI6o1FZiIiIiIiIiIiIiKqt2ZdZN65cyeGDBkCV1dXTJgwARcvXqy2fVpaGqZMmYKePXvC\nx8cHYWFhGsqUNKGu/SEpKQmTJ09Gr1698MILL+CDDz5AXl6ehrIldatrf1AWGhoKJycnNWZHmlbX\n/nDv3j28//776NOnD3r16oXZs2cjIyNDQ9mSutXn++LVV1+Fm5sbBg0ahNDQUJSXl2soW9KU2NhY\nuLm51dhOHeNJjmmpAsezpIzjWVLG8Swp43iWqqLu8WyzLTJHR0cjODgYo0aNwldffQUTExNMnz4d\nmZmZVba/d+8epk2bBl1dXYSEhODll1/Ghg0bsH37dg1nTupQ1/6Qnp6OadOmwdjYGOvWrcOiRYuQ\nlJSE6dOnQy6Xazh7amh17Q/Krly5gq1bt0IikWggU9KEuvaH8vJyTJs2DX/88QdWrlyJ1atXIyMj\nAzNmzOBArBmoa3/IyMhAUFAQjIyMEBoaimnTpuHbb7/FunXrNJw5qVNSUhLef//9GtupYzzJMS1V\n4HiWlHE8S8o4niVlHM9SVTQynhWaKR8fH+Hjjz8WH5eVlQl+fn7CihUrqmwfEhIi9O3bVygpKRFj\nGzZsEPr06SOUl5erPV9Sr7r2h48//lgYNGiQyp/9pUuXhOeff16Ij49Xe76kXnXtDxXkcrkwbtw4\nwcvLS3ByclJ3mqQhde0PO3fuFHr06CHk5OSIsdTUVOGFF14QUlJS1J4vqVdd+8PWrVsFV1dX4dGj\nR2Js3bp1gru7u9pzJfUrKSkRvvnmG6Fr165C7969hZ49e1bbXh3jSY5pqQLHs6SM41lSxvEsKeN4\nlpRpcjzbLGcy37x5E1lZWfDx8RFjurq68Pb2xsmTJ6s8JiEhAZ6entDX1xdjgwYNQkFBAX7//Xe1\n50zqU5/+4OjoiGnTpkEqlYqxzp07AwBu3bql3oRJrerTHyps374dxcXFeO2119SdJmlIffpDbGws\nXnjhBdjY2IgxJycnnDhxAl26dFF7zqQ+9ekPZWVl0NXVhYGBgRgzNTVFcXExSktL1Z4zqdeJEyfw\n7bffYtGiRbX67G/o8STHtFSB41lSxvEsKeN4lpRxPEv/psnxbLMsMt+4cQMSiQSdOnVSidva2iIj\nIwOCIFR5zDPPPKMS69ixIwRBwI0bN9SZLqlZffrDK6+8gldffVUldvz4cUgkEtjb26s1X1Kv+vQH\n4PGXdWhoKFasWAE9PT1NpEoaUJ/+8Ndff6Fz584IDQ3FgAED0K1bN8yaNQvZ2dmaSpvUpD79ISAg\nAFKpFGvWrEFBQQEuXbqEiIgIDB48WGVgRk1T9+7dERsbi4kTJ9ZqWXlDjyc5pqUKHM+SMo5nSRnH\ns6SM41n6N02OZ5tlkfnBgwcAAJlMphKXyWRQKBQoLi6u8piq2iufj5qm+vSHf8vOzsYXX3yBbt26\noW/fvmrJkzSjvv3ho48+wpgxY9CzZ0+150iaU5/+cO/ePURGRuLUqVP47LPP8OWXX+Lq1auYNWsW\nFAqFRvIm9ahPf+jYsSPee+89bNu2DX369MFLL70ES0tLfPbZZxrJmdTL2toaRkZGtW7f0ONJjmmp\nAsezpIzjWVLG8Swp43iW/k2T41nduqfX+FX8MvOkCr2OTuXauiAIT2zPGyI0bfXpD8qys7MxdepU\nAODG981AffrD//3f/yEjIwNbt25Va26kefXpD+Xl5SgvL8e3334rflnb2tpi3LhxOHLkCIYOHaq+\nhEmt6tMfdu3ahaVLl2LChAkYNmwYbt++jY0bN2LmzJkIDw/nTLEWpqHHkxzTUgWOZ0kZx7OkjONZ\nUsbxLD2tpxlLNsuZzMbGxgCAoqIilXhRURGkUilat25d5TFVtVc+HzVN9ekPFa5cuYIJEyaguLgY\n27dvh62trVpzJfWra3/IycnBmjVr8OGHH8LAwAByuVz8dV8ulz9xOSI1DfX5fDA0NISrq6vKr8Fd\nu3aFiYkJrly5ot6ESa3q0x/CwsLg7e2N4OBg9OnTByNHjsTWrVvx22+/Ye/evRrJmxqPhh5PckxL\nFTieJWUcz5IyjmdJGcez9LSeZizZLIvMnTp1giAIyMjIUInfunULdnZ2Tzzm3+0rHlfcIIOapvr0\nBwBITk7Ga6+9Bj09Pfz0009wdHRUc6akCXXtDwkJCSguLsa8efPg4uICFxcXfP755xAEAV27dsWm\nTZs0lDmpQ30+H5555hmUlZVVipeXl3OWYBNXn/6QnZ0NV1dXlZi9vT3MzMxw9epVdaVKjVRDjyc5\npqUKHM+SMo5nSRnHs6SM41l6Wk8zlmyWRWY7Ozu0a9cOx44dE2NlZWWIi4uDp6dnlcd4enoiISEB\njx49EmNHjx6Fubk5nJ2d1Z4zqU99+sOtW7cwc+ZMWFtb4z//+Q86duyoqXRJzeraH3x9fbF7927s\n3r0bkZGRiIyMxLRp0yCRSBAZGYmXX35Zk+lTA6vP58OAAQOQlJSEO3fuiLHExEQUFxfDzc1N7TmT\n+tSnP9jZ2eHChQsqsZs3byI/P5/fHS1QQ48nOaalChzPkjKOZ0kZx7OkjONZelpPM5aUBgcHB6s5\nP63Q19fH5s2bUVpaitLSUqxatQo3btzA6tWrYWJigoyMDNy4cQNt27YFADg4OCAiIgIJCQmwsLDA\nwYMH8fXXX2PevHn8kG0G6tofPvjgA1y9ehVLliwBAOTm5or/SKXSSpugU9NSl/7QqlUrWFtbq/yT\nnp6OU6dO4eOPP2ZfaAbq+vnw/PPPIzIyErGxsbCyskJKSgqCg4Ph5OSE+fPna/nV0NOqa3+wsLDA\nN998g5ycHLRu3RoXLlzAsmXLYGJiguDgYO5h14wkJibiwoULmDVrlhj7f+3cTyusbRwH8J96ysZC\narZWFlPGpMmfLCzmHbCjbLBR3gBl5yXYSSgbZWPPWsmGoqwkChulkAW5zupo1Jmn4+ox93lOn09N\nTXPP4jt1N337dne1ok/qtPykz9JIn6WRPksjfZZmvr3Ppr/YxsZGqtfrqb+/P01MTKSTk5OPawsL\nC6lcLn/6/unpaZqcnEzVajXV6/W0trbW6sh8o9+9H15fX1Nvb28ql8u/fK2vrxf1E/gPffX/odHm\n5ua/Xuf/56v3w9XVVZqfn0+1Wi0NDQ2lxcXF9Pj42OrYfJOv3g97e3tpfHw89fX1pXq9npaWltL9\n/X2rY/PNVlZWUq1W+/RZq/qkTstP+iyN9Fka6bM00mf5le/us20pOeUfAAAAAIA8f+WZzAAAAAAA\ntIaRGQAAAACAbEZmAAAAAACyGZkBAAAAAMhmZAYAAAAAIJuRGQAAAACAbEZmAAAAAACyGZkBAAAA\nAMhmZAYAAAAAIJuRGQAAAACAbEZmAAAAAACyGZkBAAAAAMhmZAYAAAAAINs/RQcA4M+zvb0dDw8P\ncXFxEVNTU3F8fBwvLy9xfX0dy8vL0dbWVnREAABoSp8FaC1PMgPwyc7OTlQqlZibm4uxsbGYnZ2N\n/v7+6Orqit3d3Xh+fi46IgAANKXPArSeJ5kB+OTp6SkqlUpERNzd3UVXV1dUq9Xo7u6OSqUSHR0d\nBScEAIDm9FmA1jMyA/DJ9PT0x/ujo6MYHh6OiIjOzs7o7OwsKhYAAPwWfRag9RyXAUBTh4eHMTg4\nWHQMAADIos8CtIaRGYAP7+/vcXBwECmluL6+jpubm49S/vb2FltbWwUnBACA5vRZgGIYmQH4sL29\nHTMzM3F5eRn7+/vR3t4epVLp49ro6GjBCQEAoDl9FqAYbSmlVHQIAP4M5+fnsbq6Gj09PVGpVOL2\n9jbOzs6iVCrFwMBAjIyMFB0RAACa0mcBimFkBgAAAAAgm+MyAAAAAADIZmQGAAAAACCbkRkAAAAA\ngGxGZgAAAAAAshmZAQAAAADIZmQGAAAAACCbkRkAAAAAgGxGZgAAAAAAshmZAQAAAADI9gODu8+M\np+2O+wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"axes=make_plot()\n",
"axes[0].plot(df.x,df.f, 'k-', alpha=0.6, label=\"f (from the Lord)\");\n",
"axes[0].plot(df.x,df.y, 'o',alpha=0.6, label=\"$\\cal{D}$\");\n",
"axes[1].plot(df.x,df.f, 'k-', alpha=0.6, label=\"f (from the Lord)\");\n",
"axes[1].plot(xtrain, ytrain, 's', label=\"training\")\n",
"axes[1].plot(xtest, ytest, 's', label=\"testing\")\n",
"axes[0].legend(loc=\"lower right\")\n",
"axes[1].legend(loc=\"lower right\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A digression about scikit-learn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scikit-learn is the main python machine learning library. It consists of many learners which can learn models from data, as well as a lot of utility functions such as `train_test_split`. It can be used in python by the incantation `import sklearn`.\n",
"\n",
"The library has a very well defined interface. This makes the library a joy to use, and surely contributes to its popularity. As the [scikit-learn API paper](http://arxiv.org/pdf/1309.0238v1.pdf) [Buitinck, Lars, et al. \"API design for machine learning software: experiences from the scikit-learn project.\" arXiv preprint arXiv:1309.0238 (2013).] says:\n",
"\n",
">All objects within scikit-learn share a uniform common basic API consisting of three complementary interfaces: **an estimator interface for building and fitting models, a predictor interface for making predictions and a transformer interface for converting data**. The estimator interface is at the core of the library. It defines instantiation mechanisms of objects and exposes a `fit` method for learning a model from training data. All supervised and unsupervised learning algorithms (e.g., for classification, regression or clustering) are offered as objects implementing this interface. Machine learning tasks like feature extraction, feature selection or dimensionality reduction are also provided as estimators.\n",
"\n",
"Earlier we fit `y` using the python function `polyfit`. To get you familiarized with scikit-learn, we'll use the \"estimator\" interface here, specifically the estimator `PolynomialFeatures`. The API paper again:\n",
"\n",
">Since it is common to modify or filter data before feeding it to a learning algorithm, some estimators in the library implement a transformer interface which defines a transform method. It takes as input some new data X and yields as output a transformed version of X. Preprocessing, feature selection, feature extraction and dimensionality reduction algorithms are all provided as transformers within the library.\n",
"\n",
"To start with we have one **feature** `x`, the fraction of religious people in a county, which we want to use to predict `y`, the fraction of people voting for Romney in that county. What we will do is the transformation:\n",
"\n",
"$$ x \\rightarrow 1, x, x^2, x^3, ..., x^d $$\n",
"\n",
"for some power $d$. Our job then is to **fit** for the coefficients of these features in the polynomial\n",
"\n",
"$$ a_0 + a_1 x + a_2 x^2 + ... + a_d x^d. $$\n",
"\n",
"### Transformers in sklearn\n",
"\n",
"In other words, we have transformed a function of one feature, into a (rather simple) **linear** function of many features. To do this we first construct the estimator as `PolynomialFeatures(d)`, and then transform these features into a d-dimensional space using the method `fit_transform`.\n",
"\n",
"\n",
"\n",
"Here is an example. The reason for using `[[1],[2],[3]]` as opposed to `[1,2,3]` is that scikit-learn expects data to be stored in a two-dimensional array or matrix with size `[n_samples, n_features]`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1., 1., 1., 1.],\n",
" [ 1., 2., 4., 8.],\n",
" [ 1., 3., 9., 27.]])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.preprocessing import PolynomialFeatures\n",
"PolynomialFeatures(3).fit_transform([[1],[2], [3]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To transform `[1,2,3]` into [[1],[2],[3]] we need to do a reshape.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[1],\n",
" [2],\n",
" [3]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.array([1,2,3]).reshape(-1,1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So now we are in the recatangular, rows=samples, columns=features form expected by `scikit-learn`. Ok, so lets see the process to transform our 1-D dataset `x` into a d-dimensional one. "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0.33 , 0.75868254, 0.52 , 0.79 , 0.63633949,\n",
" 0.70533267, 0.71829603, 0.75841654, 0.63071361, 0.11 ,\n",
" 0.82850909, 0.46 , 0.64832591, 0.53596824, 0.91 ,\n",
" 0.67 , 0.76 , 0.34 , 0.56 , 0.94 ,\n",
" 0.6 , 0.96 , 0.43754875, 0.54 ])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xtrain"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0.33 ],\n",
" [ 0.75868254],\n",
" [ 0.52 ],\n",
" [ 0.79 ],\n",
" [ 0.63633949],\n",
" [ 0.70533267],\n",
" [ 0.71829603],\n",
" [ 0.75841654],\n",
" [ 0.63071361],\n",
" [ 0.11 ],\n",
" [ 0.82850909],\n",
" [ 0.46 ],\n",
" [ 0.64832591],\n",
" [ 0.53596824],\n",
" [ 0.91 ],\n",
" [ 0.67 ],\n",
" [ 0.76 ],\n",
" [ 0.34 ],\n",
" [ 0.56 ],\n",
" [ 0.94 ],\n",
" [ 0.6 ],\n",
" [ 0.96 ],\n",
" [ 0.43754875],\n",
" [ 0.54 ]])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xtrain.reshape(-1,1)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1. , 0.33 , 0.1089 ],\n",
" [ 1. , 0.75868254, 0.5755992 ],\n",
" [ 1. , 0.52 , 0.2704 ],\n",
" [ 1. , 0.79 , 0.6241 ],\n",
" [ 1. , 0.63633949, 0.40492794],\n",
" [ 1. , 0.70533267, 0.49749418],\n",
" [ 1. , 0.71829603, 0.51594919],\n",
" [ 1. , 0.75841654, 0.57519565],\n",
" [ 1. , 0.63071361, 0.39779966],\n",
" [ 1. , 0.11 , 0.0121 ],\n",
" [ 1. , 0.82850909, 0.68642731],\n",
" [ 1. , 0.46 , 0.2116 ],\n",
" [ 1. , 0.64832591, 0.42032648],\n",
" [ 1. , 0.53596824, 0.28726196],\n",
" [ 1. , 0.91 , 0.8281 ],\n",
" [ 1. , 0.67 , 0.4489 ],\n",
" [ 1. , 0.76 , 0.5776 ],\n",
" [ 1. , 0.34 , 0.1156 ],\n",
" [ 1. , 0.56 , 0.3136 ],\n",
" [ 1. , 0.94 , 0.8836 ],\n",
" [ 1. , 0.6 , 0.36 ],\n",
" [ 1. , 0.96 , 0.9216 ],\n",
" [ 1. , 0.43754875, 0.1914489 ],\n",
" [ 1. , 0.54 , 0.2916 ]])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PolynomialFeatures(2).fit_transform(xtrain.reshape(-1,1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fitting in sklearn\n",
"\n",
"Once again, lets see the structure of scikit-learn needed to make these fits. `.fit` always takes two arguments:\n",
"\n",
"`estimator.fit(Xtrain, ytrain)`.\n",
"\n",
"Here `Xtrain` must be in the form of an array of arrays, with the inner array each corresponding to one sample, and whose elements correspond to the feature values for that sample. (This means that the 4th element for each of these arrays, in our polynomial example, corresponds to the valueof $x^3$ for each \"sample\" $x$). The `ytrain` is a simple array of responses..continuous for regression problems, and categorical values or 1-0's for classification problems.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The test set `Xtest` has the same structure, and is used in the `.predict` interface. Once we have fit the estimator, we predict the results on the test set by:\n",
