{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Model checking\n", "\n", "##### Keywords: model checking, posterior predictive, test statistic, discrepancy, bayesian p-values" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import scipy as sp\n", "import matplotlib as mpl\n", "import matplotlib.cm as cm\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "pd.set_option('display.width', 500)\n", "pd.set_option('display.max_columns', 100)\n", "pd.set_option('display.notebook_repr_html', True)\n", "import seaborn as sns\n", "sns.set_style(\"whitegrid\")\n", "sns.set_context(\"poster\")\n", "import pymc3 as pm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll illustrate some of the concepts of Model Checking by considering an experiment.\n", "\n", "## The light speed experiment\n", "\n", "Simon Newcomb did an experiment in 1882 to measure the speed of light. These are the times required for light to travel 7442 metres. These are recorded as deviations from 24,800 nanoseconds." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "light_speed = np.array([28, 26, 33, 24, 34, -44, 27, 16, 40, -2, 29, 22, 24, 21, 25,\n", " 30, 23, 29, 31, 19, 24, 20, 36, 32, 36, 28, 25, 21, 28, 29,\n", " 37, 25, 28, 26, 30, 32, 36, 26, 30, 22, 36, 23, 27, 27, 28,\n", " 27, 31, 27, 26, 33, 26, 32, 32, 24, 39, 28, 24, 25, 32, 25,\n", " 29, 27, 28, 29, 16, 23])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "10.663610099255504" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "light_speed.std()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use a normal models with reakly informative priors to model this experiment." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with pm.Model() as light_model:\n", " mu = pm.Uniform('mu', lower=-1000,\n", " upper=1000.0)\n", " sigma = pm.Uniform('sigma', lower=0.1, upper=1000.0)\n", " obsv = pm.Normal('obsv', mu=mu, sd=sigma, observed=light_speed)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And let us sample...." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (2 chains in 2 jobs)\n", "NUTS: [sigma_interval__, mu_interval__]\n", "100%|██████████| 10500/10500 [00:08<00:00, 1191.06it/s]\n", "The acceptance probability does not match the target. It is 0.881671068051, but should be close to 0.8. Try to increase the number of tuning steps.\n", "The acceptance probability does not match the target. It is 0.888306785997, but should be close to 0.8. Try to increase the number of tuning steps.\n" ] } ], "source": [ "with light_model:\n", " trace = pm.sample(10000)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdmc_errorhpd_2.5hpd_97.5n_effRhat
mu26.2060771.3468490.00939323.57171528.8478218789.01.000004
sigma10.9502530.9691460.0065819.15816412.9084419058.01.000050
\n", "
" ], "text/plain": [ " mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat\n", "mu 26.206077 1.346849 0.009393 23.571715 28.84782 18789.0 1.000004\n", "sigma 10.950253 0.969146 0.006581 9.158164 12.90844 19058.0 1.000050" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pm.summary(trace)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[,\n", " ],\n", " [,\n", " ]], dtype=object)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAEYCAYAAACjhEyUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYHMWZ+PFvT56dzUkblaWSBAaDSAYDxvl8zuf8Mz7Hc8Q2OJ8NxjhizBnjc75zPuN054QDmCjARCGQBFIpbs47Oc909++Pnp3d2Z1NkmZHq63P8+jRznRP9zux++2qekszTRNFURRFURRFURSltGzlDkBRFEVRFEVRFGUlUMmXoiiKoiiKoijKElDJl6IoiqIoiqIoyhJQyZeiKIqiKIqiKMoSUMmXoiiKoiiKoijKElDJl6IoiqIoiqIoyhJQyZeiKIqiKIqiKMoSUMmXoiiKoiiKoijKElDJl6IoiqIoiqIoyhJQyZeiKIqiKIqiKMoScJQ7AEVRFk4IcQ9QC7wH+ApwLhADfgl8DLgY+AJwBjAMfE9K+ZUpj322lNIxbZtvBX4EXC6l/PlSPA9FURTl1KOOUYoyP9XypSjLTwdwO7AbuArYA1wB/B74LXA3cCUQAL4shHhjmeJUFEVRVh51jFKUOaiWL0VZfhqAK6WUNwEIIX4JjAAvBl4upfxT7v47gYPAS4BbyhSroiiKsrKoY5SizEG1fCnK8vSriT+klCFgEEgCt05Z5zBgAu1LG5qiKIqywqljlKLMQiVfirL8mFh95afKAiNSSnPijtzfBup7riiKoiwddYxSlDmoboeKsvwYUkqjyP1mkfsWQv0OKAoghNgGdAKPAQnAlFImyhuVoiw76hilKHNQVxsUZeXIAnYhhHPa/S3lCEZRThZCiJcIIQ5hFQb4C3AmcCkwIIR4X1mDU5SVQx2jlBVBJV+KsnIM5P4/Z+IOIYQLeF15wlGU8hNCPBf4A1Y3qU8DWm5RD3AI+KYQ4g1lCk9RVhJ1jFJWBJV8KcrK8ZPc/78SQlwlhPgg8BCqS4eysl0H7AQuAX4wcaeU8ingWcA/gI+UJzRFWVHUMUpZEVTypSgrhJTyTuAtQBD4MvBx4Dbg7eWMS1HK7CzgF1JKffoCKWUW+B9gy5JHpSgrjDpGKSuFZprHOv5RURRFUZY3IcQ4cL2U8qtCiAZgFHi+lPKu3PLPAldIKRvLGaeiKIpyalAtX4qiKMpK9nfgPUKIuukLhBCbgCuAu5Y8KkVRFOWUpFq+FEVRlBVLCLEWeBhrvqG7gDcAv8C6OPkqrIlhL5BSHihXjIqiKMqpQyVfiqIoyoomhOjAGmPyMqA6d3cCa7zJJ1XipSiKopwoKvlSFEVRFEAIoQGNgB0YLVaEQ1EURVGOh0q+5rFz5071AimKopTJ9u3btfnXWrnUMUpRFKW8FnucUnMnLMD27dvLHYKiKMqKs3PnzpLvQwiRAOZNYKSUFSUP5hgd6zFq3759AGzduvVEhrNsrPTnD+o1UM9fPX84vud/LMcplXwpyikqmU2RzKaodlVis6nCpooyi18xM/myA83ARUA/UyZfVk4eiVQWh13D6bCXOxRFUZQFK0nyJYRwSylTpdi2oijFGabBE4NP8UDPY+we3k8oGQZA0zTW1nSwvf0ZvGDDJdR5a8ocqaKcPKSUb51tmRCiDbgfq+KhchIJRJLsPjiG3a5x/mmtOB3qApOiKMtDqVq+RoQQvwd+CfxdSpkt0X4URQH2Dkt+vOs39IT6ZywzTZOjwV6OBnv5w/6/85JNl/Ha01+Ky+4sQ6SKsnxIKQeEEN8GrgS+Ve54lEl7Do0BoOsmfSMR1rWpi0qKoiwPpUq+fgi8Brgc8Ash/g+ra8ddUko1OFhRTpC0nuGnu37L7Yd3FNzvtrtYXdNGhcvLaMzPQGQYgIye4Q/7b2fnwB6uuuhddFS3liNsRVlOdKCt3EEohabWCtMNdVqhKMryUZLkS0p5JXClEOLZwOuAVwPvxGoR+1/gl1LK+0qxb0VZKfzxIDc88F0O+7vz93VWt/My8ULObT8Dr9ONzWYV4BmJjnHrgTv5++H70A2dvvAgV99xAx+/+L1sbdpUrqegKGUnhGieZZEbOBP4KLBn6SJSlBMnGEnhcdvxuNQQf0U5WZT02yilvB+4XwjxIayByy8DXgy8RwgxgNUt8adSSnVgU5RFGAqPc82dNxJMB6w7DBvZ/s0cGFzDjXcMAoPYbBq1lS7qqz001HhpbTyNf25eyz+Cf2YsOUosk+CL936Tz1z6IbY0bSjr81GUMhpi9mqHGpAC3rx04SjKiTE0HkN2B7DbNS44vRWH/eQfF5dMZ0mmdGqr3OUOZUF0Q8cEHDZV9EVZuKW8FOLM7c+FdUBzYh3QrhJC3A68Q0o5sITxKMqy0zUY5pa7d7Er+0dwxwEwUh7Sh87CjBWOeTAME384hT+c4lBfaHKB/Qw8m59AqxonrWf48o5vcd3zrmJNbcdSPhVFOVlcR/HkS8dKzH4vpRxb2pAU5fjJbuvinK6bDI3H6GiuKnNEc8vqBjv3jZDVDcSaOloafOUOaU7pbJrHB/diYvLMltPwOj3lDklZJkqWfAkhbMBzgdcCrwQagTDwf8AVwF25VV8B/ASrFeySUsWjKMvZgZ4At9wu2Xm4C9eWR7B5EgAYKS/pfefhppKmVRXUVroxTBNdN0iksgQiKcKxdOHGdCfJ/WfjEjuxV/tJZBN86q//wfvOfC/P3qa6ICori5Ty2nLHoBynYxzyZZgm3bE+EgM625o24lEnz2U1EoiT1Q3AShxP9uTrSKCXrKEDcHD8KGe0rMy5spTFK1Wp+f/CSqrqgQTwJ6zk6q9SymlngvxOCPEm4EWliEVRlrN4MsOPbn2avz3YheaK49r6KDa3lXi5zSpes+ktXPzKjdRVudG04hOsZ7IGY8EEA2NR+keiHOgJsvvQKIEDZ+Pe+gg2X5isLcFNj36HOx56Be9++Tm0Np7cBz1FOVZzjPGak5Ry5ETHopSekSvGMTH+dSp/Okg0EyeeSSDHj3Bmy7alDk+ZapnVTckYmfzfaT0zx5rKbEzTJK1ncDtc5Q5lSZWq5ety4DbgFuAPUsr4POv/Gbi1RLEoyrJ0pD/E9T99lIGxWC7xegSb25puqKmigc899yoaffXzbsfpsNHa6KO10cf2LasA6wevZzjCHTvXcrv/FkxXDJsnwZ7I33jfDQFedelmXv8Cgdup+rErp5y5xnjNRX0ZlplURufx/VbOvH1LM65pv2cpffJacCQVW9LYZpNIZXE57diLJIvKTGMxP13BXlqqmpe8eu/J9A71hQZJZJKsqesomEYmqxs8dWQcgNPWNxzXuD/TNGe9yHusnho5QDAZZn1dJ23VLSd02yezUiVfq6SUQSGER0qZn5xSCLEOGJ6ejEkpf1yiOBRlWXrk6SGu/+ljpDM6miuOe9ujaC7rq7SqsonPXvZhGivmT7xmo2kaa1qqecc/b+efQp188vbrSRpx7FVBzNV7+M2d8NDeIT725u1q/hzlVDPbGK8TRgjhAq7BuhDZCDwMfFRK+XhuuQb8O/Du3PIHgCuklPtLGdepIJPVCUWnd6Ap7lBvkHTG6hZ2qC/ItnUNBcu1KafPumGcuCCP0bA/zv4uP163g3O3rTquE91YOk4sG6HCXrno7UTjafzhJC0NvhkJ68lm/9hhALoCfScs+TIMk2F/HJfTRkON94Rss5T8sRB37t2LCSTWpzmjVQBWsvTAk5OlFI4OhNjUWXdM+5BjhwkkQmxuWE99Re2iH5/RM/SHh6l0V+TPXdJ6hmAyDFhdOFXydZxyidcXgQ8KIbZLKQ/kFl0HvEYIca2U8vpS7FtRlrt7dvby9V/uwjBMNHecitMew3BYXQ1XVTZx7WVX0lBxbD+gxbTVNPOZy97PtXd/nayRxdE4gJmsoHdgI1fdtIO3vGQrr7hkQ9FuO4qy3CzRGK+vYyVenwAOAR8C7hZCnCGl7MZKzD6ZW94FfAa4UwixTUoZKr5JBeDJg2PEEgvr4pVIZfN/J1N6/u+sbtAzFMEfzYATeocjxBIZNlfFytrlen+XH7Di9oeTx3zin86m2TX4FP0JP6s8bdQ4F368MAyTnbnWwkA4xZmbm44phnIbDyUY8SfobKmi0uuc/wFTDIxFOZwrUrV9SzOVFSd3l7ineoZIZ62LB0/39eeTr5FAomC9hV60mC6RSTIasz6b9x7czTrvFuqrPUTiGTqaK6mpnL8y5SF/F+PxIADntlda3QzNhV8DK0WrWzmVaszXx4BPAT8DglMW3QQkgS8JIfxSyh+UYv+Kslzdt6ufr9/yOIYJmidK1emPk7FZDcUtlU1ce9lVx3TVaT6bG9fz/vPfwjce/CEAzo5DmEkfWX8rP/zTU+zv9nPlG87G41ZzxSinJiGEF/ABU/vlOIAq4DlSyu8tcDs1wLuAT0opv5O7735gHLhcCPENrLnDrpVS3pxbfh/QDbwD+I8T84yWr77wIOlsmtU17Tjshb85C028ZjMeSrD70Cg98SMMB0ZpqHJiOKxtHugJzJl8HfH3kNYzbKhfjdO+uBP6xTqehrih6Gj+7+HkQD75CkVT2G3anMnE1BbAYDR17EGcQIZhsvfIGOmMwenrG+Y9Dpmmyd7DVle7sWCCi89qX9T+Dk+pDjw0HmfjcSZf4VSUjJ6h3ltbkgQilZ68sJDOTL5/kfixJVvT6bmiIqm0zlgwQb2ezidyY8EEl549f6XkicQLIJKO4nbUwwJeC93QeXJoH1kjy6rKRpLZFKtr2pd9ZclSnUm9E/hvKeW7pt4ppdwJvEsI4QQ+CKjkS1FydskRbvzFTgwTbJUBfFufIKNZB7/WymY+e9mVJUm8Jly0+lwGIyP8eq81/NKzcS+Jpz0Y0Tr+sXuQwbH7+Mzbzqe5vqJkMSjKUhNCtGEVhLponlUXlHwBMeB8rBatCRmsro5u4AKgEvjjxEIpZUAIcS/WPJhlT74Mw0DTtLJcaQ4mQnQF+qw4TJONDWtP6Pb3Hh4nkB4jbVi/rbGUgXcBZ0JjMT9HxvtzF+tNtjRtnLFOKpvmsL8br9PDurrOObfXOxwhnsywrq3muLv2JdNZwtE0DTUe7LOM6QlF0/mk4vQNDXO0qi3Ne26aJqm0vqALev2jUQJh6/3a3+3nmZvnrpkztUHFWETrCpDvpnq8ZLefSDzDmnYvMiAB2NSwllWVC2tJ7A72MRwdY11dJ02+hjnXnf49jWcSs6x5fCYqUZaSrhv4wylqq1w4HXZ6Q4P559MbGgSs8ZnntJ9R8lhKqVTJVyfw2BzLHwReV6J9K8qy0zUY5ss/eRTdMLHVjODd/CRZzToIdNa08elLr6DeW7rEa8K/bHsJg5ER7ut+BAOdqtOfILXvHJKhKo4OhLnqG/dy7TufxcbO0seiKEvkBuBCrAQsA7wF+DLQALwaqzXseQvdmJQyC+yC/JQra4FrsZKvnwPPz616eNpDj2BVCV60ffv2HcvDGBiNEIxliSX34vNYCUBCT3Ek0oNds7Gpei127dgTA8M0sc2TwOmmTtrI4rVb02QMJUYZT1nzUw3QT6au8ESyfyA8YxvpmItMdOaV8L7eGPFcq0CF247XHKd/IMyYPkTSjJPNZslqBoGA1aWqP9LPPm+kaJxHQ4PsHRoGYLBuELN5ZgvckWgvsYzVU2Ggog+7ZqfK6cOmFSZEsaTOgX6rwMehww7Wt1bkn5tu6mhouHQ/Y5Xzt66ZpslT3VEyukl9lZM1zV6GE2OMJMcJ5Lqd9Uf66Z8yi2r/QD9nrqvCZtNIJKx1Jj5DWd2kf2DyNZjt9TgWhmniTwXRNI2g30U4nqW+0klzrQuv285oKE3/WL5MQH7fPSMJxiPW690PuPXx/DoDgf7J9eOV+f0s9DlMf/6HB+KEE5PdVWf7bAHsHtuPzaZh08Bld+ILO8kaOt2hEfaPjOHUnDx4UGNVYy7W/n5abOsYCSXRveO4XRrrqzpw2gpPxU3TZG/QGq3T1dPFM+rErPED9PYOEMhYn2Gnw8atj94GmoY33UwkMvnZ87rs+PDP+fyLiWeTDET6iacNAsEU/RHrNY8aYRJmDJ9jlFjMhsdlo7qieFox9X1yBE1GXVVkjCwDocL3r3s4gT+aocJlR3T66IkNEkpPfueTGYNQLEuqH+oqHfTFh9BNg46KVThsi09pFvL8S6FU0513AZfNsfwiQE2orChAOJbmCz98mEQqg6PlCO7NuzByidfWpo1c99yPLEniBdYVtPec+2a2NVnzfaWNFBWn7aShxbrqGIqm+cx3H0B2++fajKIsJ88Hfiyl/H9YY7NM4DYp5XuAZ2LNT/kvx7jtq7GSrMuB66WUEqgGUkWmXYnkli0J0zTpG0sRTUwmAgA9sQEM0yBjZBlN+q31YkP0xAYZTfrpjQ2SNubv+hfLJtgfPszhSA/mLK0PhmlyMNzFoXAXT/YNs+dolMiUE9/jeW7RbBzdnK0VY+GtO/5Ihr1dEbqGJ5PA8XDx7lwTiRdAf3yYntgAQ4mZ83PHkpNxheJTTvTNFIN6D4N6D1lTRzcmXzfTNPEnI4xEYgWtOboBGd263RMaZygxim7O30IRS+ropk4gHSaeTWGaJoZpEMpEyJqLew8i8Sz9Y8n8uKPZ+NNBBhMj9MWHGY5arXAjkTiP9vQTjCdmfVdM02RMH2Io20vGPDFd6ULpCIci3QQzhcl8eIGfv6FwhL7xJP3jSYxcjKF0hK5YHyPJAAY6KTNJwpj83KR1k76xJKMpP93+EAeGQhzw98++kwVIpHTSxVqkTJOxdOFnbyGtgBkjS1e0n8HE5MwaY7mLIVPpZpagMUbKTLBz6Aj940kOD8ZJ5bo9xpI6w4EUmXk+E9P5o9ZvSzw987sbSWQZCqRIpHW6RxKMJQME02EimSiDidEZ65/MStXy9d/ADUKIPuBbUsqjAEKI1cC/Af8Pa4Cxoqxoum5ww88eYzgYxrVxD/b64fyyc9vP5EMXvB3XEs9/4bQ7+cTF7+NL934TOX6ERDaJb8PDrKu4mKNHNGLJLFd/70E+965nsXXdsVdcVJSTRC3wEICUMiSE6AXOA3ZIKQeEED/A6qnxsWPY9u+Ae7AuRl6Tq4KYYPZqi8fUr2fr1sVP7moYJo8c3sG4PkJ7XWd+G/6eaL7b1qrKRlIJOz3jvdT43PjqXVTgwnTZES2C7mA/GrCmtmNG16d/9DzGqlz1Mk+VjzW