"\n",
"`estimator.predict(Xtest)`.\n",
"\n",
"The results of this are a simple array of predictions, of the same form and shape as `ytest`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A summary of the scikit-learn interface can be found here:\n",
"\n",
"http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/02.2-Basic-Principles.ipynb#Recap:-Scikit-learn's-estimator-interface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets put this alltogether. Below we write a function to create multiple datasets, one for each polynomial degree:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def make_features(train_set, test_set, degrees):\n",
" traintestlist=[]\n",
" for d in degrees:\n",
" traintestdict={}\n",
" traintestdict['train'] = PolynomialFeatures(d).fit_transform(train_set.reshape(-1,1))\n",
" traintestdict['test'] = PolynomialFeatures(d).fit_transform(test_set.reshape(-1,1))\n",
" traintestlist.append(traintestdict)\n",
" return traintestlist"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How do training and testing error change with complexity?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will recall that the big question we were left with earlier is: what order of polynomial should we use to fit the data? Which order is too biased? Which one has too much variance and is too complex? Let us try and answer this question.\n",
"\n",
"We do this by fitting many different models (remember the fit is made by minimizing the empirical risk on the training set), each with increasing dimension `d`, and looking at the training-error and the test-error in each of these models. So we first try $\\cal{H}_0$, then $\\cal{H}_1$, then $\\cal{H}_2$, and so on.\n",
"\n",
"Since we use `PolynomialFeatures` above, each increasing dimension gives us an additional feature. $\\cal{H}_5$ has 6 features, a constant and the 5 powers of `x`. What we want to do is to find the coefficients of the 5-th order polynomial that best fits the data. Since the polynomial is **linear** in the coefficients (we multiply coefficients by powers-of-x features and sum it up), we use a learner called a `LinearRegression` model (remember that the \"linear\" in the regression refers to linearity in co-efficients). The scikit-learn interface to make such a fit is also very simple, the function `fit`. And once we have learned a model, we can predict using the function `predict`. The API paper again:\n",
"\n",
">The predictor interface extends the notion of an estimator by adding a predict method that takes an array X_test and produces predictions for X_test, based on the learned parameters of the estimator.\n",
"\n",
"So, for increasing polynomial degree, and thus feature dimension `d`, we fit a `LinearRegression` model on the traing set. We then use scikit-learn again to calculate the error or risk. We calculate the `mean_squared_error` between the model's predictions and the data, BOTH on the training set and test set. We plot this error as a function of the defree of the polynomial `d`."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"degrees=range(21)\n",
"error_train=np.empty(len(degrees))\n",
"error_test=np.empty(len(degrees))\n",
"\n",
"traintestlists=make_features(xtrain, xtest, degrees)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(array([[ 1. , 0.33 , 0.1089 , 0.035937 ],\n",
" [ 1. , 0.75868254, 0.5755992 , 0.43669706],\n",
" [ 1. , 0.52 , 0.2704 , 0.140608 ],\n",
" [ 1. , 0.79 , 0.6241 , 0.493039 ],\n",
" [ 1. , 0.63633949, 0.40492794, 0.25767164],\n",
" [ 1. , 0.70533267, 0.49749418, 0.3508989 ],\n",
" [ 1. , 0.71829603, 0.51594919, 0.37060426],\n",
" [ 1. , 0.75841654, 0.57519565, 0.4362379 ],\n",
" [ 1. , 0.63071361, 0.39779966, 0.25089766],\n",
" [ 1. , 0.11 , 0.0121 , 0.001331 ],\n",
" [ 1. , 0.82850909, 0.68642731, 0.56871127],\n",
" [ 1. , 0.46 , 0.2116 , 0.097336 ],\n",
" [ 1. , 0.64832591, 0.42032648, 0.27250855],\n",
" [ 1. , 0.53596824, 0.28726196, 0.15396329],\n",
" [ 1. , 0.91 , 0.8281 , 0.753571 ],\n",
" [ 1. , 0.67 , 0.4489 , 0.300763 ],\n",
" [ 1. , 0.76 , 0.5776 , 0.438976 ],\n",
" [ 1. , 0.34 , 0.1156 , 0.039304 ],\n",
" [ 1. , 0.56 , 0.3136 , 0.175616 ],\n",
" [ 1. , 0.94 , 0.8836 , 0.830584 ],\n",
" [ 1. , 0.6 , 0.36 , 0.216 ],\n",
" [ 1. , 0.96 , 0.9216 , 0.884736 ],\n",
" [ 1. , 0.43754875, 0.1914489 , 0.08376823],\n",
" [ 1. , 0.54 , 0.2916 , 0.157464 ]]),\n",
" array([ 0.35817449, 0.64634662, 0.47094573, 0.80195369, 0.71040586,\n",
" 0.64431987, 0.81167767, 0.81232659, 0.65597413, 0.18382092,\n",
" 0.76638914, 0.52531463, 0.72006043, 0.53688748, 0.91261385,\n",
" 0.89700996, 0.7612565 , 0.23599998, 0.58004131, 0.93613422,\n",
" 0.60188686, 0.87217807, 0.49208494, 0.61984169]))"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"traintestlists[3]['train'], ytrain"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(array([[ 1.00000000e+00, 6.60000000e-01, 4.35600000e-01,\n",
" 2.87496000e-01],\n",
" [ 1.00000000e+00, 2.30000000e-01, 5.29000000e-02,\n",
" 1.21670000e-02],\n",
" [ 1.00000000e+00, 8.09657516e-01, 6.55545293e-01,\n",
" 5.30767174e-01],\n",
" [ 1.00000000e+00, 7.00000000e-02, 4.90000000e-03,\n",
" 3.43000000e-04],\n",
" [ 1.00000000e+00, 9.00000000e-02, 8.10000000e-03,\n",
" 7.29000000e-04],\n",
" [ 1.00000000e+00, 7.49902667e-01, 5.62354010e-01,\n",
" 4.21710772e-01]]),\n",
" array([ 0.60311145, 0.05762073, 0.79714359, 0.13897264, 0.05051023,\n",
" 0.74855785]))"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"traintestlists[3]['test'], ytest"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimating the out-of-sample error\n",
"\n",
"We can then use `mean_squared_error` from `sklearn` to calculate the error between the predictions and actual `ytest` values. Below we calculate this error on both the training set (which we already fit on) and the test set (which we hadnt seen before), and plot how these errors change with the degree of the polynomial."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"est3 = LinearRegression()\n",
"est3.fit(traintestlists[3]['train'], ytrain)\n",
"pred_on_train3=est3.predict(traintestlists[3]['train'])\n",
"pred_on_test3=est3.predict(traintestlists[3]['test'])"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"errtrain 0.00455053325387\n",
"errtest 0.00949690985891\n"
]
}
],
"source": [
"print(\"errtrain\",mean_squared_error(ytrain, pred_on_train3))\n",
"print(\"errtest\",mean_squared_error(ytest, pred_on_test3))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us now do this for a polynomial of degree 19"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"errtrain 0.00196640248639\n",
"errtest 14125204461.8\n"
]
}
],
"source": [
"est19 = LinearRegression()\n",
"est19.fit(traintestlists[19]['train'], ytrain)\n",
"pred_on_train19=est19.predict(traintestlists[19]['train'])\n",
"pred_on_test19=est19.predict(traintestlists[19]['test'])\n",
"print(\"errtrain\",mean_squared_error(ytrain, pred_on_train19))\n",
"print(\"errtest\",mean_squared_error(ytest, pred_on_test19))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see that the test set error is larger, corresponding to an overfit model thats doing very well on some points and awful on other.\n",
"\n",
"\n",
"### Finding the appropriate complexity\n",
"\n",
"Lets now carry out this minimization systematically for each polynomial degree d."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"for d in degrees:#for increasing polynomial degrees 0,1,2...\n",
" Xtrain = traintestlists[d]['train']\n",
" Xtest = traintestlists[d]['test']\n",
" #set up model\n",
" #fit\n",
" #predict\n",
" #calculate mean squared error\n",
" #set up model\n",
" est = LinearRegression()\n",
" #fit\n",
" est.fit(Xtrain, ytrain)\n",
" #predict\n",
" prediction_on_training = est.predict(Xtrain)\n",
" prediction_on_test = est.predict(Xtest)\n",
" #calculate mean squared error\n",
" error_train[d] = mean_squared_error(ytrain, prediction_on_training)\n",
" error_test[d] = mean_squared_error(ytest, prediction_on_test)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAI0CAYAAADsq+0rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlPX+//HnMOybSCqiGJRL4AIKmolpYpatalbfn1tp\nqXVCOnZazDaPnaxOnc5SmlaaC9mm5XIs66SYS6Vimm3ikiaBuKEiss4wM78/iMkRUJRlZvD1uC6u\nmM99zz3ve7y1ec1nuQ02m82GiIiIiIiIE3g4uwAREREREbl4KZCIiIiIiIjTKJCIiIiIiIjTKJCI\niIiIiIjTKJCIiIiIiIjTKJCIiIiIiIjTKJCIiIiIiIjTNMpAYjabueeee9i4cWON2kVERERExDka\nXSDZs2cPd911F9u3b69Ru4iIiIiIOE+jCySLFi3i/vvvp0uXLjVqFxERERER53HJQJKWlkZ8fHyl\n9kWLFjFw4EDi4uIYNmxYlb0dTz31FElJSdhsthq1i4iIiIiI87hcINm2bRuTJk2q1L506VKmTp3K\n4MGDmT59OsHBwYwbN44DBw44oUoREREREakLLhNITCYTs2fPZvTo0Xh6elbaPn36dIYNG0ZycjJ9\n+/Zl5syZhISEMH/+/IYvVkRERERE6oTLBJL169czZ84cJk+ezKhRoxy2ZWZmkpOTQ1JSkr3N09OT\nfv36sWHDhoYuVURERERE6ojLBJLY2FjS0tIYOXIkBoPBYdv+/fsxGAxERkY6tEdERJCVlVXlvJAz\nj3GudhERERERaXiVx0Y5SYsWLardVlBQAEBAQIBDe0BAAFarlaKiokrbUlNTqzxWde0iIiIiItLw\nXCaQnE1FD0h1vRseHvXf0bN169Z6fw0REREREXeUkJBwwc91i0ASFBQEQGFhIaGhofb2wsJCjEYj\nfn5+DVJHbd5oEVeQkZEBQExMjJMrEblwuo6lsdC1LI1BRkYGRUVFtTqGy8whOZvIyEhsNhtZWVkO\n7dnZ2URFRTmnKBERERERqTW3CCRRUVGEh4ezevVqe5vZbGbt2rX06tXLiZWJiIiIiEhtuMWQLYDx\n48czbdo0goKCiI+PZ+HCheTl5TF69GhnlyYiIiIiIhfIZQPJmRPYR4wYgclkIjU1ldTUVKKjo5k7\ndy4RERFOqlBERERERGrLJQNJSkoKKSkpldrHjBnDmDFjGr4gERERERGpF24xh0RERERERBonBRIR\nEREREXEaBRIREREREXEaBRIREREREXEaBRIREREREXEaBRIREREREXEaBRIREREREXEaBRIXZi6z\nkHeqFHOZpcFfOy0tjSlTptT6OAcOHCA6Opovvvii1sey2Wz8v//3/9iyZQsA/fv3Z9q0abU+riuL\njo5m3rx5Nd5/7dq1ulePiIiIuBWXvDHixW7n/uMsX7+XTT8dpMxiw9NooFeXVgzqeznRkaENUsP8\n+fMJCAio9XGaN2/OokWLiIqKqpOaQkND6dGjBwAzZ84kODi41sdtTPr168e8efNYvHgxd955p7PL\nERERETkn9ZC4mM837ufxGRv46vscyiw2AMosNjZsP8Dj0zfw+cb9zizvvHl7exMbG1vr4FBYWMjM\nmTO5//777W3R0dG0atWqtiU2OmPHjuXVV1/FbDY7uxQRERGRc1IgcSE79x9n1sffY7VVvd1qg1kf\nf8/OzOP1Wsddd93Fli1bWLt2LTExMeTk5DBjxgxuv/12XnzxRRISEhg6dCgAR48e5YknnqBPnz50\n7tyZPn368MILL9g/DJ85ZOuJJ57gz3/+M6mpqfTv35+4uDjuvvtu9u7de9aaFi9eTFBQEF27drW3\nnT5ka8mSJVx11VVs3LiRIUOG0KVLF26++WbWrFlzzvNdt24dt99+O127diUxMZEnn3ySkydP2rfX\n9BxXr17NPffcQ9euXRkwYACrVq1i7969jBw5kq5du3Lbbbfx448/OtQ/c+ZMHn/8cbp160afPn2Y\nPn06Nls1FwBw/PhxJk2aRM+ePenWrRsPPPAA2dnZDvv07t2bsrIyli1bds5zFxEREXE2BRIXsnz9\n3mrDSAWrDf67fl+91jF16lQ6duxIQkICH374Ic2aNQNg165d7Nq1i9dff52JEydis9kYO3YsO3fu\nZOrUqbz99tsMGTKE1NRUFi1aVO3xN27cyLJly3j66ad55ZVXyMzM5MknnzxrTZ9++ikDBgyodrvB\nYKCwsJCnnnqKUaNG8dZbb9G0aVMefvhh8vPzq33eb7/9xoMPPkj37t2ZPXs2kydP5ssvv+Rvf/sb\nwHmd49NPP02fPn2YNWsW4eHhTJo0iZSUFG655RamT59OQUEBkyZNcnjO3LlzOXbsGK+++iojR47k\nzTff5NVXX62y1tLSUu666y6+++47pkyZwj/+8Q9yc3MZNWoUp06dsu9nNBpJSkpi5cqVZ31PRUTE\nucqsZRSUFWG2qEdbLm6aQ1KPNnx3gHf/l0Fxadk597XZbJw4ZarZcbcf4Ke9RzEYDOfc18/Hk5ED\nY+jTrXWNjg3Qtm1bAgICCAgIIDY21t5usViYPHky0dHRABw6dIiQkBCeeeYZ2rdvD0DPnj1Zv349\n6enpjBw5ssrjFxUVMXv2bC655BL7cV544QVOnjxJkyZNKu1fUFDAzz//XO3xKpSVlfH4448zcOBA\nAEJDQxk8eDCbN2/muuuuq/I5P/30E2azmfHjx9uDl7+/Pzk5OQAcPny4xud40003ce+999rfq3Hj\nxjFo0CCGDx8OwP33388zzzxDQUEBgYGBAAQHB/PGG2/g6elJ3759yc/PZ8GCBSQnJ+Pt7e1Q69Kl\nS8nMzOSTTz6xz8np1asXSUlJvPPOOyQnJ9v37dSpEytXrqSsrAxPT/01FxFxJbtz9/Hp7jWkZ3+H\nxWbFuNNIz9ZdualDfzo0u9zZ5Yk0OH1SqUdL1u7hwNHCejl2TcMLlLJk3S/nFUjO5vTJ6S1btiQ1\nNRWbzUZmZib79+9n586dHDt27KxzO1q1amUPIxXHASguLq4ykBw6dAir1Up4ePg564uLi6t03KKi\nIqA8JJzOaDTSpUsXvLy8uOOOO7jpppvo168f/fv3x8PD47zPsUuXLvbfK8JNp06d7G0hISEA5Ofn\n2wPJdddd5xAYrr32WubNm8dPP/1EfHy8w/HT09OJjIykTZs29nPx8fEhISGBjRs3OgSSVq1aYTKZ\nyM3Ntb8PIiLifKv3bmD21vcdhudarBa+ydrKxuxtjE8YzoC2fZxYoWswW8wUmYvx9/LDy+jl7HKk\nnimQ1KOh/drXSw8JQNMg7xr3kAzt167Gxz3rsfz88PX1dWhbvHgxr776KseOHaN58+bExcXh4+Nz\n1nkQZx6j4jysVmuV+586dQqDwYCfn985azz92BWhoqKWTp06YTAYsNlsGAwGXnzxRYYMGcKCBQt4\n8803effdd5k7dy7NmjXj0UcfZciQIed1jlWtSnaumps3b+7wODQ0FJvN5jCHpUJeXh579+51CDlQ\n/v6duYpZxeueOnVKgURExEXszt1XKYyczmazMXvr+1zapPVF21Ni7z06sB2L1YLRwzV6jxSQ6pcC\nST3q0631efVMvJS6ha++zzn3cbu2ZtJd3WtTWp1IT09nypQpTJgwgZEjR9K0aVOAOl9uNiQkBJvN\n5jBP4kJ8/PHHDo8jIiIA6NatG2+88QalpaVs3LiROXPm8PTTT5OYmMj+/fvr9Rzz8vIcHh87dgzA\noQepQmBgIDExMTz//POV/md25vCuikBT0SsjIiLO9+nuNWf9wg7KQ8nK3WsuykDiir1HrhqQGhtN\nanchg69pi8c5Oj08DDCob/3/BTAajefc5/vvv8fDw4MHHnjA/kH98OHD7N69u05rCQsLw8PDg0OH\nDtXqOJ06dXL4adKkCYsXL+baa6/FYrHg4+NDv379mDhxIhaLhSNHjtT7Oa5bt87h8erVqwkKCqJj\nx46V9k1ISCA7O5tWrVo5nMfcuXP58ssvHfY9fPgw3t7e9qFjIiLiXGaLmfQD22u07+bs7RfdRPea\n9h7tzq3fhX1Ot3rvBp5Z8wobs7ZisZYPla4ISM+seYXVezc0WC1nMlvMnCzJbzTXiQKJC4mODOWB\n2+OqDSUeBki+I65Bbo4YHBzMvn37SE9Pp7S0tMp9unTpgtVq5fnnnyc9PZ1ly5YxevRozGYzxcXF\n5/V6Z/vGyN/fn9jYWLZvr9k/5OejR48eHDt2jD//+c98/fXXfPnll7zyyiu0adOGmJiYOj1HqHye\ne/fu5S9/+QtfffUVM2bMYOHChUyYMKHKiei33347TZo04Z577uGzzz5j48aNTJw4kc8//9y+0ECF\n7du307NnzxoN6xMRkfpXZC62f6g9F4vNwrNf/puVu9eQW1S/S/27ivPpPWoIrhiQKur69zdzuHvJ\nXxi//HHuXvIX/vPNnAavo65pyJaLuaFXFFGtgvnv+n1s/DHHfqf2xC6tuLUB79Q+ZswYHn74YcaP\nH8+CBQuq3Oeqq65i8uTJpKamsmTJEsLCwrjxxhvx9PQkNTXVfp8Og8Hg8MG4qg/J5/rgfN111/Hu\nu++e13Nqsk9UVBSzZs3itddeY+LEifbzeuWVVzAajed1jjV57TPbbrvtNkwmEw8++CDNmzfn6aef\nZtiwYQ77VzwnMDCQd999l5dffpmpU6diMpno0KEDM2fOpG/fvvbnlJWVsXnzZh5++OFzvj8iItIw\n/L38MHoYaxxKdh/7ld3HfmX+d4tpGxpJz4huXBnRlVZBYfVcacMzW8ykZ9fsS8dvsray+7/78DJ6\n4Wn0xNPDiJeHV/l/jZ4YPTzx8nBsL9/vtHbj7+32Nk+8ft/H8/d9lmZ87nLD61xxSFtdMdjO9W67\nEbPZzH333cd9991Hr169APjss894/fXXMZvNDBkyhAceeOCCjr1161YSEhLqstxzMpdZKCopw9/X\nEy/Pcw+haswKCgro378/r776qv3P1t3179+f/v378/TTT9fpcb/44guee+450tLSKs0tycjIACAm\nJqZOX1OkIek6Fnf172/msDFr6zn38zF6U2qpeqGbNsHhXBnRjZ4RXYkMiXDbnnCTxcwvx/aTcXQP\nPx7eyY6je5xd0gXr2Lw9gd4B+Hv54e/li7+33++/n/nja//dy+h1Xn92u3P38cyaV84akgwGA8/1\nf7TB57ZkZGRQVFRUq8/JjaaHZM+ePTzzzDPs2rXL3pabm8tLL73EkiVL7ENdYmNj6d27txMrrTkv\nTyNNAi/uIFIhMDCQcePGMXfu3EYTSOrL/PnzmTBhQqUwIiIiznVj+37nDCQGg4Gn+03E2+jF5uzv\nSM/eTnb+Qfv2rPyDZO04yMc7VtIi4BJ7OGl/yWV4GFx3JH6xuYRdufvIOLqHjKN7+OV4JmXWc69C\nWpUAL3/KbBbKrGU17nGqTxcSpoweRoegEuDl7xhczgg1n+9Z63I9NnWp0QSSRYsWcf/99zNv3jx7\n29dff03Pnj0JDS0f5jR48GBWrlzpNoFEHI0dO5ZVq1aRnp7OlVde6exyaq0+vtVKS0vD09PTYdiX\niIi4hoOnjpx1u8FgYHzCCK74/QPlZU3bMKzLIA7kHyI9ezvp2dvZeyLTvv+RwmN8sms1n+xaTYhv\nMD1ax9EzohsdW3TA08O5X2jmlxaw8+gvZBz9hYyje/g1L+usH6g9PTxrFFAS2yTwUOI4+2OrzYrF\nasFsLaPMaqHMUkaZtez3x2WYLb+3W82U2ferov2055WWmVm5Ow0b9TeIyGK1cKq0gFOlBXV63IoF\nEdxtaWKXCiRpaWk89thjbNu2zaF90aJFvP322xw6dIiYmBgmT55M165dHfZ56qmnAJg7d6697fDh\nw4SF/THWskWLFrVeqUmcx2g0snjxYmeXUWfS0tLq/JjXXnst1157bZ0fV0REaqfMauHjHSvtjzs1\n78DO3F/K79TuYaRnRDduap9U5bfbrYNbclvHG7it4w3kFh4n/cB2NmdvZ2fuL/YP+Xkl+azau4FV\nezcQ4O1PQqsu9IzoRlxYDN6e5+4xr+19No4Vnfi996M8hJzeq1OVS/ybEtO8PR2btyOmeXsKTEVM\nqcGQpJs69Hdo8zB44GH0qPMP4MeLT9RoeF2vNgmM7z6cInMJRaZiiszFFJmLyh+bi//4MZ32+xnb\nSsqqXjzoQlhsFv604kkubdKKiODw8p8m4UQEt6SJb3Cdvc7pLrSn63QuE0i2bdvGpEmTKrUvXbqU\nqVOnkpKSQufOnVm4cCHjxo1j+fLltG599nt8VHVRV9wsT0RERKShrPt1I0cKy+811bF5e/7a/y/8\n+POPlFpNxHWMrfEH6mYBodzUoT83dejPyZJ8vj3wA+kHtvPD4Z324UuFpiLW79/M+v2b8TF60y28\nM1dGdCW+VWf8vRxv2Hsh99mw2WwcKjh6WgDZYz+36rQKCiOmeXtimrcjpnk7mgdUvt/W+ITh1a5s\nVdF71FDDkW7u0J9N2dvOGZBu7tCfQO8AAr0DoPL9kWvEarVSVFZ8Rqj54+dUaQEf/byyxj02p0oL\n+PnIbn4+4niLgiCfwN9DSsvTgko4Ib7BFzRqw37tZH/Ho23vPe/nn87pgcRkMrFgwQJee+01/P39\n7asWVZg+fTrDhg0jOTkZgMTERG644Qbmz59v7xWpTlhYGJs2bbI/Pnr0qO5aLSIiIg2qzFLGkh2f\n2R//X+dbAOyrOl3ot/tNfIO5tu3VXNv2aopMxWw7+CObs7ez/eDP9knxpRYTm7K3sSl7G54ennQJ\ni6ZnRFe6t4ol/cD2Gq3aZLVZyTqZQ8bRX9hxdA87j/5CXkl+tXUZMBAZ0toeQKKbtyOkBt/OD2jb\nh0ubtGbl7jVsPj0gnaX3qL50aHZ5gwUkDw+Pc4aa7PxDNeqxCfIOxGqzUGiufGuCU6UF9jk8pwvw\n8iMiOJzWTU4LK8HhXOLftNqgUtWKX7Xh9ECyfv165syZw+TJkzl+/LjDHJDMzExycnJISkqyt3l6\netKvXz82bDj3zWgSExN57bXXyM3NpUmTJvz3v/9l1KhR9XIeIiIiIlVZu38jR3+/n0jnFlfQsUWH\nOn8Nf28/ro68kqsjr6S0zMT3h3aQnr2drTk/2D+cllnL+O7gT3x38KdzHs9mszH72/dYt38z2Sdz\nqvyAW8HoYaRt08jfez/ac0Wzywnw9r+g8+jQ7HI6NLscs8VMsbkEPy9fp82HcKWAVNMem8f7PED7\nSy7jZEk+2fkHyc4/RPbJg2TnHyQr/2CVc1YKzcXsOraPXccc72Xi6+lD69MCSpvfe1SOF+fVaRgB\nFwgksbGxpKWlERgYyIwZMxy27d+/H4PBQGRkpEN7REQEWVnlk6POTG6nP27RogWPP/4499xzD2az\nmQEDBjBgwID6OxkRERGR05gtZpbs+Nz+uKJ3pD75eHpzZURXrozoSpmljJ+P7i6fFH/ge06epWfj\nTDZgV+7eSu3eRi+uaHY50c3KA0j7Sy7DpwbzVM6Hl9HLJSZmu0pAOt8emxC/JoT4NaFzmOONk/NL\nTpWHlPzykHIg/yDZJw9xouRkpWOWlJWy93gme49nOrR7GAx1GkbABQJJixYtqt1WUFCe4gICHPuv\nAgICysfbFRVV2paamurweODAgQwcOLBOaq1Y+17EXVXcXV7XsrgzXcfiTtKP/WC/2/rlgW2w5ZrJ\nyC2/dhvqWvbGwNUB3UhsH0d20SF+ytvD5mPf1/j5Ph7eRAa0IjKgNZEBrQj3a/HHKl7Hrew7Xjm0\nSN1rTTPGXn4Hm3K3k5G/t3xBBIMHMcHtuKpZHK1Nl9ToWjIAbWhOG7/m4BcLYVBcVsLR0hMcLTnG\n0dLjHC05ztHS45w0V+5RsdbDLQydHkjOpiJ9VTd+TRPURURExFWVWcvYcORb++OksKucWE35ilSX\nBrQi1CfkvALJg1fcTZDXhQ3BkrrVJiCcNgHhlFnLKLWa8PHwxtOj9h/n/Tx9udQznEsDwh3aSyyl\n5Jae4GjJcY6UHOdg8VF+Lcyq9eudyaUDSVBQEACFhYX2e4lUPDYajfj5+VX31HqhuwKLu9MdrqUx\n0HUs7uLzPWvJ//0b5riWMQzs7rhkrbOuZbPFjHGnsUY3FTR6GOnWqeargEnjZraYuXvJX+r8hpQu\n3cUQGRmJzWYjK8sxiWVnZxMVFeWcohqQ2WLmZEk+Zov53DvXsbS0NKZMmVJnxzt8+DDjxo0jLy+v\nzo4pIiLiqkwWM0sz/pg7cmen+p87UlNeRi+ubN313DsCPVt3VRgRu/O5ds6HS/eQREVFER4ezurV\nq0lMTATAbDazdu1ah5W3GpsLWRO8rs2fP7/S/Jza+Oabb/j666/r7HgiIiKuLG3vV5woLp8o3C28\nU4OuyFQTNV216cwbEYrU5No5Xy7dQwIwfvx4PvjgA/7973+zbt06kpOTycvLY/To0c4urV6s3ruB\nZ9a8wsasrfbusIo1wZ9Z8wqr9557uWNXVHHR1vWqDCIiIq7GVGZiWcb/7I9dqXekQsWqTdXN023o\nGxGK+zjXtXMhXK6H5MyTGzFiBCaTidTUVFJTU4mOjmbu3LlEREQ4qcL6szt331nXdbbZbMze+j6X\nNmldr/9A3HXXXWzZsgUoH9ealpZGWVkZf//739m0aRNGo5GkpCSeeOIJmjZtCpSvFDJt2jTWrVvH\nqVOnaNu2LQ888ADXXXcdS5cu5cknn8RgMJCYmMiECRNISUmpt/pFREScadXeDfZlVOPDO9Pukijn\nFlQNV7rPhrgXh2sn+7taH89g01fWNbJ161YSEhLq9TX+/c2cGt2FM7FNAg8ljqu3Ovbu3ctjjz2G\nn58fjz/+OK1bt2bQoEGEhYUxYcIESktL+c9//kNgYCCLFi3C09OTp556ivT0dB577DFCQkJYvHgx\nK1euZMWKFTRt2pTU1FTeeOMN3n77bdq2bUtYWFi91S/V02RgaQx0HYsrKy0zkfLpM/b7fbx43WTa\nhkZWua8rXcvOvs+GuK8ff/4RU4mpVp+TXa6HpDH55rdv+fCnFZSYS8+5r81mI6+0Zjcr+iZrKzuW\n7alRV5mvlw//r/OtJF7avUbHBmjbti0BAQEEBAQQGxvLP//5T8xmM/PmzaNJkyYAxMXFcf311/Pp\np58yePBgtm3bRmJiItdffz0A8fHxNGvWDIvFQtOmTbn00ksB6NixIyEhITWuRURExJ2s2rveHkYS\nWnWpNoy4Gle5EaG4H08PT0yYaneMOqpFqvDfnas4eOpIvRy7puGFElixc/V5BZIzpaen07VrVwID\nA7FYyue1hIWF0bZtWzZt2sTgwYPp3r07ixYt4siRIyQlJdGvXz8ef/zxC35NERERd1NSVsryjC/s\nj11x7oiIK1IgqUeDoq+rlx4SgBCf4Br3kNwafV2Nj1uVvLw8fvjhBzp16uTQbjAYaNGiBQDPPPMM\nYWFhLF++nLVr12IwGOjbty9///vf1SMiIiIXhS9+Wc/J0lMA9Ggdx+Whlzq5IhH3oEBSjxIv7X5e\nPROuMofkTIGBgfTt25eJEydWmnBfsTSwt7c3KSkppKSksH//fv73v//x+uuv8+qrr/LXv/61wWoV\nERFxhhJzCf/dqd4RkQvh8sv+Xkxu7tD/nL0eDbUmuNFotP+ekJDAvn37aN++PZ06daJTp060b9+e\n6dOns3XrVqxWK7feeisLFiwAyu8fc//999O1a1cOHjwIgIeHLjUREWm8Pv9lHfml5XdlvzKiK1FN\nG99qoCL1RZ8SXYgrrQkeHBzMvn37SE9PZ8yYMeTn5zNu3DjS0tJYt24d48ePZ/PmzXTq1AkPDw9i\nY2OZOXMmH3zwAenp6bz11lts27bNPsk9ODgYgC+++IIDBw7Ue/0iIiINpdhcwoqdq+yP7+x0sxOr\nEXE/CiQuZkDbPjzX/1ES2yRg9CjvpTB6GEm8tDvP9X+UAW2vbpA6xowZg8lkYvz48Rw5coT33nsP\nPz8/Jk2axCOPPAKU3809OjoaKJ9DMmjQIN58803GjRvHkiVLmDx5MkOHDgWgV69eXH311UybNo15\n8+Y1yDmIiIg0hM/3rOWUqRCAqyLiiQxR74jI+dB9SGqoIe5DciatCS51zZXWvBe5ULqOxZUUmYtJ\n+eQZCkyFGDDwj4FPcWlI6xo9V9eyNAYZGRkUFRXpPiSNldYEFxERcW2f71lLwe+9I73axNc4jIjI\nHzRkS0REROQCFJmKWbFrNQAGDNyhuSMiF0SBREREROQCrNyzhkJTEQCJlyYQ0STcyRWJuCcFEhER\nEZHzVGgq4pNdaUD5KpjqHRG5cAokIiIiIufp091rKDIXA9D70h60Dm7p5IpE3JcCiYiIiMh5KDAV\n8unu03tHbnJyRSLuTYFERERE5Dx8umsNxeYSAPpEXkmroDAnVyTi3hRIRERERGqooLSQlbvXAOBh\n8OCOjuodEaktBRIRERGRGlqxazXFZeW9I30je9IyqIWTKxJxfwokIiIiIjWQX1rAZ3u+BMp7R4Z2\nutHJFYk0DgokUmfuuusu/vSnP9XqGFu3buXPf/5zHVVU7tSpUzz66KPs2LGjTo/rShYvXsx//vOf\n835e//79mTZt2nk/b+nSpQwePJhu3boxcOBAZsyYgdlsPu/jiIi4k092raakrBSAa6KuomVgcydX\nJNI4NPpA8tZbb3HDDTcwePBg3nzzTWeX06hNnTqVyZMn1+oYH330Eb/++msdVVQuIyODTz75BJvN\nVqfHdSWzZs2ioKCgQV5ryZIlPPnkk/Tt25eZM2cyfPhw3n77bV588cUGeX0REWfILznFZ3vWAmA0\neHB7R/WOiNQVT2cXUJ82btzIihUr+Pjjj/H39yc5OZnVq1czYMAAZ5fWKLVt29bZJVTJZrNhMBic\nXUajMXfuXAYPHswjjzwCQK9evbBYLPzzn//ksccew8/Pz8kViojUvf/uWk3p770j/S5LpEVgMydX\nJNJ4NOoekh07dtC7d28CAgIwGAz06dOH1atXO7sstxAdHc3HH3/Mn//8Z7p160afPn14//33OXz4\nMPfff7+llxYQAAAgAElEQVR9qM769evtzzl9yNbmzZuJjo7m22+/Zfjw4cTGxjJgwAAWL15c7Ws+\n8cQTLF26lD179hATE8OWLVsAOH78OJMmTaJnz55069aNBx54gOzsbPvzrFYrL7/8MklJSXTp0oWb\nb76ZDz74AID09HRGjx4NwB133METTzxR7ev/9ttvJCcnEx8fT48ePZg0aRInTpxwqG/ChAk88sgj\ndOvWjQkTJpCenk50dDQffvghV199NVdddRUHDhwAYNGiRdx6663ExcUxcOBAFixYUOk9fvPNN7nl\nllvo1q0bn332WZV1HT16lCeeeII+ffrQuXNn+vTpwwsvvGAfItW/f38OHjzIwoULiYmJqfb8cnNz\nefnllxkxYgTXXHMNy5Ytc9i+dOlSoqOjq/yp+POw2Wz06dOHwYMHOzz3sssuw2azkZOTU+3ri4i4\nq5Ml+fyvonfEw8jQjjc4tyCRRsYtekjS0tJ47LHH2LZtm0P7okWLePvttzl06BAxMTFMnjyZrl27\n2rd37NiRF154gZMnT+Lr68uaNWsa9bCduvb3v/+d4cOHM3LkSN59912ee+453nnnHYYMGcKYMWP4\n17/+xWOPPcb69evx8fFxeG5Fj8QjjzzCvffey0MPPcS7777LlClTiI+Pr7I3JTk5mePHj/Prr7/y\nyiuv0LZtW0pLS7nrrrswmUxMmTIFHx8f3nzzTUaNGsWKFSsICgrijTfesA8jCg8PZ82aNTz77LO0\nadOGrl27MmXKFJ577jlefPFFEhISqjzXY8eOMXz4cMLCwvjHP/5BaWkp//nPfxg7diyLFi3C07P8\nr8q6desYOHAgs2bNwsPjjzw/Z84cpk2bRn5+Pq1bt+af//wnc+fO5f7776d79+5s3ryZl156iby8\nPCZOnGh/3htvvMGTTz5JkyZN6N69e6W6bDYbY8eOxWg0MnXqVAIDA/nqq6+YPXs2kZGRjBw5ktdf\nf53x48fTvXt37r333irPz2q1cu+995KXl0dKSgrh4eH885//5MiRI/Z9+vXrx6JFi6q7HGjbti0G\ng4HHH3+80rY1a9bg4+ND69atq32+iIi7Wr5zFaUWEwBJlyXSPOASJ1ck0ri4fCDZtm0bkyZNqtS+\ndOlSpk6dSkpKCp07d2bhwoWMGzeO5cuX2z8U9erVi9tvv51Ro0bRtGlTEhMT2b59e8MVn5MDO3eC\nxdJwr3kmoxGio6FVq/N+anx8PA8//DAALVq04IsvviA+Pp777rsPgIcffph7772XX3/9lejo6CqP\nMXr0aHsPRceOHVm1ahUbNmyoMpC0adOG0NBQcnJyiI2NBeCDDz4gMzOTTz75hKioKKD8zzUpKYl3\n3nmH5ORktm3bRufOnRk0aBAAPXr0wNfXF19fXwICAmjXrh0A7du3p02bNlXWOX/+fMxmM/PmzaNJ\nkyYAxMXFcf311/Ppp5/aewQsFgvPPvssgYGBQHkPDJT3DvXr1w+AvLw85s+fz7hx4+wT9BMTE7HZ\nbLz99tuMHj2akJAQAHr37s2dd95Z7Z/B4cOHCQkJ4ZlnnqF9+/YA9OzZk/Xr15Oens7IkSOJiYnB\n29ubZs2a2d+3M3355Zfs2bOHl156ifbt2xMTE0NUVBRDhw6179O0aVOaNm1abS3V2bBhA0uXLmX0\n6NH4+vqe9/NFRFxZXvFJvvhlHfB770iMekdE6prLDtkymUzMnj2b0aNH27+dPt306dMZNmwYycnJ\n9sm1ISEhzJ8/375PYWEhAwYMYMWKFaSmpuLr60tERETDncQvv0BhIZSUOO+nsBD27r2g8rt06WL/\nvVmz8rGynTp1src1bdoUm83GqVOnqny+wWBw+IAcFBSEv78/RUVFNa4hPT2dyMhI2rRpg8ViwWKx\n4OPjQ0JCAhs3bgSge/fufPXVV9x9992kpqaSlZXFxIkTq+0Nqe51unbtSmBgoP11wsLCaNu2LZs2\nbbLvFxoaag8jp6sISwDff/89ZWVl3HCD4/+0brrpJkwmE99//32Vz6tKy5YtSU1NpV27dmRmZrJu\n3TrefPNNjh07hslkqvH5fffddwQHB9tDDZQHxDN7NCrOvaqfqmzcuNE+rO+hhx6qcT0iIu5i+c5V\nmCzlQ2Svvaw3zQJCnVyRSOPjsj0k69evZ86cOUyePJnjx48zb948+7bMzExycnJISkqyt3l6etKv\nXz82bNhgbztw4AAPP/wwy5Yto6SkhMWLF/Pss8823Em0a+caPSQXONk8ICCgUtv5Tlg+c38PDw+s\nVmuNn5+Xl8fevXsdghCUh52KD/P3338/fn5+fPTRR7z44ou88MILJCQk8Pe//73aHpGqXueHH36o\n8nVatPjjplehoZX/R2QwGLjkkj+670+ePAng0AZ/hLrTV8M6c5+qLF68mFdffZVjx47RvHlz4uLi\n8PHxOa/hh/n5+VX2fjRv/seSlUuXLq12jo3BYCA1NZUePXrY21auXMnjjz9Oly5deOONN/D29q5x\nPSIi7uBE8Um+2Fs+V9LTw5PbNHdEpF64bCCJjY0lLS2NwMBAZsyY4bBt//79GAwGIiMjHdojIiLI\nysqyr6rUoUMHBg0axODBg7Fardx9991VjtOvN61aXdBQKflDYGAgMTExPP/885U+gFd8ADYYDPah\nYYcOHWL16tVMnz6d5557jrfeeqvGr9O3b18mTpxY6XWqCmZnUzHk69ixYw5hJjc3F+C8hkWlp6cz\nZcoUJkyYwMiRI+3PPdswr6qEhIRw/PjxSu2nT9rv378/H3/8cbXHuOyyy+y/v//++/ztb3+jd+/e\nzJgxQ0O1RKRRWp7xP8y/944MuPxqLvE//2GtInJuLhtITv8gd6aKb5jP/KAYEBCA1WqlqKjIvu2+\n++6zz3morYyMjDo5jrs4fPiw/ZwLCwsByMnJsbdV3C8kMzOTwMBAioqKsNlsZGRkkJmZad/n9Mnf\nFouF3Nzcat