1HewfO4xpGmxp3IjD7uDAwCBGqpLaChfdmQibGzYymhykrX0yB926pvC5jST6ZjyX9qbKgtb4vtAg/mCMTDxJm2M9mqZRVeFi65ZmRhJ9aAmdaNZNIODH4bRT5bMqurZXtbN1a+H4lXsf76N5FWhJDWfGOmVyOW1FX/Px7mjBbd0wiScybNos8iW+h6KjhJx+Wly1+VbFiX0+MjpEnWmNz4p7bJjpahprvbQ2+jg43IccD6IbJs0ta9i62uq+lska+NMDhNIBYqkgzgarO2EbFYRyrSFtlW0F709CjxOvCZN2mgyO+RkKpHn2+kuob0mhR2PokSSrfZvRNG3G6zGdrhvc/+QATh9knU7OzE1nUswjfU/QprdbCb2Zpc3bzpGoxGbCkXSIyzadi+GaHBu0ZUs7o4EEPfEuvJoH8GBqmYLXfvI1N/OfFcMwGUtOJjXFnsP93Y9SRwMD/f2sqmrKb3P652v6ZwusrrFPP3GIujrr+FdZ7aO2yk0WqKMBm68S3T55QaOtvR7DMDnYE2BjWztaQseRtT4PYdNO59qN+DyO/Htkmib+nsnHb12zddaCE4/tG2ZVs4GWsn463E47be3W5zkcNvBlJse7ed0ONmxuANPE5XDRFxpE7j9CpcPHJZufgcvuZO/wfqqS1uNXNbdi12yMD0fxUUUskSGjRWivaielJ0nGJz/v7Y3Wfppba1nV4OP+J/rRPGB63Gzd1FTw3djUtJGGijrSeoZw32RL59Y1Wwte/7bOJgZ60jTWVuBy2tnX5acuVzumvaqd+rY4tpR1fuSw2dnaufjfwYkWr2P5DZ2wc+fORT+mVC1f/4GVgF0FHBJCZIQQGeAoVnndnwBfKdG+FWXZ+PGfn+bJ3qO4tz1UkHi9YssL+ciF/7bkidcEr9PDpy79ABvr1wLWFd3gqntYs9n6oUykslzz/X+oFjDlVDCOVVRjggROn3K7G5h/RHkRUsrdUsp7cxUWb8ZK4GKAOzf2eaoqYMkqHZrAiD6ITpZINsR4bOauh6NjPHLkAIYBgUiKdFZnPJRgLBqmPzxEf3iIvvAQg9GZ809Pvco+EBmhJzRAIBEimIzQFewjnsxwsDeAP5yibyQ64/HpjI5pmuwbPZgvR71QXUHrBC5jZEgac49/WeSQoLxIPD3vVf3+4Qh9o9F8FcNIKsqh8S6G48OMpYYK1s1kjYIWp0AkgWnCaCDB7oNjPNl/ON8SJgemdhyy7htOWfdNTCodmlIsI5gZZ6re+NH8HGcjoTSGabI/sJ+n+nsAk6yZnbP1S9cN4kmrhSI1ZYxUND6zRdSYpXJINBshmPbn91NsfyOBBPu6/MTTk88lY87cR/9ohAM9QYb8hZ8TwzTyY/vmMpqceRxL6ymORg9wIHAAY0pLYjAZZu/IAfxTWpVma9mdZBKNp2e9srJz3zA7dvXz6NNDRBOZgvnnwBof+I/dg/QOR/L7Gw8liC7gMzhVKpvisf4neaT/SfrDQ3QF+0jrGfypILuH9mGaJsHkZBfNWDqe/+5FYmnGw9Z3yZinZXVqldFgZPL1D4STHOgJ0D9a2A1UNwwGRqMcHSj8DXriwCijgQRdg7N9/xfWgp3Vszwx+BS7BveS0TNE0zHCyRPXnfZYlKrUvIlVWONm4J+A1VgTVPYCf5FSPlGK/SrKcnLPzl7+uPsB3KftQbNbBzCPw837znsLF3SeXebooMLp5dOXXsEX7r2Zw/5uknqKdN0OVm87l56n60imdT7/w4f52gcvoaWhfOWZFeU43QP8mxDit1LKXuBxrKqE1VLKMHApsOCrDEKIFqzj3m+llFOP8LuwCm4EsM4a1gEHpixfj5X4LaHJk8bRUIQGX82MZGRq172BkRiJdBYCCWorJk8+x2J+2qpmb/EAK/GYEE5FqNIy+XOnqd3rAMZCCUYDCXxuB1qrxng8yLltZ5NIZmdtAUhldA50B/CHk8Q8Kap9heWvzSnPNZ6NFTxusSWE0hmDPzz+MOurN3DB6a3YbFrRk7lY7iR0PJQka+gFVQhDmSChTJAaZy3QweH+IEbB6fniynBPkD0B2hp9DIxNPsdAepw6V2PRx2ZzXRYzZoasXvxkNplJkjV1Kl0+srrOfXu6sRkutq6tp7Ki8BrC1Pfn6ZGDHBkZodPXSUO9i7RemDiNpAbzf6czBgd7ggXLj/QX3i4mldYJx6zt/mnPg5wnOtlQtw7TNOmKHSRrZhmOVucLXXQNhvGHkiRsWby5Yh9xfbL1Ja2n6Et05ZPB/kCA+/cd4JJtW6yY/N0zki0TE384gd1mK1p2PRRNTytWoU19sPWfaRJJpHhU9uKsK0yWj/SH8v93rqpi2B9Hds/sCjhVMp0lGMnicmVw2pzEs1GGE71srK3FMEweOLAPwzSJJbIYJnQN+9lYN/GZsYLSDR2bZiOZztI3Ovn9DaTH8DmqCvY3khygwlEJ1NI9S7I05Le65fYORdnQnGHPkWECRpJEKksolmZf3wCmaeKxVxSM35r++7BYXcE+omlr30+NHCSatp5nvbembBNll7RutJRyD7CnlPtQlOVI9o7zn/f/EvemI/n7Wqua+dhF76Gj5sRMFHki+FwVfPayK7npwf/m8YE9GKbBaOXDtJy2jaGnOglF01z7g4e44YMXU3WSz4WiKLO4Fqvb4WEhRCvwbayxX/uFEINY475uWsT2aoEf5v7+0ZT7XwiMAL/HmnLllcBXAYQQdVhJ3ueO+VmccGb+xHxCIj15RVufsswfTnDvQB+6keXCMzpwOqwuQgC1VW5aG3wk0zqxRAaf10E8kwQPpKac9E41misUEUtlyeoGNpvGHU/uI56OE86EaPK0YNfsBNN+al319I9aCdtEye3+0Vi+m9+EiVaZsdTwtCSn0MBYlP6RCGtaa2ius9Ky0eRQvqBB/rXQ44zGRznU52Xz6jp2D88+P7ZhGuwc2E1Gn9m6E8oEGYyMMDBW2EJnAuOpEVJGiib33JPPhjKFJ+JTE6/FKHaKm8wkeWxg8jQumTQ5GgrQ6GpmXxecd1phbA/uGaTK52JtRwWHR4YYGo8zOL6PpoiXGp+LcCyNz3v8x4qsnmUgMjxjcuxIKsbjg3s4GJ18TQ6Od9EXHsKFG/+Q9Z52RcJs6KhhPJIhSoqBsShNdR664odm7EuOdnNWYi1VXqvwxvSW2kA4lR/vNv1zB5DOGowFJ9/fqSf8JiamadIdP0TasFq8ttYV786fNqyxedMTr6mThacyOrphcDRXmOZo5gANribG01bin87oBMJJQjFrX4FcIROcKQ71BtFdJl0DIQwTMq0GGxo6icQKW+IC6fEZyVcwEyCYCXCG2c5YMMF4aoR4NkqTZ+b5TNbM8ti+YYaT/YSmjpNM9OSfz4bKLdg0Gwnd+ixPtLROlUgtbNqJqdUfJxIvAH8ixGhomGZP8QsTpVSy5Cs318nLgFVYrV7TmVLKG0q1f0U5WfWMjXHtHTdja5m8Cnpu+5m8//x/pcJ5bJNqlpLH4eZjF72bHz3+a24/vAOAkO9pqk8LEt63jf7RKF/80SN8/t3Pwuk4vpLJirLUpJQHhBCnAZdLKceBcSHES4DPAvVY1RA/u4jt7RdC/C9wY26M1xGsqomXA2+XUoaFEN8EPi+EMLBavz6NVdjjv07kczsevcNRonPMqZXS09hy55kHB0fx2RPE9CiRx8NsXjXZSzMYSdFU62VfrzUGp63Rl28dmDghnJDWUzOSnGAkhcthYyA2ecI5nJzsdhdPxNhcdVo+8ZpYNnHCGEiPgbMBr8NHIpMs6C5WzA65l2g2zHCkg5eev41IJkxgWre9CRkjzeBYjJZVc1clDGfEtD+hAAAgAElEQVQCpKMJYskM9dUzK+cd9ndzOFr4vJN6nGjWOoGe+H82U1uQiiuSVuXv0vI30mmD4fF4wWpHAr35v+PJTL5L2Vh6hHr3zLLpmayBP5RkwB9gKD65rdFAglAkl6QEFlYKPd/gUaSl80igh5HYzPclnswUzHs1IZpK0Ds0Qr29HZ/DqorYOxwhksgSIcKd+3bOaMWbSo4d5pzO0wBtxvdiaqGRUDSFb9qkzuHY7F0fDQwORp+edXk6o2PHSsTH06PccXCEwViKWmcD1c5a4nqMtFm4/endP6d+z472h7DZi7f3+MNJQvZ4/vkMjsXYUKTK/VwXL8YS4xyIHMzf7ot3AZsK1hlJDZIxUoQyxVs2TUwORfex3ifyLZDdQzNblg/3hWhepeWnahiJjdMfHqS9upXmXHn+g8O97O8fssasFplsO2Nk6Y8PkdWzM+YULKVSTbL8HOBWwMvsnTJNrIOaoqwYPYEhPnnbjegVuStnpsbrn/FyXr3tRSf17O12m513bH8Dqyqb+PmT/4eJScY3gPe0KEl5Fk8dGed7v9vDB177zHKHqiiLIoSol1IOkmuFApBS3oPVHfFYvQUrYfsU0Ao8DbxWSvnb3PJ/xyqu8VGsOb/+AfyrlHLJxnxNdyTQRUeDNZpdN4w5Ey+wWnNs2PItDzHd+k0bSQ1SGyi8cj+1pWBgLFa0axbAQO7K91SjwQTtc0x8DFYLmtvuIZIJ5VuBoslMbsLZCNFshFZPB3c9PncSkzbSRLLWWzCY7AW2kdTjs65vYHAg8hRGXw39ozHsNo2O5soZv+WGadCTG6+TTGbxzXGSP2G+ioOmaXJw/CiDkfmrvGVNPd9KWGRL+b8S6SyJacUEhyLjpNM6vUXG5QXSY/z96QFiiSzN7lYctrmf13zVEA3TKCjLn82tP/3IuHP/AAlv8YS42Ek6wIjf6jKbdU9+rqdOSJw0kiSjxVtiAULJSEGryWyS6SyxZOF7N3U/upElMk8yPTgWpbXRShCPDoTYWNmRT6Amxj8NpwbQNI2h5MxqicYc3fQMwNBnXz51EvNYMst4NFI0mZ1okZquL1IYz0SiNjA6rbUwM39P7qHkzOI6E8ZToyT0OF2DOptX15I1dA6MWT2JDowdodnXwFg0yD37rcQ2FE2zde3sBcLSRmb5J1/A9UAUeDvwBHByTJOuKGV0aLyLa/7+DbKO3A981sUHz38Hz964PCYL1DSNl215Pq1Vzdz80A9JZlPgDeM+7SFSB87itodgU2cdL7pgTblDVZTFGBJC3AbcAvxBSnlsfbamkFLGgU/k/hVbngU+mft3UhgOJLjlofupr3bj88yfHAyOxXDYNeLJ+UtzTx2AP2EoNjzjvvQsZcT75+lG1x0/TLWzlvCUK+lTT3gBBpN9OOaZs8ycVkggo2fmHNM/ceX+UN9kzrw/1yWsvWkyYYxlpxQxSGXxeo7/1Gs0Ns5IbHzBBUNGUoOkjGRBLAvRNRCedczNaGo4f3ZnmAYdFWuJZaOEMgG89sX34gikx2ko0po23ePDe1jTUkXFAj6nE4JR67NlLmIs3VRHBkKkU3uoqpr7M5TKzJ1gHo7NP6wzGE0TiQdwO+0YZq71tohiiRdMjq06FtMLeDx2uLvoeqOpmd9fKOwCmY9nPJbv5rgY8VkSPIDxdK7IjwmyO8Dqlur8GD6AYX+cB+SRgscEIknqqorP2TZfEZETrVTJ1xnAp6WUvy7R9hVlWdk9tI8v3/sddM26qmQmfXzkWe/lgo0byhzZ4p3Tfgaff95Huf6+7zAW96M5U7i3PEL60Fl89/92s66tms2r68odpqIs1I3Aa7AmQE4IIW7FSsT+UmQurlPHtLP2iYIA/nAKf3j+66XztYzNJRBO0h07Mv+KixCepQvTVNlZ5/0q7v6unWSOcbB//+jkiWNiWsXF7LRtToyPWyjD1InkWmF6hhZeCXLq2LDJohGT3Q6LWWixg7geYzw1mj8pnq+rZDHj6RFCGT+rKzYQyvjJmhka3S1kjZnJu2laLTwLOamfOi5MX+QcZlP1jYfY7FuaY5tumMRzFy1mS3RORoPjMxOmfV3FWylPFMO0WgR9HgerW6xpKqwKo4WJ4NB4PJ98+cMJ/OEURkqn0mMnnIxQ6Vq6wmGlSr5O6CdFCPEu4ONY5X6fAK6SUj44x/oXAl8EzgLiwB3Ax6SUy+cTrJwynhh8iq/s+A4G1oHfiNbw7me+gws2L7/Ea8Ka2g6+9IJP8LX7v8eB8SNodgPXpsdJHz6TL//kUW668tJZuxYpyslESvkp4FNCiLOw5vN6DfBaICyE+B1WInaHlHJpL40uY/MlQsdzZb6UpreKTG3ROpGmlt8+FuPpUQYjOj3D4XlbWuZ3fJXkpsq3RhyHrJnlyJTWodnGBU1041yIqQnkeHp0RrGIxRguklycKo61VXA+h6L7SrLd6WLJLImUVcVyLDVcdHznvi4/jbXefAGUQDiNx+XB4yjeIlYqpZrn63vA+4QQtfOuOQ8hxL8C38W6KvkvQBC4TQixbpb1twJ3AhHgjVh96i/KPWbhbdSKcgI8PrCnIPHSg028evXlvGD7pnkeefKr9VRzzWUf5pw2q9ukZjNxbXyCgOMgN/z8MXRdnasqy4eUcpeU8lNSyk3A2cB/AucAfwUG5nywUmC27lDKibOvy08sceytOKZpjS2azdHYgVmrUS4308dA9cSPvdX1WLrPKUunazDMvi7/nIV1plaeBOgbSxYd11ZKpWr5SgJOrNK99wCjMKM8iimlfP9cGxFCaFild78vpfxc7r6/Y82FciXwwSIP+wAwCPyLlDKTe8xB4BHgBcBfjvE5KcqiPNa/m6/d/738gFM90MyLW1/NG5+/rcyRnTguu5OrLvo3vv3wT7i/51E0DVzr97L3sI2f/bWWt770tHKHqCiLIoRwYBXJaACqsfquzD2pjnJKOJ6T8uWmb3T2xGtCb/zoEkRSetMrOCrFDSVmL3BxqnvqqJ/Ws4qUdiyRUiVfN075+1WzrGMCcyZfwEZgDfDHiTuklBkhxJ+BF8/ymKeApycSr4mH5f4v2lqmKCfao/1PcuMD359MvPyruLThZbzz5Wec1FUNj4XDZucD578Vj9PDHYfvA8C5fg+/22VnY2ctzz6zvcwRKsrccr0iXoTV5fDlQA3QB/wKuEVKuauM4SlKWcxVUnw5iRcp+KLMNFvBm5UgnTkFWr6klCeqO+Pm3P/TZ707AmwQQtillAWvmJTy20W287Lc/7PPgqgoJ8juoX3c+MAP8tVzdP8qzqt6Ce9/zdmnXOI1wWaz8c7tbyBrZLnn6INomtUF8Ru3uuhsfjVrWqvLHaKiFCWE+DnwUqAKGAd+CfxCSnl/WQMrsbR+7AUzFEVRTi2lGe82m5IXtRdCVALtQC+Qmp4szWPijG36yMoI1ng1H9bElHPtvxP4GvAYcNci9q0oi3Y00MtX7/suRq6qVna8hWe6X8hH3ngOdtupmXhNsGk23nPOm0lkkjzctwvNZmKue4zP/aKSm9/3CiqLTHCoKCeBlwG/xyqs8fdFHqMURVEUZVFKVXADIcRZQoi7sfrKPw1cAFwmhJBCiJcucDMTZ6uzpaRztonnEq87sZ7nG6SUS5vaKivKcHSUz999M2nDarrXg41stT2XT77lPBz2kn3VTio2m40PXfB2ntG8FQDNrhNueoCv/OK+OSd+VJQyWiWl/Fcp5d9WUuJ1qrbCK4qinOxKckaYK9l7H9Z4re9NWRQBvMDvhBAvWMCmJuq8Tq8LWgXoUspZR4wKIU4H/oHVevYCKeXhBYavKIsWTkb43F03E81YH0kjWsPa9HP4zNuehcs596SMpxqH3cHHLn43HVXWWC+bO8l+7TZ+dtveMkemKDNJKU+Nkm6LFI2pboeKoijlUKrL8V/G6mZ4OnAtuRYsKeXDwDOAfcDVC9jOwdz/66fdvx44MNuDhBDnYyV/OnCxlHL3ImJXlEVJZpJ8/u5vMpawSpsayQpaws/hc++8pGDG9ZXE43Dzmcs+QJXT6jls84X5Y9dveWD3yq2mpCgnk0RaFSFQFEUByBhLW2ykVMnXRcB/SynjTOsyKKUMAd/HSsLmcxAriXvlxB25qlT/jNWdcIbc/F9/BYaAC6WUB4utpygnQtbQ+ep936c73AuAmXZRP3YJX3jnZSt+jFO9t5arL7sCB9brYK8f4aZ7b+HoQGkmLlUURVEURVmskdTQku6vVMmXAcx1Wa2SyfFcs8qN0foK8B4hxBeFEC8B/gA0Al8HEEJsEEJcMOVhN2F1NbwOWC2EuGDKv9ZjezqKMpNpmnzrwZ+yd9Savd3U7fiGns2X3vFCaqvcZY7u5LC2roOrnv1OMK2vu9Z8hGt++0uCkVSZI1MURVEURVl6pUq+7gfempussoAQogF4D9Z4rHnlSsd/DLgc+C1QC7xISjkxG+LVwIO5bTuBlwB24Be5+6f++3/H/pQUpdDPdv2OB/oeAcA0NNz95/Hlt72ExlpvmSM7uZzTfgZvPuPV+dvJpie55hd/IpM9NeaQUU4tQgi3EGJlVMhRFEVRllypBqT8O1YC9jjwF6yuh/8khHge8E6slqnXLnRjUsobKZy4eeqytwJvzf2dAVZ2Xy9lSdy6/y5uPfj3/G17/1l88fJX0troK2NUJ6+XbX0e3YFB7uv7B5rNZNC3g6//bxMfe90lquqaUnZCiA7g81hd2uuBFwohdOAzwCellDvLGV8paPN3PlEURVFKoCRX96SUTwKXYFUr/DhWF8OPAJ8C+rFarh4txb4VpdQe6H6Mnz7xm8k7Brbxhde/ljUtaiLh2Wiaxnuf9SbWVVu1czRnhkfit/K/9+4rc2TKSieEWI81D+SrgIeY7BJvA54F7BBCnFOm8BRFUZQSc9iX9mJUybpWSCl3SSkvBpqA84ELgQ4p5dlSyh2l2q+ilNLeYcnND/4of3pmDK/js694Exs7a8sb2DLgsNm5+rnvo9pRB4CtIsot8pc8tn9pB7oqyjTXY41R3gK8ncnqvHcDW4ERrDHEpxRz1ukzFUVRVpbKCteS7q/k/dqllONSykellA9JKQdKvT9FKZXuYB9fuufbmJo1VskYb+VTL3wLp61vKHNky0el28fnXvBBHFg/dPbaUb56x8/oG4mUOTJlBXse8B0p5RAzq/P2At8CzitHYKUUSc86TaaiKMqK4lni+VhLMuZLCPH0QtaTUm4rxf4V5UQbjY3z2Tu+QRZrLgg91MD7z/9Xtm9pKXNky097dQsfvfjf+MqOb4FmQtMRrv71r/jm29+y5FefFAVwAcE5lhvAKVe+1KapmiKKoijlUKpf3xFgeNq/sdz+BFY1wqLzdCnKySacinL1328irltXio1YNa/b8Aaeu31NmSNbvs5uO403PuNV+dvRhse59hd/QddVBURlyT0GvK7YAiGEB6ug066lDGgpqORLURSlPErS8iWlfM5sy4QQZwK3A2rcl3LSi6cTXHvnTfhTYwAYSS+X1LyK1z33tDJHtvy9ctvz6fL38+DAw2g2k27PXXzrj0188FUXlTs0ZWW5FrhdCPE34I9YXQ/PEkJsAD6ENRbsn8sXXmm4nSr5UhRFgaUfA7vkv765SojfBD671PtWlMVIZlN88d7/pC/SD4CZdrE5+2Le/6rzVXn0E0DTNK648M2srlxr3XZm2BH8Pbc+eKC8gSkripTyHuCVwGbgP7EKbtwAfA9oBC6XUt5WtgBLxOlY2jEOiqIoiqVcl778wIYy7VtR5pXRM9xw/3c56Lfm8jazTmpGLuHTb7oMu00lXieKw+7gmue/n0p7DWBVQPzx7v9h7+HRMkemrCRSyr8AG4FzgdcDbwKeDXRKKW8pZ2yloi4gKYqiWJZ63sNSTbI8KyHE6VhdOQ4t9b4VZSF0Q+emB/+bPcP7ATB1O9rR8/jsu16Iz6vm8D7Rqt2VXPv8K/jEbdejk8FWO8IX/vZTbn7je2muryh3eMoKIaU0gJ25f4qiKMoKUVO1tDWVSlXtMAFFO1A6mWxte0Mp9q0ox8MwDb79yE95tP9JAEzDRubg2fz7a55P56qqMkd36lpd286VF76Trz3wHdDAaDzEv//yV3zzHZfjdS/5NSLlFCaE+MsxPMyUUp5y474URVFWuiqvA9sS9wQo1VnNryiefOnAEPArKeWeEu1bUY6JaZr8cOevuK/7Eeu2oZE++EzedOFFnHeaKilfaud1nsFrtr6c3+7/IwChukf54q+a+fzlL1FdpJQTaRvFj09zOeVmJFbdpxVFUaDSs/TjX0tV7fCtpdiuopSKaZr8z+7fc/vhHbnbkDlyBhesOZPXPX9zmaNbOV57xovpDgzw6PBjaDYTabudH9/ezNtedG65Q1NOEVLKteWO4WRQ4VZdqBVFUcpB1ZpVFOB3+/7GH/ffnr+dOXo66yq2cOUbzlatLktI0zQ+fPFbaPN2Wredaf48+CvuflINEVVKTwhxuhDipUKIFwshNpY