/L/Px8SktL7dsjIiL46quvKCgoICgoyL7fv/71L/sciKlTp3LppZfaJ3QnJCSQkJDA\nnj17yMjIsIfUM2s53WWXXcaWLVuwWCz2IYJms5mXXnqJXr16ce2115KXl+dQW8W5n3mevr6+eHh4\nsHDhQkaNGmXf95133sFoNOLj42M/xunvcVVWrVqFwWCgX79+HDp0iEOHDnH8+HF27txJbGys/bkW\ni4Xjx49Xe6zw8HBOnTrF1q1b6dixIxkZGRw4cIDffvvN4XnVvT+nn+umTZt4+eWX6dWrFw899FCd\n3zdG5FyKi4uBi+/fZGlY+eYCvvjl994Rg5FOXpfX+TWna1kag4rruDZcNpCcTcU32NXdW+JsH6qk\n4VzIimYBAQEcO3aM77//nrZt2zJgwAA++eQT/vrXv3L77bcTGBjI//73PzZv3mwfstexY0c++ugj\nQkNDadeuHVlZWXz99df2iegV4fTbb7/F19e3ypWgBg0axNq1a3n22We59dZb8fDwYPny5ezZs8ch\nVNTkPIODg7nllltYtmwZHh4edOrUiZ9++olly5YxZMgQ/P39a/x+tG/f3j4ZPjExkaNHj/LRRx9R\nVlZGaWmpw/u2d+9efv7550rDzgC6du1KTEwMM2bMYPjw4QQFBfHee+/h5eVV41qgPKS98cYbNG3a\nlJtuuom9Z8xPioyMrLTimoiIO9pw5FvKbOVDrhNCOxPsVXn+oIjUDbcMJBXflBcWFjqM6S8sLMRo\nNNbbjdnOdo+HxsZgMNCyZUv7OZ86dQqDwUCrVq3sbQaDwT6XIyYmBn9/f/sQq4r9L7vsMof3zdPT\nk+bNm1f7XiYnJ/Pjjz/ywgsv8NJLL3HjjTeyePFiXn75ZWbPno3JZKJDhw7MmjWLa665BoApU6Zw\nySWXsHz5ct5//32aNWvGuHHjmDBhAh4eHkRHRzNkyBCWLl3K4cOHmTVrVqXXjYmJ4cMPP+Qf//gH\nr732GgaDgU6dOpGamkpcXBxQPuzJ19fXofbqzrNiNasPP/zQvvLbk08+6RBuznyPqxITE0NxcTGp\nqal8+eWXhIWFMWjQIDw9Pe2T3b28vHjooYeYOnUqzz//PJ9//jlhYWGVjpWamsqkSZN455138PHx\n4d5772XVqlWEhobW+NpOT08nPz8fgGeeeabS9o8++uii+nsizlHxbbKuNakvx4pOsO2nHQB4Gb24\nt/dwmvo1qfPX0bUsjUFGRsZ5LVhUFYPNDW7MMWPGDObOnWu/D8n+/fu54YYbmDt3LomJifb9pk2b\nxqZNm/jkk0/qvIatW7ee16pNIq5I//OTxkDXsdS3OVvftw/XuqlDf8Z0O795ezWla1kag4pAUpvP\nyW45tikqKorw8HCHu66bzWbWrl1Lr169nFiZiIiIuLPcouOs2fcNAN5GL4ZEX+/kikQaP7ccsgUw\nfvx4pk2bRlBQEPHx8SxcuJC8vDz7TfhEREREztfSHZ9TZi0D4Pp21xBSD0O1RMSR2wSSMyewjxgx\nApPJRGpqKqmpqURHRzN37tyGvfGhiIiINBpHC4+x5tfy3hEfozeDo69zckUiFwe3CCQpKSmkpKRU\nah8zZgxjxoxp+IJERESk0Vmy43Ms1vKVtQa2v4YmvsFOrkjk4uCWc0hERERE6tKRglzWVvSOePow\n6Ar1jog0FAUSERERuegt2fEZFpsVgBvaXUOwb9A5niEidUWBRERERC5qhwqOsnb/JgB8PX24VXNH\nRBqUAomIiIhc1Jb8/BnW33tHbmyfRLCP7sou0pAUSEREROSidejUEdZnbgbAz9OXW68Y4OSKRC4+\nCiQiIiJy0fpox8o/ekc6JBHoE+DkikQuPgokIiIiclHKOXWYDZnpAPh5+XLLFdc6uSKRi5MCiYiI\niFyUPv55JTabDYCbO/Qn0Fu9IyLOoEAiIiIiF50D+Yf46rctAPh7+XFzB/WOiDiLAomIiIhcdD76\n+VN778gtV1xLgLe/kysSuXgpkIiIiMhFJfvkQb75bSsAAV5+3NS+v5MrErm4eTq7ABEREZGGYLaY\nKTIXs+inFdio6B0ZgL+3n5MrE7m4KZCIiIhIo7Y7dx+f7l5D+oHtWKwWe7ufpy83dkhyYmUiAgok\nIiIi0oit3ruB2Vvft88XOV1JWQnf/PYtA9r2cUJlIlJBc0hERESkUdqdu6/aMAJgA2ZvfZ/dufsa\ntjARcaBAIiIiIo3Sp7vXVBtGKthsNlbuXtNAFYlIVRRIREREpNExW8ykH9heo303H9iO2WKu54pE\npDoKJCIiItLoFJmLHSawn43FaqHYXFLPFYlIdRRIREREpNHx9/LD6GGs0b5GDyN+Xr71XJGIVKfR\nB5Lly5dzyy23cOutt/Lkk09isdTs2xIRERFxX15GL65s3bVG+/Zs3RUvo1c9VyQi1WnUgaSoqIjn\nn3+e1NRUVqxYQV5eHsuWLXN2WSIiItIABrbre859DAYDN3XQndpFnKlRBxKr1YrNZqO4uJiysjJM\nJhM+Pj7OLktEREQawLaDP511u8FgYHzCCDo0u7yBKhKRqrhFIElLSyM+Pr5S+6JFixg4cCBxcXEM\nGzaM7dsdV9MIDAxk4sSJ3HjjjfTp04fS0lJuvvnmhipbREREnGRX7l5W7FwNgAcG4lrG2OeUGD2M\nJF7anef6P8qAtlc7s0wRwQ3u1L5t2zYmTZpUqX3p0qVMnTqVlJQUOnfuzMKFCxk3bhzLly+ndevW\nAOzcuZNFixaxdu1agoKCePTRR5k1axbJyckNfRoiIiLSQErLTMzcnIqN8nuQ3NH5Zu7odDNmi5li\ncwl+Xr6aMyLiQly2h8RkMjF79mxGjx6Np2fl3DR9+nSGDRtGcnIyffv2ZebMmYSEhDB//nz7Pl9/\n/TW9evUiNDQULy8vhg4dyrZt2xrwLERERKShvffDMg4WHAHg8qaXMiTmBqB8onuwb5DCiIiLcdlA\nsn79eubMmcPkyZMZNWqUw7bMzExycnJISkqyt3l6etKvXz82bNhgb4uOjmbjxo0UFRUBsHbtWrp0\n6dIwJyAiIiINbseR3Xy250sAPD08Sb7ybjxruPyviDiHyw7Zio2NJS0tjcDAQGbMmOGwbf/+/RgM\nBiIjIx3aIyIiyMrKwmazYTAY6N27N4MHD2bo0KF4e3vTqVMn/vSnPzXkaYiIiEgDKTGXMDM91f74\n/zrfwqUhrZ1YkYjUhMsGkhYtWlS7raCgAICAgACH9oCAAKxWK0VFRfZtY8eOZezYsXVSU0ZGRp0c\nR8RZiouLAV3L4t50HUt1VmR/yZHCYwBE+IfRzhbh0teJrmVpDCqu49pw2SFbZ2OzlU9SMxgMVW73\n8HDL0xIREZELtPfUb3x7/EcAPA1Gbou4HqNBnwdE3IHL9pCcTVBQEACFhYWEhoba2wsLCzEajfj5\n+dXL68bExNTLcUUaSsW3cLqWxZ3pOpYzFZmKee3zd+yPR8TdRp8rEp1YUc3oWpbGICMjwz5f+0K5\n5VcHkZGR2Gw2srKyHNqzs7OJiopyTlEiIiLiFPO3L+ZY8QkAYpq346YOSed4hoi4ErcMJFFRUYSH\nh7N69Wp7m9lsZu3atfTq1cuJlYmIiEhD2przI2t/3QiAj9GbB668Gw8N1RJxK245ZAtg/PjxTJs2\njaCgIOLj41m4cCF5eXmMHj3a2aWJiIhIAygoLeTNLQvtj0fFDaVlYHMnViQiF8JtAsmZE9hHjBiB\nyWQiNTWV1NRUoqOjmTt3LhEREU6qUERERBrS3G0fkleSD0CXsCu4rl0fJ1ckIhfCLQJJSkoKKSkp\nldrHjBnDmDFjGr4gERERcarN2d/x1W9bAPDz9OWBHhqqJeKu9DdXRERE3Ep+ySlmf/ue/fHobnfQ\nLCD0LM8QEVemQCIiIiJuw2azMXvr++SXlt8kuVt4Z5Iuc/0lfkWkegokIiIi4ja+/u1bNmd/B0CA\nlx/39xhZ7Y2SRcQ9KJCIiIiIWzhRfJK3t31gf3xP/P8j1C/EiRWJSF1QIBERERGXZ7PZePPbdyk0\nld8RukfrOPpEXunkqkSkLiiQiIiIiMtbt38T23J+BCDIO4Dx3UdoqJZII6FAIiIiIi7tWNEJ5n+3\n2P54XPfhhPgGO7EiEalLCiQiIiLismw2G29seYciczEAiW0S6NUmwclViUhdUiARERERl5W27yu+\nP5QBQBPfYMYmDHNyRSJS1xRIRERExCUdKTxG6vaP7Y/v6z6CIJ9AJ1YkIvVBgURERERcjtVmZVZ6\nKiVlpQD0jexJj9ZxTq5KROqDAomIiIi4nP/tWcfPR3YD0NSvCWPi73RyRSJSXxRIRERExKUcPHWE\nd39Yan/8QI+7CPQOcGJFIlKfFEhERETEZVitVmZuXoDJYgag/+W96RreyclViUh9UiARERERl/HJ\n7jR2HdsHQDP/UO7ueruTKxKR+qZAIiIiIi4h++RBPvzxv/bHyVfehb+XnxMrEpGGoEAiIiIiTmex\nWng9fQFmaxkAA9tdQ+ewaCdXJSINQYFEREREnG75zi/YezwTgLDA5oyMu83JFYlIQ1EgEREREafa\nfyKbxT9/CoABAxOuvBtfTx8nVyUiDcXT2QXUpw8++IAPPvgAg8GAzWYjJyeHpKQkXnrpJWeXJiIi\nIkCZpYzX0xdgsVoAuLlDf6Kbt3NyVSLSkBp1IBk2bBjDhg0DIDMzk3HjxvHoo486uSoRERGpsCTj\nMzLzsgFoHdSSYV0GObkiEWloF82Qrb/97W88+OCDNG/e3NmliIiICLDveCZLdnwOgMFgILnn3Xh7\neju5KhFpaG4RSNLS0oiPj6/UvmjRIgYOHEhcXBzDhg1j+/btVT5/y5Yt5ObmMmiQvnURERFxBWaL\nmdc3L8BqswIwOPp62l9ymZOrEhFncPlAsm3bNiZNmlSpfenSpUydOpXBgwczffp0goODGTduHAcO\nHKi073vvvcc999zTEOWKiIhIDSz66ROy8g8CcGmT1tzZ6WYnVyQizuKygcRkMjF79mxGjx6Np2fl\nqS7Tp09n2LBhJCcn07dvX2bOnElISAjz58932M9sNrNx40auv/76BqpcREREzmZ37j7+u2sVAEaD\nBxN6jsbL6OXkqkTEWVw2kKxfv545c+YwefJkRo0a5bAtMzPTvmJWBU9PT/r168eGDRsc9t21axdR\nUVH4+/s3SN0iIiJSvdIyE6+nL8BmswEwtOONXNa0jZOrEhFnctlAEhsbS1paGiNHjsRgMDhs279/\nPwaDgcjISIf2iIgIsrKy7P/IAWRlZREWFtYgNYuIiMjZvf/jcg6eOgLAZSFtuK3jjU6uSESczWWX\n/W3RokW12woKCgAICAhwaA8ICMBqtVJUVGTfduONN3LjjXXzj11GRkadHEfEWYqLiwFdy+LedB27\nr/0FB/hs3xqgfKjWjc37sGfXbidX5Ty6lqUxqLiOa8Nle0jOpqIH5MyekwoeHm55WiIiIo1WqcXE\nsuxVVIxh6BfWkzC/Zk6tSURcg8v2kJxNUFAQAIWFhYSGhtrbCwsLMRqN+Pn51cvrxsTE1MtxRRpK\nxbdwupbFnek6dh9mi5kiczH+Xn4s+O4jTpjyAWgXGsW4PiMxehidXKFz6VqWxiAjI4OioqJaHcMt\nA0lkZCQ2m42srCzatPljIlx2djZRUVHOK0xERETYnbuPT3evIf3AdixWCx4GD/v9RryMXkzoOfqi\nDyMi8ge3DCRRUVGEh4ezevVqEhMTgfLlfdeuXeuw8paIiIg0rNV7NzB76/sOC8xUhBGAhPDOtA5u\n6YzSRMRFuWUgARg/fjzTpk0jKCiI+Ph4Fi5cSF5eHqNHj3Z2aSIiIhel3bn7KoWRM23O3s7u3H10\naHZ5A1YmIq7MbQLJmRPYR4wYgclkIjU1ldTUVKKjo5k7dy4RERFOqlBEROTi9unuNWcNIwA2bKzc\nvUaBRETs3CKQpKSkkJKSUql9zJgxjBkzpuELEhEREQdmi5n0A9trtO/mA9sxW8y6O7uIAG667K+I\niIi4liJzMRarpUb7WqwWis0l9VyRiLgLBRIRERGpNX8vvxqvnGX0MOLn5VvPFYmIu1AgERERkVrz\nMnpxZeuuNdq3Z+uuGq4lInYKJCIiIlInbu7Qv9IiNGcyGAzc1KF/A1UkIu5AgURERETqRIdmlzM+\nYXi12w0GA+MTRmiFLRFx4BarbImIiIh7uKJZ20ptRg8jPSO6cVP7JIUREalEgURERETqzPr9m+2/\nD+8ymGsv742fl6/mjIhItRRIREREpE5YrVa+ytwClA/Puuayqwj2DXJyVSLi6jSHREREROrEz0d3\nc6z4BACxYdGE+oU4uSIRcQcKJCIiIlInTh+u1TfyKidWIiLuRIFEREREaq2krJRN2d8B4OPpQ4+I\nOCdXJCLuQoFEREREam1L9veUlpUCcFVEN3w9fZxckYi4CwUSERERqbX1macN14rq6cRKRMTdKJCI\niIhIrZwoPskPhzMACPULoVPzDk6uSETciQKJiIiI1MpXmVuw2WwA9Im8Eg8PfbwQkZrTvxgiIiJS\nK+v3b7L/ruFaInK+FEhERETkgu0/kU3myQMAXNa0DW2atHJyRSLibhRIRERE5II5TGaPVO+IiJw/\nBRIRERG5IFarla8ztwDgYfCgd2QPJ1ckIu7ooggkq1evZujQodx88808//zzzi5HRESkUfjxyE5O\nlJwEIK5lR0J8g51ckYi4o0YfSLKyspg6dSqzZs1ixYoVZGRksGbNGmeXJSIi4vbW7T/93iNXOrES\nEXFnnjXd0Ww24+XlVZ+11ItVq1Zx4403EhYWBsC///1vtzwPERERV1JsLmFL9nYA/Lx86dEqzskV\niYi7qnEPya233sr8+fPrsZSzS0tLIz4+vlL7okWLGDhwIHFxcQwbNozt27c7bP/tt9+w2WyMGzeO\nwYMH88477xASEtJQZYuIiDRKm7O/o9RiAuCqiHi8Pb2dXJGIuKsaB5KcnBz8/f3rs5Zqbdu2jUmT\nJlVqX7p0KVOnTmXw4MFMnz6d4OBgxo0bx4EDB+z7WCwWNmzYwMsvv8zixYv5+eef+eijjxqyfBER\nkUZnw2mra12je4+ISC3UOJBcf/31LF++nFOnTtVnPQ5MJhOzZ89m9OjReHpWHl02ffp0hg0bRnJy\nMn379mXmzJmEhIQ49OQ0a9aMq666itDQULy9vbn22mv54YcfGuwcREREGptjRSf46fBuAJr5hxLd\nvJ2TKxIRd1bjOSTBwcGkpaXRu3dv2rVrR9OmTfHwcMwzBoOBt956q86KW79+PXPmzGHy5MkcP36c\nefPm2bdlZmaSk5NDUlKSvc3T05N+/fqxYcMGe1tSUhKPPvooJ0+eJDAwkK+++op+/frVWY0iIiIX\nmw2Z6diwAdAn8ko8DI1+jRwRqUc1DiRr166ladOmAOTl5ZGXl1dpH4PBUHeVAbGxsaSlpREYGMiM\nGTMctu3fvx+DwUBkZKRDe0REBFlZWdhsNgwGA7GxsfzpT39i5MiRWCwWevXqxZ133lmndYqIiFws\nbDYb6x1W19JwLRGpnRoHEmcslduiRYtqtxUUFAAQEBDg0B4QEIDVaqWoqMi+bejQoQwdOrTW9WRk\nZNT6GCLOVFxcDOhaFvem69i5coqOkJ1/EIDWfmHkHzhB/oETTq7KPelalsag4jqujRoHkgo2m42d\nO3eSk5ODl5cXLVu2pEOHDrUu5ELqgOp7Zc4cTiYiIiK1933eTvvvcU2jnViJiDQW5xVI1q9fz7PP\nPktOTo5DIAgPD2fKlCkNOjcjKCgIgMLCQkJDQ+3thYWFGI1G/Pz86vw1Y2Ji6vyYIg2p4ls4Xcvi\nznQdO4/FauFfu8rncxoNHgy98haCfQKdXJX70rUsjUFGRgZFRUW1OkaNA8m3335LcnIyzZo14+GH\nH6Zt27ZYrVb27dvHe++9R0pKCqmpqVXeK6Q+REZGYrPZyMrKok2bNvb27OxsoqKiGqQGERGRi8n3\nh1k9DjcAACAASURBVDI4WVq+2ma38M4KIyJSJ2ocSF577TXatGnD4sWLCQx0/AdoxIgR3Hnnncyc\nOZM5c+bUeZFViYqKIjw8nNWrV5OYmAiU301+7dq1DitviYiISN1Yn6nJ7CJS92ocSH788UcefPDB\nSmEEIDAwkDvvvJNZs2bVaXHnMn78eKZNm0ZQUBDx8fEsXLiQvLw8Ro8e3aB1iIiINHZFpmK2HPge\nAH8vP+JbdXFyRSLSWNQ4kHh4eFBWVlbt9rKyMqxWa50UVZ0zJ7CPGDECk8lEamoqqampREdHM3fu\nXCIiIuq1DhERkYvNpuzvMFvMACS2ScDb6OXkikSksahxIElISOCDDz7g//7v/wgJCXHYduLECT74\n4AO6detW5wVWSElJISUlpVL7mDFjGDNmTL29roiIiMD6/Zvsv2u4lojUpRoHkoceeojhw4czcOBA\nbr/9dvvE8V9//ZUlS5ZQUlLCq6++Wl91ioiIiJMcLTzGjqN7AGgRcAlXNGvr5IpEpDGpcSDp2LEj\nCxYsYNq0acydO9dhW6dOnXjyySfp0kXjSUVERBqbDZnp9t/7RvWs9h5gIiIXosaBZMeOHcTGxvLR\nRx+Rm5trvxdJ69atadasWX3WKCIiIk5is9lYv/+P1bX6RGq4lojUrRoHkrFjx3LHHXfwyCOP0KxZ\nM4UQERGRi8De45nknDoMQIdLLic8qIWTKxKRxsajpjuaTCZatmxZn7WIiIiIizm9d6Rv1JVOrERE\n/j97dx4YVXnvf/w9mcmesAQIhAQTVglgWBUBQbAU1ApqFQVEiRYUMW29VmOs11+p9V63ansFqcoi\nIgpi24gUrIUgJLJDiKAEwxqysAYCZJ/MzO+PyMgYAgOZyUwmn9dfmeecnPkQjsTvnOd5vr7K6YIk\nKSmJefPmsW7dOkpKStyZSURERLxAtaWa9XnbADD6GRncYYCHE4mIL3J6ytayZcs4ffo006ZNq/lG\nkwk/P8d6xmAwkJWV5dqEIiIi4hFZR7/jXGXNh5D9o64jLDDUw4lExBc5XZDEx8cTHx/vziwiIiLi\nRdIPOe6uJSLiDk4XJKNGjaJv3761miKKiIiI7ympKmVb4U4AwgJC6RfVy8OJRMRXOb2G5Nlnn+X9\n9993ZxYRERHxEpvyMqm2VgMwuEN/TEanP8MUEbkiThckfn5+tGzZ0p1ZRERExEs47q6l6Voi4j5O\nf9zx3//937zyyisEBATQv39/IiIiai1qB2jVqpVLA4qIiEjDOlZygj0n9wMQFRZJ11YdPZxIRHyZ\n0wXJH//4R8rLy/nTn/50yfOys7PrHUpEREQ8JyP3x8XsQ+MGYjAYPJhGRHyd0wXJQw89pH+QRERE\nfJzNZmPdhdO1YtUMUUTcy+mC5Ne//rU7c4iIiIgX2Ft0kGMlJwDo3rozkWGtPZxIRHzdFW+ZsWXL\nFtauXcvRo0eZNm0awcHB7Nixg9tuuw1/f393ZBQREZEGsu7QJvvXw+Ju9GASEWkqnC5ILBYLycnJ\nrFy50j42btw4Tp8+TXJyMkuWLOHdd98lPDzcLUFFRETEvcwWMxvytgPg72diUId+Hk4kIk2B09v+\nvvPOO6xcuZIXXniBVatWYbPZABg5ciQpKSns3LmTt99+221BRURExL12HPmO0qoyAPpHJxAaEOLh\nRCLSFDhdkKSmpnLvvfcyceJEQkND7eMBAQEkJiZy//33s2rVKreEFBEREfdzmK4Vq94jItIwnJ6y\ndezYMXr16lXn8W7duvHpp5+6JJQrPfHEExw8eJDAwEAAHn/8cUaNGuXhVCIiIt7lXGUJmUe+BSA8\nMIw+UT09nEhEmgqnC5KoqChycnLqPL5161batWvnklCulJ2dzYoVKwgODvZ0FBEREa+14fB2LFYL\nAEOuGYDJz+jhRCLSVDg9Zevuu+/mk08+Yfny5VgsNf9gGQwGKisrefvtt1mxYgVjxoxxW9CrcfTo\nUcrLy/nNb37D2LFjmTVrlqcjiYiIeKX03At7j2i6log0HKefkDz66KPs27ePZ555BpOp5tueeuop\nzp49S3V1NcOGDWPatGluCZmWlsYzzzxDZmamw/jSpUuZN28eR48eJT4+npSUFPr06WM/XlRUxKBB\ng3jxxRcxGo08+uijtG3blnHjxrklp4iISGNUeO4Ye4sOAhAd3o7OEbEeTiQiTYnTBYnRaOSNN97g\n3nvvZfXq1eTl5WGxWGjfvj3Dhw/nZz/7mVsCZmZmkpycXGs8NTWVGTNmkJSURK9evVi0aBFTpkxh\n2bJlREdHA9CzZ0/efPNN+/c89NBDpKamqiARERG5QMahLfavh8bdgMFg8GAaEWlqrrgx4qBBgxg0\naJA7sjioqqrigw8+4K233iIkJASz2exwfObMmYwfP57p06cDMHjwYG699VYWLFjA888/D8COHTs4\nd+4cw4YNA8Bms9mf7oiIiAhYbVZN1xIRj3J6DUlDS09PZ+7cuaSkpDBp0iSHY7m5uRQWFjJixAj7\nmMlkYvjw4WRkZNjHKioqeOWVVygvL6eqqoolS5YwcuTIBvsziIiIeLvvT+7nRGkRAD0ju9E6NMLD\niUSkqfHaxwUJCQmkpaURFhZWazH6oUOHMBgMxMY6znGNiYkhLy8Pm82GwWBg0KBB3HXXXdxzzz1Y\nrVZGjx7N2LFjG/KPISIi4tXSL5iupacjIuIJXluQREZG1nmspKQEwKFB4/nXVquVsrIy+7FHH32U\nRx991CWZsrOzXXIdEU8pLy8HdC9L46b72HXM1mrW/1CQmAxGWpSF6OfagHQviy84fx/Xh9dO2boU\nm80GUOeiOz+/RvnHEhERaVA5Zw9SYa0CoHuzzgQZAz2cSESaIq99QnIp4eHhAJSWlhIR8eNc19LS\nUoxGo9uaIMbHx7vluiIN5fyncLqXpTHTfew6yzK+sn89pvfPiY/Sz7Qh6V4WX5CdnU1ZWVm9rlFn\nQTJnzpwrvpjBYGDKlCn1CuSM2NhYbDYbeXl5dOjQwT6en59PXFyc299fRESksTtbcY5vjnwHQPOg\nZiS01f8Ui4hn1FmQvPHGG7XGzk+ROj9l6qfjQIMUJHFxcURFRbF69WoGDx4MgNlsZu3atQ47b4mI\niMjFrT+8DYvNCsBN11yP0c/o4UQi0lTVWZCkpaU5vD5y5AiPP/44o0aN4sEHH6Rjx45YrVby8/P5\n+OOP+fe//817773n9sDnTZ06lZdeeonw8HD69evHokWLKC4uZvLkyQ2WQUREpLFKP3RB75E47a4l\nIp5TZ0Fyvtv5eb///e8ZNGgQ//M//+Mw3rVrV/7whz9QWlrKSy+9xCeffOKWoD9dwD5x4kSqqqpY\nuHAhCxcupHv37syfP5+YmBi3vL+IiIivyD97hP2ncwHo0CyKuBb63SkinuP0ovasrCyeffbZOo/3\n7t2bL7/80iWhfiopKYmkpKRa44mJiSQmJrrlPUVERHyV49ORG+vctVJEpCE4vT9u27Zt2bRp00WP\n2Ww21qxZ47DAXERERLyP1WYlI7em94gBAzfFXu/hRCLS1DldkEycOJH//Oc/JCcns3XrVo4ePUpu\nbi7r1q1jypQpbNiwoUEWtIuIiMjV2318L0VlpwHo1fZaWoW09HAiEWnqnJ6ylZiYSHFxMfPnz2f5\n8uX2cZvNRnBwMM899xx33XWXW0KKiIiIa6TnXjBdK1aL2UXE866oMeKTTz7J5MmT2bRpE4WFhQDE\nxMQwZMgQwsLC3BJQREREXKOyuorNeTsACDQGMDCmj4cTiYhcRaf2li1bMmzYMI4dO0ZUVBQBAQEY\njdq7XERExNttLfiG8uoKAG6I6UOQf5CHE4mIXMEaEoDdu3fz4IMPcsMNN3DHHXeQlZXF5s2bGT16\nNF999ZW7MoqIiIgLZOSq94iIeB+nC5Ldu3fzwAMPUFhYyP3334/VWtPdNTQ0lMrKSpKSkli/fr3b\ngoqIiMjVKy4/Q9bR3QC0DGrOdZHdPZxIRKSG0wXJG2+8Qbt27fjXv/7l0BOkd+/eLF++nE6dOjF7\n9my3hBQREZH6+frwNmw2GwA3xV6Pn98VTZIQEXEbp/81yszM5N577yU4OLhWA6Xw8HDuv/9+cnJy\nXB5QRERE6i/90I+9xG6Ou9GDSUREHDldkPj5+V1y8XpZWZn9kxcRERHxHoeLCzhUnA9AbIsYrmkR\n7eFEIiI/crog6d+/P6mpqVRXV9c6dvr0aZYsWULfvn1dGk5ERETqL/2Hzuyg3iMi4n2c3vb3qaee\nYsKECdx9993cfPPNGAwG0tPT2bRpE59++iklJSX89a9/dWdWERERuUJWq9W+u5bBYOCm2Os9nEhE\nxJHTT0i6d+/ORx99RHh4OHPnzsVms/H+++/z7rvv0rZtW+bNm0dCQoI7s4qIiMgV+vb495wuPwNA\nQtt4WgY393AiERFHTj8h2b17N927d+fjjz/m9OnT5OXlYbVaiYqKom3btu7MKCIiIlcp/dCPvUdu\nVu8REfFCThckv/rVr7j33nv53e9+R8uWLWnZsqU7c4mIiEg9VZgr2FyQBUCQKZDro/t4OJGISG1O\nT9mqqqqiXbt27swiIiIiLrSl4BsqqysBuDGmH4GmAA8nEhGpzemCJCkpiXnz5rFu3TpKSkrcmUlE\nRERc4MLpWsPibvBgEhGRujk9ZWvZsmWcPn2aadOm1XyjyVSry6vBYCArK8u1CUVEROSKnSorZtfx\nPQC0Cm5Jj8huHk4kInJxThck8fHxxMfHuzOLiIiIuMjXh7fYGxYPjbsBP4PTkyJERBqU0wXJyy+/\n7M4cbvfKK69w6tQpXnvtNU9HERERcSubzca6C6drqRmiiHgxl31cUlVVRUZGhqsu51IZGRksW7bM\n0zFEREQaRG5xPnlnCgHo1PIaYppHeTiRiEjdnH5CUlJSwosvvsj69espKyvDarXaj1ksFiwWCwDZ\n2dmuT1kPRUVFzJw5k8cff5xvv/3W03FERETcznExu56OiIh3c/oJyWuvvcbnn39Ohw4d6NevH5WV\nlYwePZrrr78eo9FIYGAgb731lltCpqWl0a9fv1rjS5cuZfTo0fTu3Zvx48dfdEH9888/T0pKCuHh\n4W7JJiIi4k0qzBWsy60pSPwMfgy5ZoCHE4mIXJrTBcnatWsZNWoUS5Ys4fXXXwdg0qRJzJ07l6VL\nl2Iymdi/f7/LA2ZmZpKcnFxrPDU1lRkzZnDnnXcyc+ZMmjVrxpQpUygoKLCf8/777xMfH3/RYkZE\nRMSX5Jw8wF82zCUx9Xecq6zZnr95YDjHSk56OJmIyKU5XZCcOnWKIUOGABAREUGbNm3sTySuvfZa\nxo0bx4oVK1wWrKqqijlz5jB58mRMptozy2bOnMn48eOZPn06w4YNY/bs2bRo0YIFCxbYz1m5ciVp\naWncddddvPXWW6xbt44ZM2a4LKOIiIg3WL0/gxfW/JmNedux2n6cUn264gwvrPkzq/d75xpPERG4\ngjUkYWFhmM1m++uOHTuSk5Njf925c2c++eQTlwVLT09n7ty5pKSkcOrUKd5//337sdzcXAoLCxkx\nYoR9zGQyMXz4cIeF9Z9++qn969TUVDZu3KiCREREfErOyQPM2b7YvsXvT9lsNuZsX8w1zaPp1rpT\nA6cTEbk8p5+Q9O3bl2XLllFeXg7UPBXZsmWLvUjZs2cPISEhLguWkJBAWloaDzzwAAaDweHYoUOH\nMBgMxMbGOozHxMSQl5dX5z/KIiIivmZFzprL/t6z2WyszFnTQIlERK6M009IHn/8cSZNmsTw4cP5\n8ssvuf/++/noo48YN24cMTExrFmzhjvvvNNlwSIjI+s8VlJSMzc2NDTUYTw0NBSr1UpZWVmtY3ff\nfTd33313vTJ52w5i3sB0/Dj+hw9jvuYaqi/xdybe4fwHCrqXpTHTffyjams1W/J3OHXu5vwd7Ppu\nFyY/p3/1i5vpXhZfcP4+rg+nn5AkJCSwdOlSbrvtNlq0aEGXLl149dVXOXfuHBs3bmT06NE899xz\n9Q7kjPOfBP30ycl5fn7qRttQAg4cwHjuHAEHDng6iohIk1NhrcJywZqRS7HYrFRaq9ycSETkyl3R\nxyTdu3d3WIMxZswYxowZ4+pMl3V+C9/S0lIiIiLs46WlpRiNRoKDg93yvvHx8W65bqOWnw8VFRAU\nBPr5eL3zn8LpXpbGTPfxj8wWM37Zfg4L2eti9DPSu0cC/kb/BkgmztC9LL4gOzubsrKyel3D6YKk\nqKjIqfNatWp11WGcFRsbi81mIy8vjw4dOtjH8/PziYuLc/v7i4iIeIPV+792qhgBGBjdR8WIiHgl\npwuSIUOG1DlF6kINMQ8yLi6OqKgoVq9ezeDBgwEwm82sXbvWYectERERX2S1Wln4zT+cXqhuMBi4\nvdstbk4lInJ1nC5InnjiiVoFicVioaioiIyMDAIDA/nNb37j8oB1mTp1Ki+99BLh4eH069ePRYsW\nUVxczOTJkxssg4iISEOrrK5i5qb32VKQZR+7LrI73574/qK7bRkMBqb2n6gtf0XEazldkPz617+u\n81hZWRnjx4/ngBsXNv+0GJo4cSJVVVUsXLiQhQsX0r17d+bPn09MTIzbMoiIiHjSmYqzvJrxN/ad\nOgTU/G58uO993Np1ODknD7AyZw2bC7KwWC0Y/YwMjOnL7V1HqBgREa/mkr3/QkJCuO+++3jvvfdI\nSkpyxSUdJCUlXfS6iYmJJCYmuvz9REREvE3B2aO8nD6L46U1azoDjQH8dtCvGBCdAEC31p3o1roT\nZouZcnMFwf5BWjMiIo2CyzYjLykp4ezZs666nIiIiPxg9/G9vL7+HUqranayaRHUjJSh0+kUEVvr\nXH+jvwoREWlUnC5Idu7cedHxqqoq9uzZw9y5c+ndu7fLgomIiAh8nbuF2Vs+pNpaDUBMsyieG/YE\nbULdv6uliEhDcLogue++++rcZctms9G6desGa4woIiLi62w2G6nZ/2bJrs/tYz0ju/H0kMcIDQjx\nYDIREddyuiD53//934sWJH5+frRp04YbbrgBk8llM8BERESarGqrhbnbF7PmwHr72LC4gUwbMAmT\nUb9rRcS3OP2v2i9/+Ut35hARERGgzFzOXzbM4ZujP/b1urfnLxjX8xdO9QMTEWls6r2G5HISEhKu\n6vtERESamqKy07yc/jaHzxQAYDT48dj1kxjecZCHk4mIuI9L1pBcjM1mw2AwNEjndhERkcbu0Ok8\nXs54m9PlZwAI8Q/md0Me5bq23T2cTETEvZwuSObNm8cf/vAHrFYrkyZNonPnzgQEBJCXl8eSJUvY\nv38/Tz75JC1atHBnXhEREZ+TdeQ73twwh4rqSgBah0Tw3LAn6NC8vYeTiYi4n9MFyfLlywkNDWXx\n4sWEhPy4u8egQYO45557eOihh9i1axdvvvmmW4KKiIj4otX7M5i7fQlWmxWAji07kDL0CVoGN/dw\nMhGRhuHn7ImrVq3innvucShGzjMajdx+++189dVXLg0nIiLiq6w2Kx/v/Iz3tn1sL0b6RfXijyOe\nUjEiIk2K009IgoKCyM/Pr/P4nj17CA8Pd0koERGRulRbq6mwVmG2mBttR/Iqi5nZWxay4fA2+9io\nLsN4uO99GP2MHkwmItLwnC5IRo0axUcffUT79u2ZMGECgYGBAJSVlfHBBx/wj3/8g2nTprktqIiI\nNG05Jw+wImcNW/J3YLFZMe4xMjC6D7d3u4VurTt5Op7TzlWW8PrX77Dn5H772IO97+GOa3+mbX1F\npElyuiB5+umn2bNnD6+88gqvv/46rVu3xmazcfLkSaxWK7/4xS944okn3JlVRESaqNX7M5izfTE2\nm80+ZrFa2JC3nY35mUztP4GRnYd6MKFzjpac4OV1szhSchwAf6M/vx6YyI0d+nk4mYiI5zhdkJxf\n0L569WrS09M5cuQIUPPkZOTIkdx4441uCykiIk1XzskDtYqRC9lsNuZsX8w1zaO9+klJzskDvPr1\n3zhXWQJAeGAYz970uFdnFhFpCE4XJOeNHDmSkSNHuiOLiIhILSty1tRZjJxns9lYmbPGa//nflNe\nJjM3L8BsMQMQFRbJczcn0S6sjYeTiYh4ntO7bAFkZWXxySef2F/Pnz+fYcOGccsttzB37lyXhxMR\nkabNbDGzpSDLqXM3F2TZ/4ffW9hsNv71/Wr+smGuPdu1rTvz0shnVIyIiPzA6YJkzZo1TJgwgQ8+\n+ACAbdu28dprrxESEkKHDh144403WLx4sduCiohI01NmLsditTh1rsVq4c31c/h8zyqyT+ylsrrK\nzekun2d+5icszPoHNmqe8Azu0J8Xhv+W8MAwj2YTEfEmTk/Zeu+99+jRowfz588H4J///Ccmk4kP\nP/yQNm3a8PTTT7N48WImTJjgtrAiItK0hPgHYzQYsdicK0q2H9nF9iO7APAz+HFN8/Z0iYijS6uO\ndG0VR3SzdvgZrmhywFWpqK7krxvnkVm4yz52V/xoxl83tkHeX0SkMXG6IPn+++959tlnad68OTab\njXXr1pGQkECbNjWPnAcOHMiqVavcFlRERJqeyuoqwgNDKa44e9lzDQaDw1oTq83KoeJ8DhXns/rA\n1wAEm4LoHBFLl1ZxdG3Vka4RcbSoZxNCs8VMmbmcEP9g/I3+nC4/w6sZszlw+jBQUxhN6T++UewC\nJiLiCU4XJAEBAVgsNZ9QffPNNxQVFfHQQw/ZjxcVFXllY8S5c+eSmpqKwWBg+PDhPP30056OJCIi\nTjh0Op831r/rdDEyY8RTBBr92Vt0iL2nDrKv6BCF5445nFdeXcG3x7/n2+Pf28dah0TUFCgRNU9R\nOra8hkBTwGXf094XpSALi9WC0c/IdZHXcvB0PmcqazIHmQL5r8FT6BvV6wr/9CIiTYfTBUl8fDyf\nfvopffv2ZdasWRgMBm699VYAdu/ezUcffUS/ft61j/quXbtYtmwZqamp+Pv7M2HCBNLT0xk2bJin\no4mIyCV8nbuFd7YuouqHheABxgDMFrN9LcaFDAYDU/tPJL5NFwA6RcQympsBKKkq5cCpw+wtOsje\nU4fYV3SQsz9su3veybJTnCw7xaa8TOCCqV4/PEHp2qoj7Zu1dZhqVVdflKyju+2vWwY357mhTxDX\nsoOLfioiIr7J6YIkJSWFKVOmcM8992Cz2Zg0aRKxsbFs2rSJxMRE2rRpw29/+1t3Zr1i1113HZ99\n9hlGo5FTp05RUlJCs2bNPB1LRETqUG21sOibf7IyZ419LLZFDE8PeZQzFedYmbOGzec7tfsZGRjT\nl9u7jqhzu9+wgFAS2sWT0C4eqNn16kRpEXtPHWRv0SH2FR3i4OnDmK3V9u9xmOq1PwOAYP8gukTE\n0iWiIyH+QXy8c9lFi6MLTek/QcWIiIgTnC5IunfvzvLly9m0aRPt2rWjb9++AHTr1o2UlBTGjh1L\nRESEW0KmpaXxzDPPkJmZ6TC+dOlS5s2bx9GjR4mPjyclJYU+ffo4nGM0Gvnoo49488036dOnDz17\n9nRLRhERqZ8zFWf5y4a57D6x1z520zXX89j1kwg0BdA2rA3dWndi13e7qLRW0btHAv5G/yt6D4PB\nQGRYayLDWjPkmusBqLZUk3umgL1FNdO89p46yJFzxx2+r9xcwa5j37Pr2PcXu+xFrc/dyvXRva8o\nn4hIU3RFjRFbtmzJbbfd5jAWERFBYmKiKzM5yMzMJDk5udZ4amoqM2bMICkpiV69erFo0SKmTJnC\nsmXLiI6Odjj3gQceYMKECSQnJ/N///d/WkciIuJl9hUd4o3171FUfhqomTb1YO9fcnu3WzAYDA7n\nmvxMmPxMV1yM1MVkNNE5IpbOEbHQtWaspKqUfUW57LM/STnIuarSK7ru+b4orsopIuKrrrhTe0Op\nqqrigw8+4K233iIkJASz2bHZ1cyZMxk/fjzTp08HYPDgwdx6660sWLCA559/HoC8vDxOnz5NQkIC\nfn5+jBkzhkWLFjX4n0VEROq25sB65m5fQvUP06aaB4bzX4On0COym8cyhQWE0ieqB32iegA1U72O\nlZ5k59HdzN2+xKlrWKwWys0VKkhERC7DazdDT09PZ+7cuaSkpDBp0iSHY7m5uRQWFjJixAj7mMlk\nYvjw4WRkZNjHjh07RkpKCpWVlVitVr744guuv/76BvsziIhI3cwWM+9t+5h3ti6yFyNdIuJ4ZdRz\nHi1GLsZgMNAurA0jOg7G6Gd06nuMfkaC/YPcnExEpPHz2ickCQkJpKWlERYWxqxZsxyOHTp0CIPB\nQGxsrMN4TEwMeXl52Gw2DAYDAwYM4L777uOXv/wlRqORG264gUceeaQh/xgiInIRp8qKeWPDe+wt\nOmgfu6XTEH7V736vfqLgb/Tnhug+bMzbftlzB0b38eo/i4iIt/DagiQyMrLOYyUlNVs2hoaGOoyH\nhoZitVopKyuzH0tMTHTZGpfs7GyXXMeXhB4+jKGyEltgIKX6+Xi98vJyQPeyeFZuaQFLc7+gpLoM\nAKPBj9vbD2dAWC/25ey77Pd7+j7uGdCJTWRecpctAwZ6BHTSf2tySZ6+l0Vc4fx9XB9eO2XrUs7v\n+/7ThY7n+fk1yj+WiIhPs9lsbDqZxYL9qfZipJl/KA93uocBrRpP48AOoVHcET0CAxf/HWTAwB3R\nI+gQGtXAyUREGqcrekLyySef8MUXX1BUVGTv2n4hg8HAihUrXBauLuc7wpeWljpsNVxaWorRaCQ4\nONgt7xsfH++W6zZq+flQUQFBQaCfj9c7/ymc7mVpaJXVVczZ9jHphZvtY/FtuvJfg6fQIujK+kN5\nw30cTzwDT/av6YtyQaf2y/VFEbmQN9zLIvWVnZ1NWVlZva7hdEEya9YsZs2aRfPmzenYsSP+/p6b\nFxsbG4vNZiMvL48OHX5sOpWfn09cXJzHcomISG3HS07y5/Xvcqg43z52e9cRTOpzDyYnF4h7V0nN\nKQAAIABJREFUo26tO9GtdSfMFjPl5gqC/YO0ZkRE5Co4XZD8/e9/58Ybb+S9994jICDAnZkuKy4u\njqioKFavXs3gwYMBMJvNrF271mHnLRER8axvju7m/zbOp+SHHh4BRn8eHfAAw+IGejiZ6/gb/VWI\niIjUg9MFyenTp3niiSc8XoycN3XqVF566SXCw8Pp168fixYtori4mMmTJ3s6mohIk2ez2Vi25z8s\n3rXMvu6vTWgrnhnyGHEtO1zmu0VEpClxuiCJj48nJyfHnVku6acL2CdOnEhVVRULFy5k4cKFdO/e\nnfnz5xMTE+OhhCIiAlBurmD2loVszt9hH+vdLp7f3PgI4YFhHkwmIiLeyOmC5JlnnuHxxx+nR48e\n/PznPycsrOF+qSQlJZGUlFRr3JVb+oqISP0VnjvGn79+l/yzR+xjd8WPZnyvsdoBUURELsrpguRP\nf/oTRqOR3//+9/z+97/HZDLV+uViMBjIyspyeUgREfF+2wq+YebmBZSbKwAIMgXyxMDJDIzp6+Fk\nIiLiza5oypa2pRMRkZ+y2qx8+u0K/rF7pX0sKjySZ4ZMI6a5enGIiMilOV2QvPzyy+7MISIijVBJ\nVSkzNy1gx5Fv7WMDonuTdMNkQgLc0xNKRER8yxU1RryUqqoqNm/ezNChQ111SRER8WKHiwt4ff27\nHCs5AdR0KL+v1x3c3eNW/AxaLyIiIs5xuiApKSnhxRdfZP369ZSVlWG1Wu3HLBaLvXP7+a6jIiLi\nG8wWM2XmckL8g+39NjYc3sbftnxIpaUKgFD/YH4z6BH6RvXyZFQREWmEnC5IXnvtNT7//HP69OlD\naGgo69evZ+zYsZw6dYqtW7diMpl4/fXX3ZlVREQaUM7JA6zIWcOWgiwsVgtGPyM3RPfGz2Bk/eGt\n9vOuaR7N0zc9RruwNh5MKyIijZXTBcnatWsZNWoUb731FqdOnWLw4MFMmjSJhIQEvv/+ex544AH2\n79/Pz3/+c3fmFRGRBrB6fwZzti+2NzUEsFgtbMzLdDhv8DUDmHb9JIJMgQ0dUUREfITTk3xPnTrF\nkCFDAIiIiKBNmzb2LX6vvfZaxo0bx4oVK9yTUkREGkzOyQO1ipGLua3rCH574yMqRkREpF6cLkjC\nwsIwm8321x07dnTo3N65c2cKCgpcm05ERBrcipw1ly1GAM5UnMVgMDRAIhER8WVOFyR9+/Zl2bJl\nlJeXAzVPRbZs2WIvUvbs2UNISIh7UoqISIMwW8xsKXCuwe3mgizMFvPlTxQREbkEpwuSxx9/nO+/\n/57hw4dTXFzM/fffT35+PuPGjSMpKYmPP/5YW/6KiDRyZeZyLFaLU+darBZ7V3YREZGr5XRBkpCQ\nwNKlS7ntttto0aIFXbp04dVXX+XcuXNs3LiR0aNH89xzz7kzq4iIuFmIfzBGP6NT5xr9jAT7B7k5\nkYiI+LoraozYvXt3ZsyYYX89ZswYxowZ4+pMIiLiIf5Gf26I7sPGvO2XPXdgdB97XxIREZGrdcWd\n2rds2cLatWs5evQo06ZNIzg4mB07dnDbbbfh769fTCIijd0vut3CpvzMSy5sNxgM3N7tlgZMJSIi\nvsrpKVsWi4Xf/e53TJ48mffff58vvviCoqIidu3aRXJyMpMnT+bcuXPuzCoiIg2gW+tOTO0/gbr2\nzzIYDEztP5FurTs1aC4REfFNThck77zzDitXruSFF15g1apV9k/ORo4cSUpKCjt37uTtt992W1AR\nEWk4IzsPpX2zdg5jRj8jg68ZwJ9ueZqRnW/yUDIREfE1Tk/ZSk1N5d5772XixImcPn3aPh4QEEBi\nYiJ5eXmsWrWKlJQUtwQVEZGGc7r8DAVnjwLQPrwtL97yO4L9g7RmREREXM7pJyTHjh2jV69edR7v\n1q0bJ06ccEkoERHxrB1HvrV/PSA6gWZB4SpGRETELZwuSKKiohw6s//U1q1badeuXZ3HRUSk8dhW\nuMv+df/213kwiYiI+DqnC5K7776bTz75hOXLl2Ox1DTNMhgMVFZW8vbbb7NixQqv3QL4/fff5447\n7mDMmDE899xz9u7yIiJSW5XFzK6j2QCEBYTSrZUWr4uIiPs4vYbk0UcfZd++fTzzzDOYTDXf9tRT\nT3H27Fmqq6sZNmwY06ZNc1vQq7Vz505SU1P5xz/+QWBgIMnJyXz44Yc88sgjno4mIuKVvj32PZWW\nKgD6RvV0ulGiiIjI1XC6IDEajbzxxhvce++9rF69mry8PCwWC+3bt2f48OH87Gc/c2fOq9asWTP+\n3//7fwQGBgI1zR0LCws9nEpExHtlarqWiIg0oCtujDho0CAGDRrkjiyXlJaWxjPPPENmZqbD+NKl\nS5k3bx5Hjx4lPj6elJQU+vTpYz8eFxdHXFwcACdOnODDDz/k5ZdfbsjoIiKNhs1mY/uRmoLEaPCj\nT7ueHk4kIiK+7ooKksOHD7N582ZOnDiB1WqtddxgMPDEE0+4LNx5mZmZJCcn1xpPTU1lxowZJCUl\n0atXLxYtWsSUKVNYtmwZ0dHRDufm5+fz6KOPMm7cOG688UaXZxQR8QW5xfkUldVs7R7fpishAcEe\nTiQiIr7O6YLkX//6FykpKVRXV9d5jqsLkqqqKj744APeeustQkJCai1GnzlzJuPHj2f69OkADB48\nmFtvvZUFCxbw/PPP28/bvXs306ZN47HHHuOBBx5wWT4REV+z/YLpWv00XUtERBqA0wXJzJkziYuL\n449//CMxMTEYje5f5Jiens7cuXNJSUnh1KlTvP/++/Zjubm5FBYWMmLECPuYyWRi+PDhZGRk2MdO\nnjzJlClTePHFFxk5cqTbM4uINGYXFiQDVJCIiEgDcLogOX78OCkpKfTv39+deRwkJCSQlpZGWFgY\ns2bNcjh26NAhDAYDsbGxDuMxMTHk5eVhs9kwGAwsWLCA8vJy3n77bWbNmoXBYGDo0KE89dRTDfbn\nEBFpDIrLz7Dv1CEAosPb0S480rOBRESkSXC6IOndu/clGyO6Q2Rk3b8MS0pKAAgNDXUYDw0NxWq1\nUlZWRmhoKE8//TRPP/20S/JkZ2e75Dq+JPTwYQyVldgCAynVz8frlZeXA7qX5eK2n/rO/nVcUHuv\nvU90H4uv0L0svuD8fVwfThckL7zwAo888gjNmjVjxIgRtGrVCoPBUOu89u3b1zuUM2w2G8BFMwD4\n+Tnd81FERICcswftX3cL7+jBJCIi0pQ4XZCYTCaaN2/OO++8wzvvvFPneQ1V5YeHhwNQWlpKRESE\nfby0tBSj0UhwsOt3homPj3f5NRu9/HyoqICgINDPx+ud/+9T97L8VJXFzMHv8gEIDQhhVP8RXtsQ\nUfex+Ardy+ILsrOzKSsrq9c1nC5I/vu//5uDBw8yduxY4uLiGmRR+6XExsZis9nIy8ujQ4cO9vH8\n/Hx73xEREXHOd8cv7M7ey2uLERER8T1OFyS7du3iscceIykpyZ15nBYXF0dUVBSrV69m8ODBAJjN\nZtauXeuw85aIiFzedofu7L08mERERJoapwuS1q1b26dJeYupU6fy0ksvER4eTr9+/Vi0aBHFxcVM\nnjzZ09FERBoNm81mL0jUnV1ERBqa0wXJww8/zLx587jlllscpkg1pJ8uYJ84cSJVVVUsXLiQhQsX\n0r17d+bPn09MTIxH8omINEa5xQX27uzd23QhNCDEw4lERKQpcbogyc/Px2KxcNttt9G5c2datWpV\nax2JwWDgvffec3lIgKSkpItOF0tMTCQxMdEt7yki0hRsL9xp/7p/+wQPJhERkabI6YLkyy+/xGg0\nEhkZyblz5zh37lytc+ragldERLxXpsP6EXVnFxGRhuV0QbJmzRp35hAREQ8orjjLvlO5ALQPb0uU\nurOLiEgDU/dAEZEmLLPwW2zUNJrV0xEREfEEFSQiIk2YpmuJiIinqSAREWmiqixmvjlW0yk6NCCE\na1t39nAiERFpilSQiIg0UbuP51BZXQlA33Y91Z1dREQ8QgWJiEgTte2C7X77abqWiIh4iAoSEZEm\nyGazkVn4LQB+Bj/6RPXwcCIREWmqVJCIiDRBh88UcLLsFADxbboQFhDq4UQiItJUqSAREWmCtmt3\nLRER8RIqSEREmqALCxKtHxEREU9SQSIi0sScqTjLvqJDAESFR9I+vK1nA4mISJOmgkREpIlx7M6e\n4OE0IiLS1KkgERFpYrR+REREvIkKEhGRJsR8YXd2/2B1ZxcREY9TQSIi0oR8d3yvvTt7n6iemNSd\nXUREPEwFiYhIE7L9gu7sWj8iIiLeQAWJiEgTYbPZ7OtH1J1dRES8hQoSEZEmIu9Mob07e/fWndWd\nXUREvIIKEhGRJmKbpmuJiIgXalIFidls5uGHH2bjxo2ejiIi0uAct/vt5cEkIiIiP2oyBcnevXt5\n8MEHycrK8nQUEZEG59CdPSyS9s3aeTaQiIjID5pMQbJ06VIee+wxrrtOTcBEpOnZceS7C7qz699B\nERHxHo2qIElLS6Nfv361xpcuXcro0aPp3bs348ePv+hTkOeff54RI0Zgs9kaIqqIiFdxWD8SrfUj\nIiLiPRpNQZKZmUlycnKt8dTUVGbMmMGdd97JzJkzadasGVOmTKGgoMADKUVEvI/ZYmbn0Zru7CHq\nzi4iIl7G6wuSqqoq5syZw+TJkzGZTLWOz5w5k/HjxzN9+nSGDRvG7NmzadGiBQsWLGj4sCIiXmj3\nib1UqDu7iIh4Ka8vSNLT05k7dy4pKSlMmjTJ4Vhubi6FhYWMGDHCPmYymRg+fDgZGRkNHVVExCtt\nL/hxd60BWj8iIiJepvYjBy+TkJBAWloaYWFhzJo1y+HYoUOHMBgMxMbGOozHxMSQl5eHzWbDYDA4\nHPvp6yuRnZ191d/rq0IPH8ZQWYktMJBS/Xy8Xnl5OaB7uSmx2Wxsyt0OgB8Ggs/6N/q/f93H4it0\nL4svOH8f14fXFySRkZF1HispKQEgNNSx23BoaChWq5WysrJaxxYuXOj6kCIiXup45SmKzecA6BAa\nRYgpyMOJREREHHl9QXIp53fMquuph5+fa2ekxcfHu/R6PiE/HyoqICgI9PPxeuc/hdO93HTs2f1v\n+9dDu9xIfPfG/3ev+1h8he5l8QXZ2dmUlZXV6xpev4bkUsLDwwEoLS11GC8tLcVoNBIcHOyJWCIi\nXsOxO7vWj4iIiPdp1AVJbGwsNpuNvLw8h/H8/Hzi4uI8E0pExEucqTjL3qKDALQLa0P78LYeTiQi\nIlJboy5I4uLiiIqKYvXq1fYxs9nM2rVrGTRokAeTiYh4nmN39oR6beohIiLiLo16DQnA1KlTeeml\nlwgPD6dfv34sWrSI4uJiJk+e7OloIiIepelaIiLSGDS6guSnn/BNnDiRqqoqFi5cyMKFC+nevTvz\n588nJibGQwlFRDzPbDHzzdHdQE139u5tung4kYiIyMU1qoIkKSmJpKSkWuOJiYkkJiY2fCARES+V\nfWLfj93Z2/VQd3YREfFajXoNiYiIXNy2wp32r/u3T/BgEhERkUtTQSIi4mNsNpt9/YjBYKBPVA8P\nJxIREambChIRER+Td6aQE6VFAHRv3ZnwwDAPJxIREambChIRER+TeeRb+9faXUtERLydChIRER+z\nvUDrR0REpPFQQSIi4kPOVpwj54fu7G3VnV1ERBoBFSQiIj7EsTv7derOLiIiXk8FiYiID7mwO/sA\nrR8REZFGQAWJiIiPqLZU27uzB/sH0b21urOLiIj3U0EiIuIjdp/YS3l1BQB92vXEZDR5OJGIiMjl\nqSAREfERF07X0na/IiLSWKggEREBzBYzZyrOYraYPR3lqtR0Z6/Z7tdgMNA3qqeHE4mIiDhHz/NF\npEnLOXmAFTlr2FKQhcVqwehnZGB0H27vdgvdWnfydDyn5Z89wvEfurNf26qTurOLiEijoYJERJqs\n1fszmLN9MTabzT5msVrYkLedjfmZTO0/gZGdh3owofMcp2upGaKIiDQemrIlIk1SzskDtYqRC9ls\nNuZsX0zOyQMNnOzqOBQk0Vo/IiIijYcKEhFpklbkrKmzGDnPZrOxMmdNAyW6emcrS8gpqimc2oa2\nJjq8nYcTiYiIOE8FiYg0OWaLmS0FWU6du7kgy+sXuu8o/NZeXKk7u4iINDYqSESkySkzl2OxWpw6\n12K1UG6ucHOi+tl+5MLpWlo/IiIijYsKEhFpckL8gzH6GZ061+hnJNg/yM2Jrl61pZpvjvzYnT1e\n3dlFRKSR8fmC5IsvvuCOO+5g9OjR/O1vf/N0HBHxAv5Gf26I7uPUuQOj++Bv9Hdzoqt3YXf23u16\nqDu7iIg0Oj5dkJw8eZJXX32VhQsXsnLlSjZu3Mj69es9HUtEvMAvut2CMystOkXEuj1LfWResLvW\nAG33KyIijZBPFyTr169n4MCBREREYDQaufPOO1m5cqWnY4mIF+jU8hpC/EMue96n3/6LA6dyGyDR\nlavpzl5TkBgMBvqoO7uIiDRCjaIgSUtLo1+/frXGly5dyujRo+nduzfjx48nK8tx15xjx47Rtm1b\n++vIyEiOHj3q9rwi4v3Sc7dQai4DoEVQM/uaEqOfkcEd+tOjTVcAKi1VvJIxm5OlpzyWtS4FZ49y\nrPQkAN1adaKZurOLiEgj5PWTjTMzM0lOTq41npqayowZM0hKSqJXr14sWrSIKVOmsGzZMqKjowEu\n2mPAz69R1GAi4kZWq5XP9/zH/vrJQb+ia6uOlJsrCPYPwt/oT2V1FX/86i/sO3WI4oqzvJzxNn+6\n5WlCAoI9mNzRtsKd9q/7t1czRBERaZy89v/Oq6qqmDNnDpMnT8Zkql03zZw5k/HjxzN9+nSGDRvG\n7NmzadGiBQsWLLCf07ZtW44fP25/feLECdq1U8MwkaZuS0EWheeOATVPFuLbdMXf6E+zoHD7AvZA\nUwDJQx+nTWgrAPLOFPLmhjlUO7ldcEPQ+hEREfEFXluQpKenM3fuXFJSUpg0aZLDsdzcXAoLCxkx\nYoR9zGQyMXz4cDIyMuxjgwcPZsuWLZw8eRKz2cznn3/OzTff3GB/BhHxPjabjc+yv7S/vit+dJ2N\nBFsENeO5YU8Q6l/zVGTnsWzmbl982Q7vDeFcZQnf/9CdPTK0FdHN9GGLiIg0Tl47ZSshIYG0tDTC\nwsKYNWuWw7FDhw5hMBiIjXXc/SYmJoa8vDxsNhsGg4HIyEieffZZHn74YcxmMyNHjmTkyJFXnSk7\nO/uqv9dXhR4+jKGyEltgIKX6+Xi98vJyoGnfy/vPHebA6cMARAa1IviMieyzl/55jOtwKx8eXIbF\nZmXNgfX4ldkYGjmgIeLW6ZvT2fbCqGNQDHv27PFonoak+1h8he5l8QXn7+P68NqCJDIyss5jJSUl\nAISGhjqMh4aGYrVaKSsrsx8bPXo0o0ePdl9QEWlUMo5vs399U5v++NXxdORCHcM6MDb6Z6TmrwJg\n9dENtAxoRq8W3dyW83K+P3vQ/vW1zTp6LIeIiEh9eW1BcinnPxWsa5qFuxaux8fHu+W6jVp+PlRU\nQFAQ6Ofj9c5/CtdU7+W9RQc5uDMfgDahrRh341inO7bHE4/xW3/+/l3N1uGf5a/mui696N6ms9vy\n1qXaUs2B7Jo/R7ApiFv7/6xJNURs6vex+A7dy+ILsrOzKSsrq9c1vHYNyaWEh4cDUFpa6jBeWlqK\n0WgkONh7dsEREe+ResHakbHX/tzpYuS8cT3vYGjsDQCYrdW8/vXfOHru+GW+y/WyT+6j3Kzu7CIi\n4hsaZUESGxuLzWYjLy/PYTw/P5+4uDjPhBIRr5Z3ppBtBd8A0DwwnBEdB13xNQwGA9Oun0T8Dz1K\nzlWV8nL625yrLHFp1svZXqDtfkVExHc0yoIkLi6OqKgoVq9ebR8zm82sXbuWQYOu/H8yRMT3Lbug\n78gvrv0ZAaaAq7qOv9GfZ4Y8RvvwmqarR0qO8/rX71BlMbsk5+U4dGfHQN/2vRrkfUVERNylURYk\nAFOnTmXJkiX85S9/Yd26dUyfPp3i4mImT57s6Wgi4mVOlBaxPncrAMH+QYzqPKxe1wsLDOW5YU/Y\nO6PvObmfv21ZiNVmrXfWyyk4d2F39o7qzi4iIo1eoylIfrqAfeLEiSQnJ7N8+XKefPJJSkpKmD9/\nPjExMR5KKCLeavme1Vh+KBZGd7nZJd3W24a1Ifmmx+2NFNcf3sbSb5fX+7qXs73gx2aI/aPVDFFE\nRBq/RlGQJCUlsX379lrjiYmJrFmzhh07drB48WISEvTLWUQcnak4S9rB9UDNdKvbu93ismt3a92J\nXw9MtL/+5+5/s+bABpdd/2K2F2r9iIiI+JZGUZCIiFytlTlfYf5hfceIjoNoEdTMpde/sUM/JvW+\n2/56zraP2HnUPU3OLuzO3ia0FTHNotzyPiIiIg1JBYmI+Kwyczlf7lsHgJ/Bj7HdR7nlfcZc+3NG\ndh4KgMVm5Y0N73G4uMDl77PjyHf2Pkz9219XZy8mERGRxkQFiYj4rP/sS6fMXA7AkGsGEBnayi3v\nYzAY+FW/++nTrgcA5eYKXsmYzenyMy59n/O7awEMaK8pqiIi4htUkIiIT6qqrmJFzhr767viR7v1\n/Yx+Rv5r8FRiW9RsrHGy7BSvZsymorrSJdevtlrIOvodAEGmQHr80AtFRESksVNBIiI+ae2hTZyp\nOAvUPE3o0Ly9298z2D+IlKHTaRncHIADpw/z1sb5WK313w54z4m96s4uIiI+SQWJiPgci9XC5xc0\nQnT305ELtQppyXNDnyDIFAjAtsKdLMz6e72vu+2C6VraXUtERHyJChIR8Tkb87ZzvLQIgJ6R3ejW\nulODvn9cyw48OWiKfdH5yr1fsfKC6WNX6qfd2ftFqTu7iIj4DhUkIuJTbDYbn2V75unIhfq178Wv\n+t1vf/3Bjr+zreCbq7pW4bljHCs5AUDXVh1pFhTukowiIiLeQAWJiPiUzCPfcvhMzZa7HVt0IKFt\nvMeyjOpyM3dcOxIAGzb+b+N8DpzKveLrqBmiiIj4MhUkIuIzbDYbn+3+t/31XT1Ge7xXx6Ted3ND\nTB8AKi1VvJIxmxM/TCdz1natHxERER+mgkREfEb2iX32TuZR4ZEMjO7r4UQ1DRl/PfBhukbEAVBc\ncZZX0t+mrKrcqe8vqSxlz8n9QE139obYLUxERKQhqSAREZ/xWfaPT0fu7D4KPz/v+Ccu0BRA8tDH\n7Y0Z884e4Y0N71FttVz2ex26s0epO7uIiPge7/htLSJST4dO55F1dDcAEcEtGBY70MOJHDUPakbK\nsCcI9Q8GYNexPczZ9rG92KiLw/qRaE3XEhER36OCRER8wmfZX9q/vuPakV7ZODCmWRRP3zQNo58R\ngK8ObiD1gqc6P1XTnb2myFJ3dhER8VUqSK6A2WL2dAQRuYij546zMT8TgLCAUEZ2GuLhRHXrGdmN\naQMm2V8v2fU5X+duvei5e07so8xcs9YkoV08/kb/BskoIiLSkFSQXIGH/vlf/HXDXHJOHvB0FBG5\nwLI9q+xTn27rOpwg/yAPJ7q0mzveyL09f2F/PXvLQvac2FfrvAt31xrQPqFBsomIiDQ0FSRXwGK1\nsCFvOy+s+TOr92d4Oo6IAKfKi1l3aBMAgaZAbu063LOBnDSu5y/s61yqrdW89vU7HDl33H68pjt7\nzfoRAwb6RvX0SE4RERF3U0FyFWw2G3O2L9aTEhEv8K/v06i2VgMwstNNhAeGeTiRcwwGA9Oun0TP\nyG4AlFSV8nL6LM5WlgCQV1zA0R+6s3dpFUfzoGYeyyoiIuJOKkiuks1mY2XOGk/HEGnSSipLWfXD\n00qjn5E7rv2ZhxNdGZPRxO+GPEp0eDsAjpac4MWv/sob698jedX/2s+rrK7UByAiIuKzmlRBYjab\nefjhh9m4caNLrre5IEsL3UU86N/71lJZXQnAzbEDaRXS0sOJrlxYQCgpw6bT7IcnO4fPFLA5fwfW\nC7YDPnymUFNFRUTEZzWZgmTv3r08+OCDZGVlueyaFquFcnOFy64nIs6rqK7ki5yvgJo1FmPjR3k4\n0dVrG9aGCdfdeclzNFVURER8VZMpSJYuXcpjjz3Gdde5rrGY0c9IsJfv5iPiq9YcWM+5qlIABnbo\nS/vwth5OVD87j+257DmaKioiIr7IqwuStLQ0+vXrV2t86dKljB49mt69ezN+/Hinnno8//zzjBgx\n4rJdka/EwOg+6gsg4gHVlmqW71ltf313/K0eTFN/ZouZLQXOPb3VVFEREfE1XluQZGZmkpycXGs8\nNTWVGTNmcOeddzJz5kyaNWvGlClTKCgoaPCMA6LVF0DEEzJyt1BUfhqA3u160LFlBw8nqp8yczkW\nq8WpczVVVEREfI3XFSRVVVXMmTOHyZMnYzKZah2fOXMm48ePZ/r06QwbNozZs2fTokULFixYYD/n\nrbfe4q677uLuu+/mq6++clvWxTuXUVxx1m3XF5HarFYry/b8x/76rvjRHkzjGiH+wRj9jE6dq6mi\nIiLia7yuIElPT2fu3LmkpKQwadIkh2O5ubkUFhYyYsQI+5jJZGL48OFkZPy4+8xvfvMbPvvsM1JT\nUx3OrS+jn5GBMX1pG9oGgBNlp3g9429UVVe57D1E5NK2FGRReO4YAF1bdaRHm64eTlR//kZ/boju\n49S5mioqIiK+pvYjCA9LSEggLS2NsLAwZs2a5XDs0KFDGAwGYmNjHcZjYmLIy8vDZrNhMBguef3L\nHb+U3/d4DJOfieKwc8zZ9wkl1WXsPXWIl1fP5N5rbsOvHtdurEIPH8ZQWYktMJDS7GxPx5HLKC8v\nByC7kf5d2Ww2luxbZn89IKwne/ZcfjF4Y9AzoBObyMRG3evcDBjoEdCp0f79uUpjv49FztO9LL7g\n/H1cH173hCQyMpKwsIt3Wi4pqelgHBoa6jAeGhqK1WqlrKzsstdfuHAhgwYNuqpsJr+PPT21AAAg\nAElEQVSa+q1FQDgT48bgb6h5/d2ZfXx1bNNVXVNEnHegJI/C8uMARAZG0K1ZRw8ncp0OoVHcET0C\nAxf/YMOAgTuiR9AhNKqBk4mIiLiX1z0huZTzO2TV9ZTDz8+99VV8fPyPXxNPeNvmvLl+DjZspB/f\nSq+4eIZ3vLpip9HKz4eKCggKggt+PuKdzn8KF99I/66WfvVv+9f39RlLz7geHkzjevHEM/Bkf1bm\nrGFzQRYWq8U+VfT2riPo1rqTpyN6hcZ+H4ucp3tZfEF2drZTDwUupVEVJOHh4QCUlpYSERFhHy8t\nLcVoNBIcHNygeQbG9OWB3nex6JtUAN7d9hFtQlvRM7Jbg+YQaQr2Fh3ku+M5ALQJbcWQawZ4OJF7\ndGvdiW6tO2G2mCk3VxDsH6Q1IyIi4tO8bsrWpcTGxmKz2cjLy3MYz8/PJy4uziOZxlz7c27pNASo\n2Y7zz+vftS+4FRHX+Sz7S/vXY6/9udO7UjVW/kZ/mgWFqxgRERGf16gKkri4OKKioli9+seGaGaz\nmbVr1171upD6MhgMTOk/gV6R1wJQWlXGK+lvc66yxCN5RHxR/pkjbC34BoDmgeGMaGpTI0VERHxY\noypIAKZOncqSJUv4y1/+wrp165g+fTrFxcVMnjzZY5lMfkaeGjKV6PB2ABwtOcGf17+rbsoiLvLZ\nnh+fjtze7RYCTAEeTCMiIiKu5PUFyU8XsE+cOJHk5GSWL1/Ok08+SUlJCfPnzycmJsZDCWuEBYSS\nMmw64YE1O4Rln9jHu1s/si/EF5Grc6K0iPW5WwEI9g9idJebPZxIREREXMmrC5KkpCS2b99eazwx\nMZE1a9awY8cOFi9eTEJCggfS1dY2rA3JN03D/4ftgdNzN/PP3V94OJVI47Z8z2osNisAo7vcTEhA\nw25eISIiIu7l1QVJY3Rt6848fsND9teffLuc9Ye3ejCRSON1puIsaQfXAzWLvG/vdouHE4mIiIir\nqSC5AuZqi1Pn3RR7Pff1usP+evbmheScPOCuWCI+a2XOV/a1WCM6DqJFUDMPJxIRERFXU0FyBe77\n/Qpe+3Abe3JPXfbce3rcztDYGwAwW6t57eu/cbzkpLsjiviMMnM5X+5bB4CfwY+x3Ud5OJGIiIi4\ngwqSK1BtsZGRVcCzMzP498ZDlzzXYDAw7fpJdG/dGYCzlSW8nPE2pVX162Qp0lSs2pdBmbkcgCHX\nDCAytJWHE4mIiIg7qCC5ClYb/O0f31z2SYm/0Z+nb5pG27A2ABScPcqbG+ZQbXVu6pdIU1VlMbMi\nJ83++k49HREREfFZKkiuktUGn6dffl1Is8Awnhs6ndCAEAB2HdvDvO1LtB2wyCWsPbiR4oqzAPRv\nfx3XtIj2cCIRERFxFxUk9bBxV6FTC93bN2vH00Mew2io+XGnHfiaf32fdpnvEmmaLFYLn+/5j/31\n3fG3ejCNiIiIuJsKkv/f3n3HR1HmfwD/zMzuJtkUekmBhCImSglNCUoJNkRRRPRiwB8oRUVA7w6Q\nsx2W04OzAuJ5hoCIB4IcoMehQhBBBRQiCEiIioGEEloIye5my8z8/thCNnVDykzg83698tqZZ56d\n/e5mMpnvPmVqwSWrsJa4Aqp7besumNRntG992d7/4Pu8PfUVGlGjtT13N05ZzgIArml1Fbq07Khx\nRERERFSfmJDUgkESYA42BFw/uWN/jEi4DQCgQsW8Hek4fO5IfYVH1Oioqoq1By+2joxg6wgREdFl\njwlJLXSKaQqjQarRc1K63YV+Mb0AuAfuztn2Ls5Yq59GmOhKkHliP44WHgMAdGjaDj3aJmgcERER\nEdU3JiS1cOhIAT7eeKhGA9RFQcSU68eic/M4AEBBSSHmbHsXNmdJPUVJ1HisPfiFb3nENbdBEAQN\noyEiIqKGwISklpZ9noV5H++BS1YCfo7JYMLMAY+hlbk5AODI+Ty8vX0RZE4HTFewg6d/waEzvwEA\nIsNb4/ronhpHRERERA2BCUkNGCQBAxOjMXfqjRg9NN5XvumHo3jh/R2w2JwB76tpcASeGjAZIYZg\nAO6uKkv3rK7zmIkai9KtI3fH3wpR5OmJiIjoSsD/+DWw8pU7MOPBPkiIa4GUW67Gn1J7wSC5u5Ts\n+eU0Zi7YhlPnAr8Te/um0fhj/4kQPdMBb/jlK3z+y5b6CJ1I13IKcvHjiQMAgGYhTTAg9jqNIyIi\nIqKGwoSkBsoOYE/u3Q4vTuqP0BAjAODoySJMn7cVv+aeD3ifiZHX4OFe9/vWF/+4EpnH99dNwESN\nROnWkeFX3wyjZNQwGiIiImpITEhqqVvnlvjH1AFo09x9J/aCIjtmLfwG3x84GfA+bu08CHd0uQmA\ne9rTt7an4cj5vHqJl0hvThadwva8TABAmCkUN3e8UeOIiIiIqCExIakD7dqE47VpA9GlfVMAgN0h\n42+Ld+K/3xwOeB8P9hiJ3lHdAAAlLjv+vm0hCmyF9RIvkR44ZScKSy5gzcEvfDPVDb1qMIKNwRpH\nRkRERA2JCUkdaRoehL89dgOSukUCABQVeG/NPry/bh9kpfppgUVRxBP9HkZc0xgAwFlrAeZuexd2\nl6Ne4yZqaNlnDuPN79Lwf//5Iyauewpf/f4dAMAoGXH7VYO1DY6IiIgaHBOSOhRsMuCp/+uLEYM6\n+co+3XoYf//ge5Q4XNU/3xiMpwZMRrOQJgCA3wqOYP7OxVDUwKcUJtKzTb9tw3ObX8P23N3lprl2\nyk7szPtRo8iIiIhIK1dEQrJ48WLceeedGD58OP7yl7/A6Qx8et6akkQB4+/qikfv6QbRc0+3HftP\n4umF36KgqPqbH7YwN8OsAY8jSDIBAL7P24N//7Su3uIlaijZZw7j/d3Lq7yR6Pu7lyP7TOBdHYmI\niKjxu+wTkp9++glr1qzB6tWr8dlnn0GWZXz44Yf1/rp33NgRzzx8PYJM7pm5fsk9j+nztiE3v6ja\n53Zo1g5PJD0MAe6M5tOsL5Hx2zf1Gi9RfVufvbnKZARwT+rwv+zNDRQRERER6cFln5BERETg+eef\nR1BQEAAgPj4ex48fb5DXvu6atvj74zeieYT7tU+ds2LG/G346dfT1T63T3QPPJh4r289bfdy7MvP\nAnBxMLBTrr+WHqobV/rvyiW7kFt4HN8c+QE7PTNpVWfnsT1X7OdFRER0JTJoHUBlMjIyMGPGDGRm\n+l/ErFy5EosWLcLJkyeRkJCAWbNmITExsdL9xMXFIS4uDgBw+vRpfPjhh3j11VfrM3Q/nWOa4h/T\nBuLFtB04crIIFpsTf/3Xdky9PxFD+rSv8rl3dBmCE0X52PjbNsiqgrnb3kVCq87Yd+oQZEWGJEq4\nPjoRw7oMQZeWHRvoHembU3bC6rTBbAzR9F4W2WcOY332Znx/bI+uflcuxYUSxQGn7KzTz8fucuB4\nUT6OXTiBvAsnkFd4EscunMSJ4lM1HgMlKzJszhLei4SIiOgKocuEJDMzEzNnzixXvmbNGsyePRtT\npkxB165dsWzZMkyYMAHr1q1DdHR0lfvMy8vDpEmTcN9996Ffv371FXqFWjczY86UAfj70h+wJ/s0\nXLKKN5f/iPyzVqTcejUEQajweYIg4OFef8ApyxnsPXkQdtmBPSd/9m2XFRnf5e7G9rxMTOz9AG7u\nNKCh3pKPS3bB7rAiyGjQ9GDSUwKw6bdt5cZKaP278n0+eT9CVhVIWZf2+VidNhy74E423InHCRy7\ncBKnLGehovrZ5AIhiRJCOPUvERHRFUNXCYnD4cAHH3yAefPmwWw2lxt8Pn/+fKSkpGDy5MkAgP79\n+2Po0KFYsmQJnnnmGQDAvHnzsHnzZgiCgGnTpiE5ORk///wzHn30UTzyyCMYPXp0g78vAAgNMeKv\nE/ph4Sd7sfH7owCAf395CCfPWTHlvkQYDRX3npNECcO73IK9Jw9Wum9VVfH+7uVo3yS6wS6+vRe4\ntm8/g2R3QA4ywRxx7IpPAKobuK3F7+pSPp8iezHyLriTjbzCE8jzJCFnbQUBv64kiIgMb4PoiLaI\niYjET/kH8cvZ36t93vXRiWwdISIiuoLoKiHZunUr0tLSMGvWLJw7dw6LFy/2bTty5AiOHz+O5ORk\nX5nBYMDgwYOxbds2X9m0adMwbdo03/qZM2cwYcIEvPjii7j55psb5o1UwiCJmHp/Itq2CMWHG9wJ\nxuZduThz3oa/jO2LMLOpwudl/P5ttftWVRXpmR9jRMJtCA8KQ7gp1PdokOr211z6ArebIkMCEwCv\nmgzcboh4Avp8di3H8aJ8OFxOXxJSaK9+8gUvo2REVHgbxHgSj+iItohpEom2Ya1hECVfvZ6R1+K5\nza9V+fkIgoBhXYYE/gaJiIio0dNVQtK9e3dkZGQgLCwMCxYs8NuWk5MDQRAQGxvrVx4TE4Pc3Fyo\nqlph16clS5bAZrPhnXfewYIFCyAIAgYMGIA//elP9fpeKiMIAu6/uQvaNDfjrRU/wiUr+OnXM5i5\nYBv+OiEJbZqb/eo7ZSe+P7YnoH0fLjiKN757v1x5iCEYYUGhfklKWFAoIoLCEGYKRXhQKMJNYX6J\nTJCh4uSosSYAK/Z9ipHXDIVLkeFUXHDKLrgU94932an4lzkVF1yyy/Mcp2e7DJdcqm6pZYfsxDnb\n+YDi/i53N/atyYJBNEASJUiCCFEUIQnu5Ytl3nURoiD5yiVB8tT31i2zD8/jD8f2Vv/5QMV/D2VU\nG3OwIcjX2lE68WhtbgFRrH5+jC4tO2Ji7wcqPX4EQcDE3qkcD0VERHSF0VVC0rp160q3FRcXAwBC\nQ0P9ykNDQ6EoCqxWa7ltADB9+nRMnz69TuI7eLDyblM11ToEmHh7FD7YeBxWu4Lc/GI8+fpmjLs1\nCu1bh/jqFbus5W4gV1M2VwlsrhKctpwN+DkGQYLZEAyzFIIQQzDMUjDMhhDkFOcFlACk7fg3+rfq\nBVmV4VJk96MqV7kuq4qnzFWmjgJZKVVflSF7EguHGthsTPtPHcL+U4cCfv8Nochh0TqECoVIQWgV\n1BytgpujZVBztA5ujlZBzRFhDPNP+i8ABRfOoABnAt53NFpifMdR2HFmDw5e+M09nkUQkRDRGf1a\n9kC0o0Wd/p3R5clmswGo23MykRZ4LNPlwHsc14auEpKqeC+CKxsAHsg3tHrToa0Zj9/VHulfHMPZ\nC04Ul8h4b30eHkiORNe4MABAsGiCJIiQA5ipSICAga37wq44YHXZYJXdiYhVtsHqKoFdcQQcm0uV\nccFpwQXnpV0051iOIcdy7JKe29hIggiDIEGECJtiD/h54YZQqFChqIr7p8xyQ0uJHYZ25iiEGkIq\n/TurC+1CI9EuNBIuxQW74kCQaIJBbDSnIiIiIqpjjeYqIDw8HABgsVjQvHlzX7nFYoEkSQgJCans\nqXUmISGh7vcJoEfXeLycvhNZRwrglFV8mHEc4+/qirsHdgIAXFfYE9tzd1e7r6R2vfB4/4cq3e5S\nZBQ7LCiyF6PIbkGxw4IL9mK/siJHMYrtFlzwPBY7rHU2e1JtGUUDDJIBBtHgXhYknLIG1uojQMDQ\nq5IRbDDB6NmHbz+iBKNk9JRJMEreck+d0q9Zatno6W5V+uL9ze/SAvpd9W/XG0/2n1DpdndiokJR\nPC1EqgxFcbcgKYria1HyLXvrKQoUzza7y4nXvv1nQNPuSqKE4X2HcjA5NQreb5Pr45xM1JB4LNPl\n4ODBg7BarbXaR6NJSGJjY6GqKnJzc9GuXTtfeV5enu8+I41Vk7AgvPzYDXhzeSa+3XscqgqkrduP\nk2ctmHB3N9zRZQh25GXWejCwQZTQNDgCTYMjAo5NURRYnFYUOSw4byvEi1veDugCV4CAu+NvRbAx\n6OIFvFTBBb5n3SgaS22T3OtS5Rf+XoEmAEnteuGhXvcF/L4vVV39rkRBhCgAKDUo/FJcHxNYMsuZ\nrYiIiEgrjSYhiYuLQ2RkJDZt2oT+/fsDAJxOJ7Zs2eI381ZjFWSUMHNMHyxt/jNWf/UrAOC/3/yO\nU+dsmDGmt2aDgUVRdA92DwpDVHibgC9wk9r1QmqPEXUeT1l1lQDUFb0N3Nbb50NERERUVqMaeDFx\n4kSsWLECb775Jr7++mtMnjwZ58+fx9ixY7UOrU6IooBxd16LyaN6QBTdrQHf/3wSf1n4DXq16ouX\nhkxH/3a9IQnub80lQUL/9n3w0pDpuLnTjQ0S4x1dhlQ7vkCLBKCqm0s29MxNN3cacPF35WnhkMSG\n/10B+vx8iIiIiErTdQtJ2Yuo1NRUOBwOLF26FEuXLkV8fDzS09MRExOjUYT14/akOLRqGoK5H/4A\nm13Gr3mFmD5vKx68PQH2X3ug5EALuOCCAQY47O2gRDUFWjZMbL4WgF3LKxxbIkCbBKB9k2j8L3sz\ndpa+U3tMTwy7KlmTi+0uLTuiS8uOcMpO2JwlCDEGa9Ylyu/z8d6pXePPh4iIiMhLUKubw5UAALt3\n70bv3r0b9DV/P16IF9J24GxhSZX1RAF47N4eGJoU1yBxfb49B//8/GuIbXLQM28XTC4XHAYDfozp\nAyU/Do8OHdRgsZRltZfgbJEFLcJDYQ4K1iQGPdt3YB/sigM9runOMSPUaHEgMF0ueCzT5cA7qL02\n18m6biG50nWIaoLXpg3EXxZ+g5NnK5+9QFGBd1fvRVxUBOJjm1dary5k5ZzDu6v3QlGbQi5OhOOI\nAlUtgVMIhtOeCKDhYikb17qtv2HH/hNwySoMkoCkblG4a2DHBo2jLKdLhsXmQmiIAUZD7Qao1wlV\nhOo0Aar2vTV199kQERGRJpiQ6FzLpiHoENWkyoQEcCclcz/che6dW7rv0i0KkEQBoiTAIIqQJAGi\nKPi2GSTBfVdvUYAkCZ76ot+y6KnnfY4oCVjx5SEofm1qIiAbAIPoF8unWw8j/sGGSQQ+357jSZIu\nlrlkFdv2HMO3e481aOuRl94SJG882/cdh6wAhhW/axaP3j4bIiIi0hYTEp1zumT88PPJgOqeLrAh\n44fceo4oMNv2HMPurHwEmySYjBd/gowSTAbx4rJRgsnoWTeVLpMQ5Ck3GSUEGcrU9ZTnnCgsl4yU\n1pCtR156S5D0FI+eYimLLTZERETaYEKicxabCy65cQ7zsZa4YC1xaR0GFBV4ZfH36NK+GUxGCUaD\nCKMnKTIZRBgNkmfdvWwyiDD6tokwGSQYjRcffWWl9iFJ7haii13aKo+lIRMkPcWjp1jKxqXHFhsm\nSEREdKVgQqJzoSEGGCQhoKREEgXMnToAoihAlhXIigpZUaHI7keXokCWVSiKClnxbC9VT5bV8mWK\nAkVR4ZJVOFwy/vft7wh0GoRWzULgdClwOGU4nLKmiVVBkR07DwTW0nQpRFGA0SBClpVKL7i9FBV4\n4f0diGwZWuH2amZVLl8flT/h+JnigOJ5adFOtG8bDgGC7/UFAb51wb0CARdnv/PfXr68dH1BAA7+\nfi6gWJb+7yAmjeiGcLMR4WYTTMb6uxjXY4uNXhMkIiKi+sKEROeMBgn9ukbim73Hq63bv3sUurRv\nVq/xFBbZA4plQGI0Zj7Yx69MlhU4PAmK3SHD7klUHE5PmUv2JS92p1Jq+WKdi+vub4/3/Xamvt5q\njSiKCrtDDrh+sc2JX3LP12NENXPB4sD+385qHQYAYN+vZzD1ta986yajhAizEeGhJoSb3T9hZiMi\nQk0ICzEhItSIME95RKh7W7jZBINU9cB9PbbY6DFBAthaQ0RE9YsJSSNw96BO+O6n41V+uywKwF0D\n6/9+ErWJRZJEhEgiQoLq5rBzumTc//T6wFqPJAELZ9wEQHW32rjcSY7TJcPhUuD0W3Y/Olyyp9yz\n7G3tKVvfs68Sh6vayQeo5hxOGWcKZZypZvrrskKCDJ4kxp2gRHgSGW9is/XHvIBabBpqggY9Jkh6\nba1xyQpKHO6/PT0kSHpL2PQWDxFRdZiQNALxsc3x2L09Kr1YEQVg8qgeDXKBoKdYatR61C0KUa0q\n7iJVV2qSIBkkActfHlb+YqGGtwWqqrbTJSP1uQ0BJ2wfPH8rDJLk3qfqvu2lqgLeWxWpKtw3w1QB\npXRZqXL3c/zrq6o7qfjjm19Dri4DgLvL16CeMSi2OVFsdaDI6kCR1b0cwNN9bHYXbHYXTp0L/DkV\n2bbnGLbtOQZRFCAKAOB+FETB1yVNdC+4y4WL3dwqr+/uz3axvoCzhbaAEqR3Vu3F0H6xMIcYYQ4y\n+B5DQ4wI8TxW1zoUCD221uhptrjS8eglYdNbPACTIyIKDBOSRmJoUhzioiLw6dbD2L7vuO+fTf9u\nURjewP9sSsdizd0LwD1+ZWBidIPHoqfWo5okSEndohBsqujPr4YDSKpgkMQaJWxNwur3RpJJ3QKL\n5cYe0fjz6PI3V1IUFdYSJ4qsTk+S4kCRxXFxvfRyqUTGYnPWSfyKokIBUHUaWP9yTlzAP9fsq7KO\nySBWmbCYgwwwBxthDjYgNNiIEM+jOdhdnneqSHetNXpLkBhP1fSYHBGRfjEhaUTiY5sj/sHmcLpk\nWEtcMAdr942TNxZXqzOwX7AiKMIMw9A+1T+xHuLQS4sNoK8ESW/x1DYWURQQZjYhzGxCJAJv7ZJl\nBcU2b9LiRJHNgYILJVj4yU++lp7qdIiM8KUhiqpCVVVf65HieSy9jtLl8JQr/uve5ygqoChKnU76\n4HApcBTZcb7IXmf7LMt776PEq1p5Zq67OINdxesijJKn3Fh6veK6Bkn0TZSgt+5sjKdqekuOSmOL\nDZE+Capawz4iV6jdu3ejd+/y39pe8TZuBEpKgOBg4JZbNAsj68g5XbQeARX/M/byJki39Yu7IuPR\nUyxzlv5wyRM01LWadPcTRQGPjOgGh+fCylrihLXEBUuJEzbPo3vKbSesdleNJlvQG29y4nS5x3JV\nJ9xsRFTLsMor1KABsqqqx04Xo8hafctbhNmE6NZVxON9rSpeTAhg2r3c/CJcsDiqrRfVMhRJ3SJ9\n05+Xnvo8yOg/vbn3flEX60m+qdENklBpXFk55/DUgm3VfvEwZ+oATu8N4ODBgwCAhIQEzWIgqq2D\nBw/CarXW6jqZLSR0WdBT65GeuteVjee7n465+97roLuf1p+NnlqPatLd74buURh2Q4eA9+2SFdjs\nLlhsTt+j1e6C1fNYtrywyI4fs0/X5u3UmUATEa8iqxOHjhbUY0Q1c8HqwIWcWg5iqkPHz1iw+qtf\na70fQYDvnk3eG9YaPQnLqXOBjYVKW7cf99/cBSFBBoQEGWD2PIYEGxBklAJKxAKl5xYbPU3QoLfW\nI8bTeOJxyYGfpyvDFpIAsYWkEjppIdErPSRIpe3bfwAlDgWJ3a/RPB49fDZ6arHJOnIOT83X/pvl\nGs1eJwr4++QboQJwyrIvgSj94/LNRuf9keGUvdv863pns/OVyzJKHDJOF9jq7f2S/ogCfIlKSLAB\n5iCjb9mXvHiWfQlNmfWQIPeYqJwTF/D0wm80/7sqq9wEDRq22Oit9YjxNJ54Sh/Hz6XE1Oo6mQlJ\ngJiQVIIJSaPC7gHlsbtfeY21O5tBEvDvl26vMMGt2X+6yis7XTJGP/95wPF8+MLQKhPuKv8FB7DJ\n6ZLxfy98ATnABPKZh65zz3znKnUfKM8U56WnMfdud3qXPdOde+vanXK5qdJr0pqlN13aNcUfbrna\ndx8j932OjJDqYMa6sqr7O2/IFhs9xcJ4Glc8ZWOZnVq7hIRdtojoisbufuU11u5sSd2iEBJk1FU8\nYSGmeo0nJMiApBrcPLfvNW3rLRa7w4WUZ/8X2FgoARg5pDMcTgW2Ehesnmm6bSUu35TdVs9yXXQH\nqU527nm8lL6zXHlosMHvpqzhZhPCQ42e+xqZEB568R5HEZ565mBDlWNs9DIBgZ5iYTyNK57qYrkU\nTEiIiOC+0GwSpn23Oj0kSJy9jvFciiCTIfCxUD2iMXbYtQHt1+lSSiUpTt+yN4GpLJkpsjhw8Ejt\nxvBYSlywlNTspreiKPhuyOprbfGs/5h9KqAxNiu+PITxd3X1K69sWE1FyU+FVcsUrth0KKBYVm7M\nxqR7ulVdsQ58vCn7kuOpbsxRQCOSylRamRFYPKs2/YJHR3aveJc1HApVVf1VgcaT8Qsm33sxnkDG\nY9X081m1+Zc6TUYAdtkKGLtsVYJdthoVdtmimmB3NsZTU3oZCwXUcPY6QcDIIZ1gK5FRZHHggtWB\nYqsDF6xOFFkcsNld9RorUWPHLltERFQv9NBa46Wn2eLKxqOHhE0v8eipda1Gs9f1iKqyxcbpUlBs\nq+hmrA5csDhQbHPigme92HpxuTGPqyFqSExIiIioSnrrzrZvf4guZovTU8Kmp3j0khwBddedzWgQ\n0Sw8GM3CgwN+bVVVYXfIvgSm4EIJXkzfCSWAvi6CAAzoEQ1RFCqckEEtO+NB1au+eLwURcX2/ScC\nmuxBEIB+10ZCFOtuKuayFEXFjgOBx3P9tW198dRFP5+ynYUURcUPB/MDjqdPfJtafz5VvZaiqNid\nlV/VPBcX4wHQK751pcfOpcXmf+zsyT4dUCw1cUUkJGlpaVizZg0EQcDgwYMxffp0rUMiIqJLZJBE\nhIWImk9d7aWXhM1LD/HoJTnSssVGEAQEBxkQHGRAq2YhQHQT9O8WWIvNjT2iMaOeZ7ALdDa9G3vU\n/2x6jKcO42mA2Q8DjaUm6n4+O53Zt28f1q1bhzVr1uCzzz7Drl27sHXrVq3DIiIiuuy5k6MgTZPH\noUlxmDN1AAYkRsMgub/FNkgCBiZGY87UAQ061ufuQZ1Q3RfpDTUhgp5iYTyNK55AYqmpyz4h6dat\nG9auXQuTyYSCggIUFxcjIiJC67CIiIiogcTHNsfMB/tg5St3YNkLQ7HylTsw48E+DT7Wx9tiU9nF\nXEOOsdFTLIynccVTXSyXQrddtjIyMjBjxgxkZmb6la9cuRKLFi3CyZMnkZCQgNPlDaQAABCQSURB\nVFmzZiExMbHKfUmShI8++ghvvPEGEhMTce21gU01SERERJcPPXRn09MEDXoa78N4Glc8ZY/j2tLl\ntL+ZmZmYOHEiVFX1S0jWrFmDZ555BlOmTEHXrl2xbNkyZGZmYt26dYiOjq52v4qiYObMmWjbtm2N\nx5Fw2t9KcNrfRoXT/tLlgMcxXS727T+giwkaAGg+3ofxNN549u0/AIe9pFbXybrqsuVwOPD+++9j\n7NixMBjKN97Mnz8fKSkpmDx5MgYOHIiFCxeiadOmWLJkia/OvHnzMGLECNxzzz346quvkJubi59+\n+gkAIIoihg8fjkOHDjXUWyIiIiKqkHuCBu0vKAF9jPcpjfFUTU/xGKTapxO6Ski2bt2KtLQ0zJo1\nC2PGjPHbduTIERw/fhzJycm+MoPBgMGDB2Pbtm2+smnTpmHt2rVYs2YNkpOTkZ+fj1mzZsFut0NR\nFGzYsAF9+/ZtsPdERERERESV09UYku7duyMjIwNhYWFYsGCB37acnBwIgoDY2Fi/8piYGOTm5kJV\nVQhC+dE1ffr0wf3334+RI0dCkiRcd911ePjhh+v1fRARERERUWB0lZC0bt260m3FxcUAgNDQUL/y\n0NBQKIoCq9VabpvXuHHjMG7cuFrH5+23TBeFHj0KwW6HGhQECz8f3bPZbAB4LFPjxuOYLhc8luly\n4D2Oa0NXCUlVvGPvK2oFAdzjQ+qb1Wqt99dobKylZzjj59No8FimywGPY7pc8FimK12jSUjCw8MB\nABaLBc2bX5zWzGKxQJIkhISE1Ovrc4YtIiIiIqK6p6tB7VWJjY2FqqrIzc31K8/Ly0NcXJw2QRER\nERERUa00moQkLi4OkZGR2LRpk6/M6XRiy5YtSEpK0jAyIiIiIiK6VI2myxYATJw4ES+//DLCw8PR\nq1cvLFu2DOfPn8fYsWO1Do2IiIiIiC6BrhOSsgPYU1NT4XA4sHTpUixduhTx8fFIT09HTEyMRhES\nEREREVFtCKp3+ioiIiIiIqIG1mjGkBARERER0eWHCQkREREREWmGCQkREREREWmGCQkREREREWmG\nCUk1Vq5cidtuuw09evRASkoK9uzZo3VIRDV2/vx5xMfHl/t54okntA6NKCAZGRno1atXufJ3330X\nycnJSExMxMMPP4zDhw9rEB1R4Co6lg8cOFDu/JyQkIC5c+dqFCVReYqiYPHixRg2bBh69uyJO+64\nAx999JFfnUs9J+t62l+trVmzBrNnz8aUKVPQtWtXLFu2DBMmTMC6desQHR2tdXhEAcvKyoIgCEhP\nT0doaKivvGnTphpGRRSYzMxMzJw5s1z5ggULkJaWhhkzZiAqKgoLFy7EQw89hPXr1yMsLEyDSImq\nVtmxnJWVBbPZjCVLlviVt27duoEiI6reO++8g7S0NDz++OPo3r07du3ahVdeeQUlJSUYP358rc7J\nTEiqMH/+fKSkpGDy5MkAgP79+2Po0KFYsmQJnnnmGY2jIwrcoUOH0KJFCyQlJWkdClHAHA4HPvjg\nA8ybNw9msxlOp9O3zWKxID09HVOnTsXo0aMBAL1790ZycjI++eQTjBs3TqOoicqr6lgG3OfoLl26\noHv37hpFSFQ1RVGwZMkSTJgwAZMmTQIA9OvXD+fOnUN6ejpSUlJqdU5ml61KHDlyBMePH0dycrKv\nzGAwYPDgwdi2bZuGkRHV3KFDh3D11VdrHQZRjWzduhVpaWmYNWsWxowZ47dt7969sNlsfufoiIgI\n9O3bl+do0p2qjmXgYkJCpFfFxcW45557cMstt/iVd+jQAefOncOOHTtqdU5mQlKJnJwcCIKA2NhY\nv/KYmBjk5uaC95OkxuTQoUOw2WxISUlB9+7dMWjQICxatEjrsIiq1L17d2RkZGD06NEQBMFv2++/\n/w4AaN++vV95u3btkJOT01AhEgWkqmMZALKzs3HixAmMGDECXbt2xa233oq1a9dqEClRxSIiIvDs\ns88iPj7er3zz5s1o27YtTp48CeDSz8nsslWJ4uJiAPDrb+9dVxQFVqu13DYiPVIUBb/99hvMZjOe\neuopREVFYcuWLXj99ddht9t9XRKJ9Kaq/vMWiwUmkwkGg/+/sdDQUN/5m0gvqjqWT506hYKCAhw9\nehR//vOfER4ejvXr12PWrFkQBAF33313A0ZKFLhVq1Zhx44dePbZZ2t9TmZCUglvC0hF32QAgCiy\ncYkaj/feew9RUVFo164dAKBv376wWCx4//33MWHCBJhMJo0jJKoZVVV5fqbLQpMmTZCeno4uXbqg\nZcuWAICkpCTk5+fjnXfeYUJCuvTpp59i9uzZGDp0KEaPHo333nuvVudknrUrER4eDsD9LVxpFosF\nkiQhJCREi7CIakwURVx//fW+ZMRrwIABKCkpwdGjRzWKjOjShYWFweFwQJZlv3KLxeI7fxM1BkFB\nQejfv78vGfEaMGAAcnNzYbPZNIqMqGKLFy/GU089hSFDhuAf//gHgNqfk5mQVCI2NhaqqiI3N9ev\nPC8vD3FxcdoERXQJTp06hZUrV6KgoMCv3G63AwCaNWumRVhEtRIXFwdVVZGXl+dXnpubiw4dOmgU\nFVHN5eTkYPny5eVm3iopKUFwcDC/ACVdeeONNzBnzhyMGDECb7/9tq+LVm3PyUxIKhEXF4fIyEhs\n2rTJV+Z0OrFlyxZOnUqNisPhwPPPP49PP/3Ur/zzzz9HXFwcWrRooVFkRJeuZ8+eMJlMfufowsJC\n/PDDDzxHU6OSn5+PF154AV9//bVf+caNG9GnTx+NoiIq74MPPsC//vUvjBs3Dq+++qpfV6zanpM5\nhqQKEydOxMsvv4zw8HD06tULy5Ytw/nz5zF27FitQyMKWExMDO644w68/fbbEAQBnTp1woYNG7