7npJSP2uKoihlsdRjvuZiSil9pYhHUebylwN38cs9f8zfTndvoTazkc+873w8arzRknPanXzuhR/gQ3/8InEzjM0b4zu7vs+quivZtrq13OEppyAhxOuArwKdTKYlphDiaeBDUsq7yhacoiiKckopVcvXdcAg4ALuxJo75WvA7wAjt85vscaGTfz7dYliUZRZ3X3kH/x412/ytzN9m3AENvCZt59PQ423jJGtbDWear704o/gMHLvgTfCdXd/g55Rf3kDU045Qoh/AW4BEsBHgJcDrwI+AXiAvwohLi5fhKVR4VS/b4qiKA6Hhs+1tL+HpbysXw2cNb2whhCiHbgf6JZSXl3C/SvKnB7s3cl3H/15/nZmcB3m0AY+/rZz2NhRW8bIFIC26maue/6VfPrvN2LaUxieEJ/829e48WUfpbW2vtzhKaeOq4FHgUullKmpC4QQ3wIeAL4AXFqG2ErGpp1aow48LjvJtF7uMJQVxOtykEhnT/h2ffZKYnr0hG9XKc6uaXgdniXdZ6l+fT8AfL1YRUMpZT9WS9i7S7RvRZnX4wN7ufnBH2Hmesdmhzsx+gUfu/xcztumKhueLDY2dfLvl1wBulUcIOsK8NG/XM9gaKzMkSmnkM3Az6cnXgBSygTwI2D7kkelLEp7U2W5QzhluZ1LXw1uOVjbVkVVCeb+bK9Yc8K3qRRX67Pev9W17Uu631IlXz4muxcWU40155eiLLndQ/u48YHvo5vWVdLsWCt6zzaueuN2LjqjrczRKdOd2bGBj5z/AchYkyBm7GE+8pev0OUfKHNkyiniIPDMOZavB3qXKJaTkst58reSuU6yBMG2DOuZrfdtpt7VmL/t8zpoaaigqkKdrk1nTdVw4qvWuGxLO9nvVMvxMwvQ6unEZy9+8cVlcxW93+tyUFvlptZndQD02Jf2dS/VK70D+IgQ4qzpC4QQFwEfBv5Uon0ryqz2DO/n+vu+Q8bIAKAHmjG6z+DDb9zOpWd3lDk6ZTbnb9jMFWe/DzNl9cvO2mJ88rbr2dn3VJkjU04BHwJeL4S4TghRPXGnEMIphHg/8C7gfWWL7iRQV7V0JybNdctrLNqGyi1F72/1zn48qXRUzbvd2koXHtf8CaXPe+JGjzhsThrdq2hwNQPQ3lRFXZXnpEtsy8WpWUmoz+NgbVv1PGvPrq7Kzbq2mvzt1RXraXK3UOWood27+rjjPFZ2zc6G9pr5VzyJrPNtospZXbS1cL1vM7XO4kMU1rZV09pQvhp/pUq+Pop1SeAxIcQDQoifCSF+LoR4GCsxG8Qa2KwoS2bvsOQrO749mXgFG7H3ns01b7+Qy7Z3ljk6ZT4Xb9vMh8/5AGbCusJl2NJcf/+3uHXf3WWOTFnmvgkkgU8D40KIXiHEYSAC3Ax4gT8LIeJT/sXKGO+S0+a4wl/jK35l+VgtpNDRel/h3IuzXfWezZqKDQUtPMfDrtlZ5S7sMXFW50aaq2ae9FU7a2l0r5qxfjGaplE9z2vr8zrobCrlybLVLb+m0oXDPnm6WOWYfZ8aJ74FxaEtLPlra/SxdW19QUvtQhLdhap21tHZVMPqlmpcjtljctvmHj/U0uDD5ZiM0WP3UudqoNXbgXOWlpqpFvJ5n34Ro9pRi3ee6s0t3o58oj39dauvdlN5grtYbqzcuqD11rfN/nmb6/Vy2E7eFttSTbJ8QAhxOvBJ4MXARAvYIayByzdIKdVoQmXJPDVygC/v+FZB4lUxdAGffe9FqrjGMnLRtvV4HB/i+h3fg6ox0Ex+uvvXdPn7ee+z3ojdpq7QKou2k8VPjbLirG2tpmswvCT7smlgzPKONLqaZ5xUrfK0ATPHgbZ5OxlIzOwx6rZ7SBoJAGrm6FK33rcZAxOXzUV/vJuYHqXaWUs4EyxYr9pZy3Bqshv0WWvXc7A3MGN7Te4WKtwumusqODzP1IUaUF/tIZXW0Q2TeCJTMJbD5bSxelU1DtuJSXSsbnSzR7Ops5Z9XVa1WYfmwGvzksi9hlOtqdhIb+LoCftG1ThrsWEnkBnP31fpdRJNZIpEmXuMz81oMEGHdw0Vjkq6ogdJm+njiqPO1UCdq4GK6nEy+mSRjbpqD5FpsTS4m0jpSfzpUepcjbhsHoaSfQXr2Gwa1T4nkdjM5zGfJncLTUBMjzKaGsKhOdDQyJjWtraunUz8k+kszxPb8TgqyJLgN488OOt2vfYKntnSTnxkELfdw4HIZM8STdPwuOxFX/f5NLpXMZYannH/bEV/1rc0kAhWMJjsze170buk1lkHgN2+wO/HEs97WLJqh1LKIazuhYpSVk+NHOBL9/xn/odJDzXQGLyY6654NqvqK8ocnbJY2zd3cI3jg1z31x9B41EAdvQ9QP9tw3zque+m2q0G3isLJ6V8a7ljOJmc0SIYy/YxMFbYuHdu5za8bkk6Y3C4PzTr423YqHbWEMxMJh81zjps2AhkxtGABlczY+mRWbfxjLXteI0GBlNHGRqPk8pMVjGsK9Ji5bA58To9rGur4ejA7LEthoZWkOS1eVeTNBJ4bN4ZyZe2wLNDDY3WBh++BbYgaJpGW66QyMHeIIY+mX6tabG6vTnmueDkdTvIZA0MHZo9rQwl+wGrq1tP/Eh+vZpKVz5hWkjrS1vFGuLZGLqZYSQ1lL/fNc/YGY/NQ9JIFl1W52woSLIAVnnaGZ2yfYDOVZXoBhzqC2AUqS5QX+3BTHmoclfxzM3NmE+bHIruw8Rkg09wOCbnfX7TNblbqKpwMT318HmdtDf6yOgGY8FE/qJBg7uZOldjPsGYnnyB1a1TbzBhZp4+N80aG+ayu6l0VGPX7PTED4NpJdHV7kq2NG6gp3KAKrePxkqr5Sg+R2XGiWSl0u3DbZ/ZcldX5SYcO7YEts7ZQKXbS2tDJfvGDhKMpIq2/ja7W1nT1MCZ69vYsasfl20DoUwAtJlVTDuaKxkaj2GzaVRVOAlFC2NrdLdQ5XOxqbWJg+MJovH0jN+0cirpDLJCiEuBfwY6gC8BMeBC4NdSysWnz4qySI/2P8l/3P8DdKwvrx5qYF3qeVzzgYvm7dKhnLxOX9/Eja95L5/5zS+INz6JppkcDh/iQ3+6jk895z1sblxf7hCVZUYI4QRWMUt3fCllz9JGVHoerYKkGQesrlKtng62dbZh2ht5KD5Ed/xwft1abw3bmjbz9OhBVq+qomc4AkBjnZd4Kksma50Fr68U2DRbQfIF0ORpockzWUk2ZSSJZK2WtA7vGvoS3fllXreDZ6xqJdTdh9tlyydfHd41+USn2lFDOBvKd49y2Ox4XHbE6jq6BsMFCdtU83UJA+sEtmJa1y5N0/DaCy/WzVYFUKN4S5K5iOaghtrZu19Wep35boCbGzew69BkcmK3adhsWv79AGis9RAKWi10PkcV9lw3vqnxu50OyJ2/VjmqGQLMXLiNFfVUeyrzLV81zjrsmp0qZ7V1cjxNsVRUQ2NT1TZC6QDJVGGxpGqfE6fDTqerg2p7mu6hSMHytsZKAgNWUrampQrQsNtgY0ctB3oKE2GwWpVevv1s0GzYbRpiTT1az7YiURXyeR1gQCxVmKTUOCd7xxTrgltdaSWcDTUeovEMpzU34tYmX6+5NPlqGZ32El54RitHH96Xfw9bPR0M5pK3uio3GJMxOHMXCLz2CtJGGk3TsNvsuBwuNjasLdhuhctbtOUWNOpz4/yKWddWg9Nhx2bTqHRUE80WbwFf5W4raAHOb13TaPLVcfrqZtasqmXHE934ct9bj81L0khQ46yl1lVPbUVV/jvutnuo0xqBwlazLasbcDpsbGlZQ0dVK30jkYLky+W04XE52LKmDpvDwB7oxXYszWclVJLkSwhhB34GvH7K3f8FNObuf48Q4qVSyhNziUpRirjryD9y83hZRxA91MAznf/Ex992gSqdewroXFXFzW99K9f84k8M+HagOTLE9AhX33EjbzrjVbx86/MWfEVaWbmEEOuAHwIXM3fnk1PuR2Otr42xeJR1lRsKugBVuytx2z2s8rQRSgfYWGddzKivsE5CfV4na1qqcDkcOBwaLrstf6Lo87g4e0sz/r1HiMUz1Fe70TIu2hp8DIxOXnlu9rThyVTgtXvxTEtq6rzFx3hUOCYTolWedqr1unxCtK5uNbuH9mGzadhtGmsqNpAp0tVsoqDBXEnY5tV1VDqraLDXcGSWVj6Py866tmr08ZnLNM1qmXIedeZ7XEyorHBimuC2uUkZ1uwGE93oJuZ3mkiutrc9g4PjRwmnio/S2N72DLzOwuexsaOWrsEwVY7qfHJbV+VmfeUaxvyZfOLVWOvFMCsJ+Mdx2DVqKl0Y/on4Ndb6NrG+roLW6gacdieGadDiacehOQpbt+bJJ102F1WOmvw4sYkEtLbKTTCSwu200dJQid2mce6aFlbWdKwAACAASURBVA6MxYskXz4yjlrs07pYTr+df41dPuz2ya9ra6OP2io3jzxV2IJW4XYQxIaZ69BZ4XbSWOulfzRCOJahxdOBy+aa87OytraDhoo6dg7sATQqK1z4vC7qKyrweZ0c6gtaJ/6R4o9fXdNOq9fO/q4A6YzOxs5anA479dVuhv1Wt07flPFXLQ0+kqMzt1PjrCecCaGhsa529jHsLZ52ap31BDN+/j97dx7eWFU3cPx7b/am6b5PO/vMmY0Z9l0RGBdUFBVxFxDEHRTlFUQUQVFxe0XFBVFEFPQFkU1ABZFFEBgYthnObMy+tNN9Sds0yfvHSds0Tdu0TZO0/X2eZ55M75ZzbpJ77rnnnN8pcBbibsvDxsZpD68OOC0nfdG+gcAvhX4Pru6RK1/WCN0InQ6bpXNjLWvuPPJdg8FK5uTNozvchc+RPPiFy3axvHwZnQd3k+fIpycS5Mg5i/G6nAPle21FYODaMrcqgN/r5Ji6auwkD0CKXSU0h4ZXikcb1zoVpirgxlcwFa/PAosYLNDuwgTaOAb42hS9t5jlotEo//fyffzimd8zUPFqquTkknfzlbOPl4rXDFKY7+H7H3sXx3nOItIRK9ytCH946Q6u/ufPCYaSd28RIs6vgOMw83ldgSm/kv2bcRbV+Dl0bvmQilf8LUihq5i5/oUUeoZXhvK8LpZVLhi+E+Zmq7zIx/yaAgryPai5xSypKx6yjcNyUOwuHah4lbrLcTrMgeYEBlvI8n3JeyhYlkWe049lWRy/uhqPY3C7ylLTdcprD2896u9K6HWYdT6PHcvC0Ew4HRZ1lYGkYfYdthWLVje4T4WnCguLYncpYELf1yRErptTnj8QUKQ0rqWhrjKAw7YGIra5XTZepwefy4vX2V/RMWWZAwcu28XqymUDFa9Sd/nAsY6ccwhLChVV3lqKXaUUuYs5tvZwVs6vHJKWkgIvLqeD6hIP5YXuYeNq3LabqvxyXA5zvmzLpsBVNKQCbFIVJbEOVFMy2FLkd+RT6qkYqLDlOwvI97moLvWzfH4xC+cUDWklXFA8WHHIdxZQUWy+HyNVtOKDSHjczlhah99Ix29X6a2htNDHcUsXU+OYR4k99NxUl+ZTVZqHbVl4Hb4hD/Hi54NaVbGU2sLqYRXggbz7XKxZUs686pEjIzptB8UBL8cdUs1Jh9cOzFdXHPBSXuQbqPgEnIPHOHr58C57XoeP+f7FLAosJc89etAar8NHlXcOi6oqcVluHFbydpga39whwVNs2+LYFXXMqwpQVjg0zxawYkHJkCiOYFoDj11VRZ43eVfbw5dW4XcGho3/WhCLJpmf56KioIgCVxFO2zmwbfxn4nLaHL2yikW1hfi9LsBKWvECyEtjAJbJmKpuh+cAN2qtf66UKu1fGJvE8kdKqYXAu5CIhyLNukPd/OSp3/HM3vUDy/rq63jfsndz1lolLSEzkMvp4OIzT+Sw5+r4+X9ug/LtALzc9BKfuvPr/M9J57Oickl2Eyly2THAt7TWV2c7IZlmWxY+j4OiggC7DrTjdNoj3iQl47ZdHFlzCO1d6+js7sBte5hbNfzmZqQn4vHKvBWcuHAhZYGCIdfpwnw3vaEwoa7kN7hzyvNxOR309A12M/S6HRy2vJJnNx6g1F1OY28Dbqc9LNqbz8rH6wrTF7aIRizKPVXU9+wDoDpQEUv78DLDm+QBXpG7lEJXCZZlDek21a844GFRLLhTgd89cE7601RbkY/VBYsDS5k/z011QfJojBXeGuYVV1DgHTzPxe4ynLYLt+Umz+3DZbvptUKUe6so8LtxOsx7BPxu2mPjdvw+F8WRQvZixoDNK6xlW+PQAVSpdJIMuArB10J9S5ByTxW2bXHkXMXepqexLZsSjzmP5cU+FtUW0RUMYblK2d22l5bu4S0oLoeLOt98guEuCl3FeD3Dz7Xf7aOzN0hNoIJQX5iG5iA+jxNPCqH5wTxUmFNay8KSYp6y9uPESShuNJdtW9SUFNHeM/y7XOk3n4vTclA0QgttosSv0KqKpWxu2k6JrwjvCBU3y7IoK/KZqIjd5nP3hfwcXr2EPLcXyxrsFtrPZbvHHANYUZxHfbPpalwU8GBhDesOu7iuiC27WvA6fKxVR1FZ5mNP234CnnyK8vzkeV143U4Otg4+3LQsqCgMsC849P0tyxoS9CLx95R4bqKxTM2tKqCk0DdmhMaBvDvtUSNQjiXT94ZTVfmaAzw7yvqXgPOn6L3FLLW/vZ5rH/slu9sH+xz37VnMp044kzceIzPGz3QnHz6PJbWf5qo77qS58GksR5iuaBtX/uuHnDL3FM4/9t1jFkxiVjoAzOrou/OrCwjkuQnkuUZ8YjwSr8vLYbVLKHQ3UO2vShrEaKwuPScdXkskEh3hvS3Ki/PodXmgZ/jakYJX+H0uXE6bUipo7G3A43ZQU56ftJtgSaGXxuYeCl3FQJTFpTWU5pmWuuXzS1i/aWg/r5FCWKd6A+d2OVixoITQvnqKAubmO8/r4qiF1Thsa0hY95qCSuo7BxPd32IXz7bsWNpHt2J+CVv3tJKf56LA72aJdwENuw/gc3qpLaxmW6wiNh4Oy8Exc9fQUtZJuMfNsvmlpmXQv3TgfOR5naxYYJ7Dm54nXnojZUkrXwABTwBf2HRDczpsfJ7BLmnFvkJU6ULaezsp9AbY214/EJRkPPrTVlHopr4VPE4XxflOVlUsxevy4na4eGx/8vFLVfnlw5bHG2tsX5GvkKPmrBlXeh2WgyJ3yUCrlmVZAxWV8VhcZyqMbpdNRXEe1SVu9jYN/WHNKTfdQPvCEWrK8rFti0UlQ++hbNtiUW0hW3e34nfks3pBDXmuod/NQlcxS4uHd4H0eZwEY+Pq8rwjV0NGCm0/0q9sRfkSdrbuGfPzSVTmTT4X2FSaqsrXLuCQUda/Hhge+kWICYhGo/xz6+P8bv3t9IbNU71o2EF05xq+8s53cOTyyjGOIGaK2ooA11/wYX7z4BL+vv8ubH8rWPDwrod5fu8GLj/1AuYWV2c7mSK3fAf4mlLqPq31pmwnJhts26J8tMmN4+52SnxFNAXNgH2vy3QlqwpUUBUYecB+f53E5bSHBIIA85S9Pw2jKS320TJ0yA5lRT6qSk1lz+UYfjtT4HfTGHs6398lLWn6MDfMlmVR5C4dcvNWmO/hqBWVPKfrCYfNze78wAKqCm1K84p5tnHo+JEFKU6+WxLwUdo1eM5rAhVJu8Tnu/2osoXs3PsS5a5yXLZrWLe6RbWF7G/sGvO9vR4nKxcOdEbC7XBR6TMtOeN98r98fgmv7mgiP89NVXEhVcVDW4EK8wej4yU7domvCNuyiCSpQKxaVMqLWw7ictrUxCoCNYF2uvt6WVwyD6fDOeK4wPGqKvHgdFisWL6U8iLflLSA5PtcuF02vaHIuCcRH6l6led10tE1PG7dWMMqXE4HyxcMVjb83uTbV40yAXG+209Hbydup4Plc8s5pHwlhfkewhHT+mzbEImY7p2F3uEV4zVLy9l9oJ2igAeX08GSuiI27zLXlMlMfFySVzQwLnUkFibiZr+5/hoK3ZnvijhVla+bMIXZk8BDsWVRpZQXuAT4ADDruniI9DvY1cSvnvkD6/dvGFgW6fbh3nMMV374TQODPMXs4XTYXPDW43j9jiV8+4E/0FX4KpYFzeH9fOmBb3Fq3VrOP/50mRNM9LsJeC/wslJqM1DP8HueqNb61EwnLBfNL64FogQ8+cOedI+kfzD/qkVlvLC5AafDZlFtIZFIdGBMTzLxXavyPE7mLinjxc2D83nFVyRsy2Zx6Xy2Ne1gVeUywFTsunsb8fc6KY2NUSkv9tHQbAIZOFK8z87zuvC4HHTF5ndyOzzMLeqvbA5Wvo5eWTViN6nEtzLnz0tXqBuv08PcotoR37/cX8rbDjmO9ZsasCxYOGdoxaO2IkBtRfpvIEc7PRUleRQXeIa00o2H03ZwWPUqXti/gb5ImJq4ynthvodjV1UPRG4EWFgyNb1XHLZFZbEn6fewuszPvrjw5KO1aJXmFdHYZSoQAffQCoRlWSyoLqQnFE65G92Q/ZN8Esvnl/D8pgYctsXqxWU8rxuIRKMsmz/19zzxPUi8bgeF+UOnF6irMN2YfR4n1WXDK18el2OgCy6Y8+xyOvC4HXhTOD/jrR8HPP6B7rZu20OVr44iby9ep5dQ1/C56jJhqipf3wFWArfAQEfa24Di2HveD3xrit5bzAK94RD3vPoP/rrxQXrCgxGt+hrmUNJ+OFdd8HpqkvzoxeyxbF4ZN3zss/zkvn/xVNvfsDxBsMM8tOdBnvrzs3z+dWezZo6MBRNcC7wJCAJuoGr0zWe3PJePFRVLx9xuVcVSXmnYhMt2DbQkFfjdw26qx6M4MHqY+Kr88iGtVl63kyOXV9K9Y3CWgPjKgiNW+3LFLUtl3FCqvb0Wzilk/5Yi2vpaKCvMH3LTalkWh1avpKevd8SADfH6W+Bsy0rpBnWyyop8uFNoRZkMn8vLsXWHEwx1DzsHLudUxYNL3cI5hUMqX6NZXDKfPNcBAu583M7hQWJs2xpXxeuQSsWOlj3U5teyY4dpUSqLm34gz+vi2FXV2Jb5Lh27qopINPPnLf6nMNjN1MWSumKOml+ZUkuiZY3R8g4DrWOlhd5xf++WlS3GY++hr70Lp+2itiKfRZWm8rexfuO4jpUuU/IL1lqHgQ8qpW4EzgAWYsL07gTu1VrfPRXvK2a+aDTKM3te4Ob1tw/pBx8Nuel9bSVLCpdx+WePHrOQFrOD2+Xgi2es5eXtq/j+w7fQ5TfzFnVajXzrsR+yInAEXzz1AwS8E+/qIKa9s4F7gfdrrbuynZiZoshXyFE1a3DaTuy4SHXZuKmeVzSHXa37qCuspjKvgPrmLqIRWFReTFNfAwX5buw+P16Hg5WLkge6mEh3tDnl+RzPMroiHSwoHz4OxbbslCpe/VINhrK4togXNptxaomtZKmKb1WciPGMRhrPOcgkp8NOuUucy+Fi3iitl+NV6C1gdWwi7Ty7i85giNqKoQ+U46NEOhz2hObCcKTa/JsC27JZUFxHfedB5hfVpbULZ015PuXFvglV+D1ON8sqFjAnv5eOrhAVScalZtpUzfP1e+AOrfVfGex2KMSkbGnczq0v/ZWXDgzOTh+NQrihjtDuJbz9WMXHTl+VE0/MRG5ZNb+KG8++mN/86zH+vudeLG8HWLChYx0f/8vLvGnem/josW8aiAomZhUncI9UvIZaOreYTTubcTisUbsGjiZZC0A21BXWMKegaiCc9bGrqolEomzZ3IoV7KPcX8qxtfMm9PsvKfDS1GbGlSW2FNm2RV1lIZCe8UmpKgp4WL2kDAtrWJewUffL99DS0TPsJn8iqkrzBrp61ZRl9uHWnIL0NV5Xl/kJhSMQNf/PhoriPNNvbAr43A7yvU5s22LFgtQCT4xWqZpTUJXW8x9vsi2tJqhQblyTpupO40zgySk6tphldrbs4baX7+HZPS8MWR5uLya0YzmevmIufN+hvOHw9D11EjOPw2Hz8bUn8dbGw/ju/bexz7Eey44ScfTwwO57eOi2R3nH0tM484gTZTzY7HIP8HbghmwnJJdUlebhjY3BmOi4nsmKD4M9kchu8eLnEXI6bHCYm8iavApU2aIx9/e4HXQGzSiK+ErWsvnF7G/soijgGdISkW0T6f1xyOIyOrtDI0aZG4/qUj99fRGiTG2lxefyDsznuKR0PpZlD0SqHLat10mw24zbSzUsvWVZzKtKLYjKaPoD1ZSOERAiG5bMyWOpqpnQ93eyv8vZaqoqXy8CR0zRscUssat1L3/Z8AD/2fnskIGukR4vfbuWEm6q5rClFXzmvYcmDW8sRDJzSgu47sMX8K+XN/KbZ26nJ8+EEw45W7lj223