Bp\n0yYsXLhQ6/CILonZbMaYMWN8x3VsbCz++c9/IiIiAqNGjdI6PKKA9e3bF3369MHs2bNRWFiIVq1a\n4eOPP0Z2djZWrFihdXhEAIDTp0/j9ddfx9VXX43bb78de/fu9dvetWvXWp2TmZBUITU1FQ6HA0uX\nLsXSpUsRHx+P9PR0xMTEaB0aUY28+uqreOedd7B06VKcPn0anTp1wvz58zF48GCtQyMKWNkBk3/6\n058gSRLS09NhtVrRq1cvzJ07l3dpJ90rfSyLooiFCxfijTfewPz583H+/Hlcc801WLx4MRISEjSM\nkuiib775Bk6nE9nZ2UhJSSm3ffv27bU6Jwsqb6hBREREREQa4RgSIiIiIiLSDBMSIiIiIiLSDBMS\nIiIiIiLSDBMSIiIiIiLSDBMSIiIiIiLSDBMSIiIiIiLSDBMSIiIiIiLSDBMSIiKqd/Hx8Zg9e7bW\nYRARkQ4xISEiIiIiIs0wISEiIiIiIs0wISEiIiIiIs0wISEiojq1bt06DB8+HD169MCoUaOQlZVV\nrs4XX3yBe++9Fz169EBSUhKefvppnDt3zq+Ow+HAnDlzMGjQIPTs2ROPPvoodu3ahfj4eKxduxYA\n8J///Afx8fHYuHEjBg8ejJ49e2L58uUAgHPnzuG5557DDTfcgO7du+Oee+7Bhg0bysWSlZWFSZMm\noXfv3ujZsyfGjx+Pn3/+uR4+GSIiqohB6wCIiOjysWrVKjz33HPo168fUlJScPDgQTz44IMQBMFX\nZ8WKFZg9ezaGDBmCUaNGIT8/H8uWLUNmZiZWr16N0NBQAMCTTz6JLVu24A9/+AM6d+6MDRs24PHH\nH/fbl3f52Wefxbhx4yAIAq677jpYLBakpqaisLAQY8aMQdOmTbF582b88Y9/RGFhIVJSUgAAP//8\nM0aPHo327dtj6tSpkGUZn3zyCUaPHo2PPvoI11xzTQN+ekREVyYmJEREVCcURcFbb72F6667DosX\nL/YlC1FRUZg3bx4AoLi4GHPnzsV9992Hl156yffc22+/HSNHjsTixYsxZcoU7NixA5s3b8b06dMx\nYcIEAMADDzyA1NRU7N27t9xrjxo1Co899phv/a233kJ+fj7WrVuH9u3bAwBGjx6NJ598Eq+99hqG\nDx+O0NBQvPzyy4iJicHq1athMLj/JaampuLOO+/Eq6++ig8//LB+PiwiIvJhly0iIqoTBw4cwNmz\nZzFy5Ei/VowxY8b4lr/77jtYrVYkJyejoKDA99OqVStcddVV2LJlCwAgIyMDkiT5PVcURYwdOxaq\nqvq9riAI6N27t19ZRkYGEhISEB4e7vc6N910E4qLi7Fr1y4UFBQgMzMTgwYNQlFRka+OzWbDoEGD\nkJmZCYvFUg+fFBERlcYWEiIiqhPHjh2DIAiIiYnxK4+IiECLFi0AAEePHgUATJ48udzzBUHw1cvN\nzUWrVq0QHBzsV6dDhw4Vvnbz5s391nNzc2G325GUlFTh65w4cQLNmjUDACxatAhpaWnl6gBAfn4+\nOnbsWPEbJiKiOsGEhIiI6pTD4ShXpiiK71EQBMyZMwetWrUqV89oNAIAXC6Xb7m0oKCgCl9TFP0b\n/GVZRlJSEiZNmlSuRQUAOnbsiBMnTgAAxo0bh4EDB1a438jIyArLiYio7jAhISKiOhETEwNVVZGT\nk4P+/fv7yi0WCwoKCgC4L/BVVUWLFi3KtV5s2bLFN6C9Xbt22LlzJxwOB0wmk69OTk5OQLFERUXB\narWiX79+fuV5eXnIzs5GcHCwL9kwmUzlYtm7dy8sFovfaxMRUf3gGBIiIqoT1157LSIjI7F8+XI4\nnU5fuXcaXgC44YYbYDQasWjRIl+rCQDs378fjz32GFauXAkAuOmmm+B0OrFq1SpfHVVVsWLFCr/x\nKZUZPHgw9u7di++//96v/JVXXsHUqVNhtVrRpk0bJCQkYNWqVb6ECQCKiorwxBNP4IUXXoAkSTX/\nIIiIqEbYQkJERHVCEAQ8/fTTePLJJ5Gamoq7774bhw8fxtq1axESEgLAPdZj6tSpePPNNzFmzBgM\nGzYMhYWFWLZsGZo3b45HH30UAHDjjTdi4MCB+Nvf/oZff/0VnTt3xqZNm/Djjz+We92KumQ98sgj\n+PLLLzFp0iSkpqYiNjYWX331Fb7++ms89NBDvtaRp59+GuPHj8e9996LlJQUmM1mfPzxxzh9+jQW\nLFhQj58WERF5SbNnz56tdRBERHR56NSpE7p27YqdO3fiv//9LywWC1555RV8++236NChAwYPHoze\nvXujffv22L17N9avX4/s7Gz07dsXc+fORWxsrG9fN998M4qLi/HFF1/g66+/RseOHTF+/Hhs2rQJ\nw4YNw1VXXYWsrCxs3rwZ9913H9q0aeN7bkhICIYNG4azZ8/iyy+/xObNmyEIAiZPnuw3PXB0dDRu\nuOEG/PLLL1i/fj127tyJqKgovPjii5WOKyEiorolqBV9tURERKSh4uJimEymcmM4vvzySzzxxBNY\nvHhxufEhRETUOHEMCRER6c7GjRuRmJiIrKwsv/INGzZAkiQkJCRoFBkREdU1jiEhIiLdGTRoEMLD\nwzF16lSkpKQgPDwc3377rW9cSJMmTbQOkYiI6gi7bBERkS79/vvvePvtt7Fr1y5YLBa0b98eDzzw\nAFJSUrQOjYiI6hATEiIiIiIi0gzHkBARERERkWaYkBARERERkWaYkBARERERkWaYkBARERERkWaY\nkBARERERkWaYkBARERERkWb+H6rzCDAjqPQJAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(degrees, error_train, marker='o', label='train (in-sample)')\n",
"plt.plot(degrees, error_test, marker='o', label='test')\n",
"plt.axvline(np.argmin(error_test), 0,0.5, color='r', label=\"min test error at d=%d\"%np.argmin(error_test), alpha=0.3)\n",
"plt.ylabel('mean squared error')\n",
"plt.xlabel('degree')\n",
"plt.legend(loc='upper left')\n",
"plt.yscale(\"log\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph shows a very interesting structure. The training error decreases with increasing degree of the polynomial. This ought to make sense given what you know now: one can construct an arbitrarily complex polynomial to fit all the training data: indeed one could construct an order 24 polynomial which perfectly interpolates the 24 data points in the training set. You also know that this would do very badly on the test set as it would wiggle like mad to capture all the data points. And this is indeed what we see in the test set error. \n",
"\n",
"For extremely low degree polynomials like $d=0$ a flat line capturing the mean value of the data or $d=1$ a straight line fitting the data, the polynomial is not curvy enough to capturve the conbtours of the data. We are in the bias/deterministic error regime, where we will always have some difference between the data and the fit since the hypothesis is too simple. But, for degrees higher than 5 or so, the polynomial starts to wiggle too much to capture the training data. The test set error increases as the predictive power of the polynomial goes down thanks to the contortions it must endure to fit the training data.\n",
"\n",
"Thus the test set error first decreases as the model get more expressive, and then, once we exceed a certain level of complexity (here indexed by $d$), it increases. This idea can be used to identify just the right amount of complexity in the model by picking as **the best hypothesis as the one that minimizes test set error** or risk. In our case this happens around $d=4$. (This exact number will depend on the random points chosen into the training and test sets) For complexity lower than this critical value, identified by the red vertical line in the diagram, the hypotheses underfit; for complexity higher, they overfit.\n",
"\n",
"\n",
"\n",
"Keep in mind that as you see in the plot above this minimum can be shallow: in this case any of the low order polynomials would be \"good enough\"."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Is this still a test set?\n",
"\n",
"But something should be troubling you about this discussion. We have made no discussion on the error bars on our error estimates, primarily because we have not carried out any resampling to make this possible. \n",
"\n",
"But secondly we seem to be \"visually fitting\" a value of $d$. It cant be kosher to use as a test set something you did some fitting on...\n",
"\n",
"We have contaminated our test set. The moment we **use it in the learning process, it is not a test set**.\n",
"\n",
"The answer to the second question is to use a validation set, and leave a separate test set aside. The answer to the first is to use cross-validation, which is a kind of resampling method that uses multiple validation sets!\n",
"\n",
"TO make some of these concepts more concrete, let us understand the mathematics behind finite sized samples and the learning process."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Learning from finite sized samples\n",
"\n",
"If we have very large samples, the law of large numbers tells us that we can estimate expectations nicely by making sample averages.\n",
"\n",
"However, we rarely have very large samples in learning situations (unlike when we are looking for posteriors). But, we can use Hoeffding's inequality to understand how our sample quantities differ from the population ones.\n",
"\n",
"Hoeffding's inequality applies to the situation where we have a population of binary random variables with fraction $\\mu$ of things of one type (heads vs tails, red vs green). We do not have access to this population, but rather, to a sample drawn with replacement from this population, where the fraction is $\\nu$.\n",
"\n",
"Then (where the probability can be thought of as amongst many samples):\n",
"\n",
"$$P(\\vert \\nu - \\mu \\vert > \\epsilon) \\le 2e^{-2\\epsilon^2 N}$$\n",
"\n",
"where N is the size of the sample. Clearly the sample fraction approaches the population fraction as N gets very large.\n",
"\n",
"To put this in the context of the learning problem for a hypothesis $h$, identify heads(1) with $h(x_i) \\ne f(x_i)$ at sample $x_i$, and tails(0) otherwise. Then $\\mu$ is the error rate (also called the 1-0 loss) in the population, which we dont know, while $\\nu$ is the same for the sample. It can be shown that similar results hold for the mean-squared error.\n",
"\n",
"Then one can say:\n",
"\n",
"$$P(\\vert R_{in}(h) - R_{out}(h) \\vert > \\epsilon) \\le 2e^{-2\\epsilon^2 N}$$\n",
"\n",
"Now notice that we fit a $h=g$ on the training sample. This means that we see as many hypothesis as there are in out hypothesis space. Typically this is infinite, but learning theory allows us to consider a finite effective hypothesis space size, as most hypothesis are not that different from each other. (This is formalized in VC theory, definitely out of scope for this class). \n",
"\n",
"The problem here is that the Hoeffding inequality holds ONCE we have picked a hypothesis $h$, as we need it to label the 1 and 0s. But over the training set we one by one pick all the models in the hypothesis space, before discarding all but one. Thus Hoeffding's inequality does not hold.\n",
"\n",
"However what you can do is this: since the best fit $g$ is one of the $h$ in the hypothesis space $\\cal{H}$, $g$ must be either $h_1$ OR $h_2$ OR....and there are say **effectively** M such choices.\n",
"\n",
"Then:\n",
"\n",
"$$P(\\vert R_{in}(g) - R_{out}(g) \\vert \\ge \\epsilon) <= \\sum_{h_i \\in \\cal{H}} P(\\vert R_{in}(h_i) - R_{out}(h_i) \\vert \\ge \\epsilon) <= 2\\,M\\,e^{-2\\epsilon^2 N}$$\n",
"\n",
"Thus this tells us that for $N >> M$ our in-sample risk and out-of-sample risk converge asymptotically and that minimizing our in-sample risk can be used as a proxy for minimizing the unknown out-of-sample risk.\n",
"\n",
"Thus we do not have to hope any more and learning is feasible.\n",
"\n",
"This also tells us something about complexity. M is a measure of this complexity, and it tells us that our bound is worse for more complex hypothesis spaces. This is our notion of overfitting.\n",
"\n",
"The Hoeffding inequality can be repharased. Pick a tolerance $\\delta$. Then, note that with probability $1 - 2\\,M\\,e^{-2\\epsilon^2 N}$, $\\vert R_{out} - R_{in} \\vert < \\epsilon$. This means\n",
"\n",
"$$R_{out} <= R_{in} + \\epsilon$$\n",
"\n",
"Now let $\\delta = 2\\,M\\,e^{-2\\epsilon^2 N}$.\n",
"\n",
"Then, **with probability** $1-\\delta$:\n",
"\n",
"$$R_{out} <= R_{in} + \\sqrt{\\frac{1}{2N}ln(\\frac{2M}{\\delta})}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What about the test set?\n",
"\n",
"The bound above can now be used to understand why the test set idea is a good one. One objection to using a test set might be that it just seems to be another sample like the training sample. What so great about it? How do we know that low test error means we generalize well? \n",
"\n",
"The key observation here is that the test set is looking at only one hypothesis because the fitting is already done on the training set. So $M=1$ for this sample, and the \"in-test-sample\" error approaches the population error much faster! \n",
"Also, the test set does not have an optimistic bias like the training set, which is why the training set bound had the larger effective M factor.\n",
"\n",
"This is also why, once you start fitting for things like the complexity parameter on the test set, you cant call it a test set any more since we lose this tight guarantee.\n",
"\n",
"Finally, a test set has a cost. You have less data in the training set and must thus fit a less complex model."
]
}
],
"metadata": {
"anaconda-cloud": {},
"celltoolbar": "Edit Metadata",
"kernelspec": {
"display_name": "Python [conda env:py35]",
"language": "python",
"name": "conda-env-py35-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}