crR9g7dxT+dDxb8DtlJawWeAG4A9KqX9iuh/WA32JG2mt/5zphGWTZVkUF+Rmd7BsWFJXxHOd9cBghEYwT+PrKnNj4tbJsm1r1JaB4gIPzW09SSeeTmRZFnPTUGkZy8qKpexvb6Akr4gCz+gtdisXmCiKHpcj42PCVdlC2no6KPTk5ncllx4czAZTdWfxe+AapdRK4AmgAYgkbBPVWn9vit5fTFORSIR/bVrPvfoh9nRvG7IuGnIT2ruQcH0ddRWFnH3uCo5eWSUTJ4sJOXnVcl6/4qv84bHHuX/H3wh7TL/+kKuF+/fdwQO33s/KgiP50NFrWVQ9vnlDxLTySOx1DnDKCNtEgVlV+coFZXklA2N7C2OTCleV5rG/sYt51VN/Yx/P63ZyzKpqLMYOiz9TLZ9fysGWIMUFqXdlnGpepycWgXNsfp+LY1dl557BYTvSFh4/22bntz+9pqrydV3s9ejYv2SigFS+BM1t3Tz68lYe2f4Ue/s2EvUMjS4U7XPRt28BkYZ5HLa4mjefNo9jVlbP2gJQpI/DtvjoSa/jA33H8bvHH+GhnQ8NVMKi7i5e7n6US//1BIGehZw6/3W8/ajV4xpDIaaFk7OdAJHcwuK5RKJRXA4nFX4TCEPNK2FBTeGYkfimwmxvHXA57ayNe0oXeVgrcsFUVb4WTNFxxQwQDkd4dUczT2zYytN7XqDZfg070IzlgPhwPdFeDzQsQOUfynHH1nHioXPkxldMCZfTyflvWMu54VO4Y90T/G3zw3Q5zYyuliNMR95m7qrfzJ1/KqTKXsrJC4/h9asXjhkeV+Q+rfW/s50GkZzT4WRZ+fDxWNmoeAkhRLqkpfKllAoDH9Fa/xFAa70jtrwA6NBaJ3Y5FLPMgaYunt64mye3bWRLy2Yi/npsfzsUMSw8qi9Uzqriw3nLsuNZPr8sa4O9xezjcNicdfTrOOvo1/Hcji3c9vyDbO/eAJa5hNn5rdTzDLftfZY/biynlHkcPXc1x6j5LJtXPOloTCI7lFKFwHFAPhB/wXECAeANWusPjON4DuAi4OPAXGAHcD3wM611VCllAV8BPgGUYbrnf05r/WoasiOEEFNIWg8nK10tX8M+CaVUKWbg8huBhydzcKXUx4H/AWqB9cDFWusRoykqpVYBPwaOwUw//zPgWq21hGXJgL5whNf2NfPstm1s2P8a21t2EHQexMprx3JHoWLo3Q2AzwpwWMWhvHvNG5hbXJOVdAsR7/B5izl83mJau9u5Y/3DPLbzv3RGmwGw7CiO4npaqOfv7c/wwKP5ECyk0lfN8sp5rKitY/W8WsoKp3cXndlAKXUs8ACmktWvv0zrLzMOjvOwVwCXAlcDTwGvA/4XyMNM6vy12PovA9uBrwIPKaVWaK1bx58LIYQQ08VUh/KadPVYKXU28AvgKuAZ4HPAg0qpNVrr15JsXwH8E3gZOAs4HPgWEAa+P9n0zGbRaJRgTx/tXSGa24Lsb21jb0sDBzoaaexqoqm7mdZQE72OVvB0MdC1unB4ZQug2FXGUbWrOWXx0Swonit9sUVOKvQG+Nix7+TcY97Btqad3P3Ko6zb/xy90e6Bbey8DsjroIE9NLQ/y6MbIboBrD4vPjtAgauAIl+AMn8R1YUl1JaUUR4ootBbQJEnkDPzIc1S34q9fhJwAT8F3gX4MC1TRwMnpHqwWKvXxcD3tNb9x35IKVUOfEkp9XPgS8CVWuvrYvs8hmkdOw/44aRzJIQQU6TcX0JTMDbxdKAiy6mZnnI6jnKsa8Y3gF9prb8RW/YPQANfAC5MsttnMPl6R2zSzL8ppTzAZUqpH2utQ5lJfW6IRqOE+iL0hML09IYHX3vD9IT66OkN09XTQ0dPkNZgF63BTtq7g7T3dNIR6iDY10V3pIveaJA+qxucveDsxXL1YtkJvUnd5t9IVSi/XcSi4vkcO38lh9WsHHEuDiFykWVZLCqdxxde/xH6Ih9EH9zKE6+9wPN7X6Gx58CwL75lAa5ugnQTjDRwoBN0J6Y/QAI76sKND6/tx+fwk+f0E3AFKPAECHjyKfD6KfD6KfTlU+j1U+jz4/U48bgduJ22PLiYnCOBn2qtb1BKuYAfYaLx3qaUuh14FtOClWq3wwLgZuAvCcs1UI6JqJgP3D2wQutmpdS/gbcglS8hRA4r95fSE+4lEokwJzA1EyrPdDld+QIWA/MYWkiFlFL3YQqpZNYCD8UqXv3+iunWcRTwnylK6xBdoSBP7Xqejt5OIEo0ypDJIof+H0jy9+A+w/fftreVrbtbCEciA+uihIkSIWqZ1whhIoTNeBU7ghV7HfjbDoOjD8tO0hvTybBvR8ojr6I23mgBZd5yFpTUctR8xaqqxeR7pAuWmBmctoOVFUtZWbEUeC/BUDfbW3azftdW9P6d1Hc00trbSsjqBOfYz3siVohuQnRH22jpw8wy1Q20J98+GrEg4oCIDVEbog5sHFg4cODAthw4LAcO28Zhm1en7cBh2ViWjY2FZdlYmIqb1/Iy37san53euW/yfS5OOryWAn9Ot+x5gC0wUL5sBQ4D7tZa9ymlfocZv5USrXUz8Nkkq04HdmO6zwNsTVi/DXjnONMOwMaNGyeyG8FgcFL7T3ezPf8g50DyP7n8631t6UxOxmXr88/1ytfS2OuWhOXbgEVKKYfWOpxkn0eSbN+/LiOVrxue/SNP7Hx2at9kjGlOLIYHs0gHR9SN2/Lhc/gp8hRR4iumMr+U2uJyllXXUZVfhsOWwANi9vC5vCwvX8zy8sVDlkciUXbUN7HtQD27mg6yr7WJgx2ttPW2Ewx30hvtIuLoBlcvlqtneGvyCCw7CvbQeYCjsX8jHmGMQ7+8dxehrWtSev/xeHV7E5d85Mi0HzeNdgHz4/7WQPyJ6MK0WE2YUup8zIPBCzFX7h6tdW/CZu2MeVUXQggx3aWz8lWqlJob93dJ7LUiYfkArfXOMY7ZXxAlPv9txzTE+IHEanfBCNvHH29c1q1bN+59TnQfyomLD53I201fHbB/8272szvbKREipxQBRQV5HFKQx2DDR45ZjAlRNAUmcg3NoLuAzymlXgX+BPwbuFopdTSmIvZRYKyyakRKqQ9hxi3fjhlPdhmDgTwSTSgycFdX19gbTeH+091szz/IOZD8S/4zKZ2Vr/+N/Uv0h1H2Gat5JDHiVKJkBZU1zu1HdcQRR8hgCiGEmLmuBo4HbgH+BtwAfB54ElOW2MAFEzmwUupiTKCnu4EPxcLMtwIepZQrYQxyABh3pEMpo4QQYnpJV+XrG2k6TqL+gigAHIhbHgDCWuuOEfYJJCwLxK0TQgghAIiFdj9eKXV0f5j3WKvXpzA9OB7QWt8/3uMqpa7BtHLdDJynte7vJ7oZ85BwAbApbpeFmJY2IYQQM1haKl/9kQinwObY60KGjvtayNBCK3GfhQnL+v+Wgk0IIcQwWuun4/5fzyQeKiqlLsJUvH4MfCFhjsn/YMKpnIGZ8wulVDFw0mTeUwghxPSQ6wE3NmMGQ58B/B0gFgr4bcB9I+zzEPAJpZRfa90ZW3YG0IiZoFkIIcQsp5RaCByjtb41blkJcDlwIibQxj2YMPSJwTFGO2418F3gJeA24BilVPwmzwI/wYwri2AeJF6OGb/868nkSQghRO6zotGRhkflBqXUpzGDlL8NPIEJ4XsicKjWeptSahFQrrV+KrZ9NbAReAH4HiZq1TeAS7XWMsmyEELMckqp72AmOgZwa60jSqkAsA5YBBzETHp8GPAUcEqqc0Qqpc4BfjvKJuVAC/BN4BzMnF//AS7UWr867swIIYSYVnK+8gWglPoiZp6VMkzr1Re11k/G1t0EnK21tuK2PxLT3eMIzFix67XW3810uoUQQuQWpdRZmBapv2JatR6OLb8WUyF7CjhVax1USh0OPApcpbW+NltpFkIIMXNMi8qXEEIIkQ5KqYcAl9b69QnL9wEVwJu01g/FLb8eOEFrnf5J0IQQQsw6drYTIIQQQmTQGszcXgOUUocBlZhxV/9K2L6/K6IQQggxaVL5EkIIMZv4GT7tyKmx14e11onzQXqBPoQQQog0kMqXEEKI2WQnsDRh2TsxEyoni6L7OkzwDSGEEGLSpPIlhBBiNrkLOE8ptRxAKfVW4ASgE7gjfkOl1MnAe4C/ZTqRQgghZiYJuJGEUsqBia74cWAu5qnn9cDPtNZRpZQFfAX4BCYC4xPA56ZDmOAU8uYDvgq8D6jCzLX2Ha31n7KU5JSNlbeEbcuADZhImFdmOKnjkkq+lFLvx8wVtAQzN951WuufZCfFqUvx+3gl8H6gCDP+5ota6+ezk+LUKaXcwNeAj2CuE/8FvqS1fi62fjpfR8bKW85eR5RShZiIhouBfUAN5kHkBVrrX8e2OQU4F3gv0AAcorVuyU6Kp4ZS6uPA/wC1mCjCF/dHEZ5O0lFeK6U8wHeAD2C6pT6ICf2/N26bYuBHwOmY78sdmHPWNuWZTFEsH+uB/2qtz4ktmxX5V0qdClwDrAbqgZswUUrDM/0cxH4DXwQuwFxvXwEui4vkOmPzr5R6B/AHrXUgblnG8quUqgOuA04BuoHfAV8da25IaflK7grMj/gW4B3An4H/BS6Jrf8a5sbi+5ibwkLgoVihnuvGytvPgc/Elp0BPAbcFgvPnOvGylu86zDz7UwHo+ZLKfU+4I/A/cBbY+uvU0qdnZXUjs9Yn9mPMN/Ha4GzgDDwsFKqNvNJHbcfARdiLvBnYCbt/ZdSal5s/XS+joyVt5y9jmitW4Gjga9j5oP8P+C0/opXzFrgg8A/geNnYMXrbOAXmN/dezDzjj2olFqQ1YRNTDrK618AHwUuxVS61wB/i93U9rsDeAPwSeDzsff645TkaOK+DixLWDbj86+UOgFT/m0E3oaZG/bLmHzDzD8Hl2B+A7/BXG+3Ag/EAgnBDM2/Uup4zO/eSliVkfzGKnB/B+ZhHkRejSn3fjhW2qXlK0HsxDcDP9ZaXxG3/GeYBps4VwAAIABJREFUp6CLgL3AN/vnDovVjncAV2qtxzzp2ZJC3lZh5kU7X2t9Y9z6+zATWR+d4SSnbKy8aa0r4padjpkE1Q98N5dbvlL4zCox3727tdafjVv/ByCqtf5whpOcshTyVoWJPvdDrfXXYusCmJaIr+bypOmxi3wDZnL3H8aW+YBGTCH5Y6bvdWSsvP2KaXod6aeUKgH6sv1EeyrEngq/Btyvtf5UbJkL0MC9WusLs5m+8UhHea2UWgRsAj7Y3zKrlFqCOR9naq3/Eut++jBwrNb6v7FtTsVUzo/ob/HNptiN9mNAELhPa31O7Ho54/OvlHoMaNVavz1u2XeAYzGtFjP6HCilNgLPaK0/GvvbgfmN3w1cxgzLf6zScxGmstMJuLXW+bF1GfvOK6XOxZR3C7TWu2PbnIep2NVqrQ+MlAdp+RquALgZ+EvCco1pKTkFyMd8qc0KrZuBfwNvyVAaJ2qsvJVjvjR/T7I+15+Ijpo3pZQfBm4cf45pou/JaAonZqzP7PVAHeYCMLhS6w/lcsUrZqy8BQA3pgLWrxPzuZVkIoGT0Akcg6nk9wthgjp4MDcF0/U6Mlbe8pm+1xEAtNZNM7HiFbMY86Q2/rsXwgQbyfXvXqJ0lNenxF7vjdtmM6brVv82a4H6/puwmH9hrk1ZP2dKKSem1eN7wJ64ValcZ6Z1/pVS5Zgxm4ll4KVa6zcwC84B5ro7cL3SWocxEV1LmJn5Pw1TqbwESBxekcn8rgWe6694xfwVcDIYQTcp52grZ6PYh/TZJKtOB3Zj+seDadaNtw0TMStnjZU3rfUrwKfiV8SeoJwG5PQ4lBTy1hn7+/vABq3175RSP85YAicohe9j//xDTqXUv4HjMK0O12itf56ZVE5MCp9Zq1Lql8DnYnnbgunH7SMhMEKu0Vr3Ac8DKKVsYD5m7FoU001ibWzT6XgdGTVvWuttTNPryCzRH+lxS8LybcAipZQjdvOW89JUXi8F9seVEfHbLI3bZsj50lpHlFLbGR45Mxu+jHlQ9W3gXXHL+9M2k/N/CKbbWadS6h7gjZgb5OuBq5gd5+BnwNeUUncCzwLnACsx48BnYv6fwbQ2tSilrkxYl8n8LsW0oMVv06iUamOMcyItXylQSp2PuVm6FvOkrSfJYLr22LppJSFvyXwD04d8pPU5KzFvygyi/wBmEOa0lZCvcsw4qLsxA0bfAtwJXB8bCzatJPk+fgMzePppoAm4GDhPa70uOymckCswBcFHMN1cNTPnOpIsb8lM2+vIDNT//WpPWN6OuSfwZzY56TWB8rqA4ediIttkhTJROy/HdPNNzOeMzz+DY7dvxjzcOQ1T8foqpmVkNpyDnwOPY7rEtWDGPF6htb6bGZh/rfUePfI43Ezmd8LnRFq+xqCU+hCmC83tmEGcl2Ge8CaTODlnTkuSt8T1X8Zc1H+gtb4nw8mblMS8KaXygBuAr2utX8tq4iYhyWd2OeAAfqW1via22cNKqYWYwddZjy6XqhE+s/9gulR8FNOd5j3AjUqpNq31XVlL7PjcCTwCnIx5OunGjMuYCdeRYXmLH3sD0/s6MkP1D06fCd+/ISZYXlspbjPSecna+Yq1PP8auFEnj1SZat6mZf5jXLHXB7XW/UFW/qVMROOvYoICzdhzEBvD+SCwAvg0JujIWuDrSqkWZsd3IF4m85vKcZKSlq9RKKUuBn6P6Rf6IW3CercCntgA5XiB2LppYYS89a+zlFI/xFy0rid5tMCcNULevoX5fH6qlHLG+sgD2HH/z2kj5KsjtvqBhM3/ASyN3ejnvBHy9m5M6Pwztda/11o/rLX+DGZ8R86H0e+ntX5Ra/1vbQK7XIf5PXUyA64jyfLWn6fpfh2Zwfq/X4GE5QEgrLXuYBqaRHndyvBzMZFtsuFzmPD6VySUa1bs/zM9/zB6GZiPaQmayefgBOBE4JNa659rrR/RWn8VE3HvWlIra6Zz/hNl8js/4XMila8RKKWuAX6AuZifGdeEuRlT200cOL4QM8g3542St/4naTcDX8CMG/qMTpgjK5eNkrd3AYdh5mEIxf4VYrpNhbKQ1HEZJV/9fZITK1kuRn9ykzNGyVsdpkvlswm7PA7UKaXyM5fK8VFKVSmlzo1FXor3PKYlr5lpeh1JIW+l0/06MsNtjr0uTFi+kITxC9PFJMvrzUCVMhE7R9tmyPmKG++Yzd/ruzDj2poZLNfWYHoK9P89k/MPo5eBMPPPQV3s9amE5Y8DeZiWmZmc/0SZ/M0n26YU0+Vw1HMila8klFIXYbor/Bg4JzbAvN9/MDfwZ8RtXwycBDyUyXROxBh5A1OAfRgzke3lmU7fZIyRt9OBoxL+dWC6Ih6V4aSOyxj5ehTzfXxvwm5vw4SeTfx8c8oYeduE6VJ5TMJux2BCnScOls0lRZjoY2cmLH8TZgzbX5m+15Gx8lbPNL6OzAKbMROxx3/3XJhrRq5/94ZJQ3n9EOY6c3rcNkswAQvit6lWSsVPk3Ay5iYrm+fsEwwv1zZhWv+OAm5jZucfYAOmS3qyMnAvM/8c9D8wOSFh+TFAH6anyEzOf6JM/uYfAo5UQ+cdPQNT4X90tETKPF8JlFLVmPkRNmFmC0/0LGYum4sw4xg2xV7nACu1mcAzJ6WQtwjm6ck/MZPUxQtrrZ+Z2hROXCqfW2JFJNYf+n91bs/zlcr38TJMtLlrMOFU3wecB7xNa31/ZlI6finkbR0m0EYppu/+XszF8kLMbPXDxinmEqXU7ZiQtpdhoii9GzNZ48e01r9VSl3LNLyOwOh5w0xc/CzT8DoyWyilPo0ZE/Vt4AlMxMATgUNj0SqnhXSV10qpPwNvBr6EaUX6NubhzhFa63BsXM2TmFamSzCtKt8HntZxc0vlAqXUemC91vqc2N9jXmeme/6VUh8FfsfgeL+1mAiQn9Ja/3KmnwOl1L3A8ZhyciNmYuDLgOu01l+ayflXJtrhl3Rsnq/YsozkNzYufQPmQf4VQA2mq+dvddy8q8lMi7EuGfZmTNeZQzAnPlE5Jtx1BPOh5WNq2mfn+g0TY+ftZ5jm2jfG/sXrxOQ1V6XyuR3MaIrSY8x8aa2vVkq1Yvr/X4K52LwnlyteMal8Zv1Ry36ACTG/ETNp9u2ZSuQkfBQT9OQyoBpzkY5P+3S9jsAoeYsVhtP1OjIraK2vj3W5uQjTNXQ98ObpVPGKSVd5fS7wI+C7mB5B/wQu7A+5r7WOKqXegRlr+ivMXIN3Yc5drpvx+dda36yUCmHyei6mZfeTWuv+ub9m+jl4L/BNTCWjBNO6fSHwy9j6mZ7/RBnJr9a6Sym1FvMg6w+YcV7Xx95/VNLyJYQQQgghhBAZIGO+hBBCCCGEECIDpPIlhBBCCCGEEBkglS8hhBBCCCGEyACpfAkhhBBCCCFEBkjlSwghhBBCCCEyQCpfQgghhBBCCJEBUvkSQgghhBBCiAyQypcQQgghhBBCZIBUvoQQQgghhBAiA6TyJYQQQgghhBAZIJUvIYQQQgghhMgAqXwJIYQQQgghRAZI5UsIIYQQQgghMkAqX0LkMKXUfKVUVCn162ynRQghhEgk5ZQQ4+PMdgKEEKNqAD4CbMl2QoQQQogkpJwSYhysaDSa7TQIIYQQQgghxIwn3Q6FEEIIIYQQIgOk26EQWaSU8gPXAKcBc4E24HHgKq31eqXUfOA14Eat9flx+50GfAU4FOgG7gDuBe4BztVa3xS37xcBC/gUUAtsBb4G3AVcDpwHlAAvARdrrZ+Mex8vcDFwJrAUcAF7YvteobXuSPtJEUIIkTOknBIivaTyJUR2/Rk4BfgJoDGFzoXAY0qp5cl2UEp9ELgF07/+aszv+BOYgieZzwNh4GdAFLgUuA34J1AN/AAIAJcBdymlFmut22L73o4pcG8Afg74Y+/zeaAS+OAE8y2EEGJ6kHJKiDSSypcQWaKUKgfeClyvtf6fuOXPA98BDsM85YvfxwtcB+wEjuwvfJRSvwJeGeGtSoElWuu9sW27gOuBVYDSWnfFHfty4CjgIaXUGuBtwPcS0vdTzFPJt0/qBAghhMhpUk4JkX4y5kuI7GmN/TtLKXWBUqoCQGt9t9Z6hdb6niT7nIoppK6Le+qH1vogprBL5vH+Ai1mY+z1vv4CLWZz7HVO7JgvAIXAlQnHqwKagPwx8ieEEGJ6k3JKiDSTli8hskRr3auUOhf4LfBL4BdKqReA+4GbtNabkuymYq+vJlm3YYS32p/wd1/s9UDC8nDsNf6hTA/wIaXUWmAxsAjT716IGUcptQKoA54FgkBUax3MbqqEyB4pp4RIP2n5EiKLtNZ3YvrPvw9TuBVh+rRvUEol6xvvjr32JFnXlWQZQGiE5aPOM6GUKgFewPSjrwKeAL4MHAL8a7R9hZhOlFJvVUptwXSf+huwBjgJ2KuU+nRWEydElkk5JUR6ScuXEFmilApgCojtWus/YwY1o5R6HWaQ8aUMH5zc/5RxGfBQwrplaU7ipzFPMM/TWv8mfoVSqjrN7yVEViilTsFERXsa+DUmqhuY8SpbgJ8opZq01rdlKYlCZI2UU0Kkn7R8CZE9yzFP6b6asHwd5olh37A94O9AC/AJpVRe/0KlVD7wyTSnryz2mjiY+p3EClCllDzAEdPdVZjf3OsxT88B0Fq/AhwH/AcTBluI2UjKKSHSTL6QQmSJ1vpppdT9wKeUUoXAo4AX+DBmkPAPkuzToZT6PHAT8KxS6reYuVHOx3QLgTG6aYzDvcBFwK1KqeuBDuBETNje7lhaC4HGNL2fENlwGHCZ1jqslBqyQmvdp5T6A/C9rKRMiCyTckqI9JOWLyGy6yzMHCiHAz/EPIVvB96utf6/ZDtorX+H6ebRGdv+EuAfmAkpIXk/+3HTWv8TU4B1xNJ4DaZ7x6cxhR3Am9LxXkJkUf8N2kgqSdNvSohpSsopIdLIikbT9fBBCDHVlFIewK+1bkqy7suYeVdO1lo/kum0CTEdKaVuA44GjsA8kGwA1mqtH1ZKLQGeBB7WWp+VxWQKMW1IOSXE6KTlS4jppQxoVErdEL9QKeUC3o95mvh8NhImxDR1KeDHhMC+DtMd6txYd8MXMOVk4ngXIcTIpJwSYhTS8iXENKOUug84DfgdJhiAH/gA5un9JVrr72cxeUJMO0qpWuDbwOlAQWxxEHgQuHSEuYyEECOQckqIkUnlS4hpJhY96iLgQ8ACoBfzhP46rfVfspk2IaYzpZSFeWrvABq01uExdhFCJCHllBAjk8qXEEIIIYQQQmSAhJofw7p166R2KoQQWXLEEUdYU3l8pVSQFMJea63zxtomG6SMEkKI7BpvOSWVrxQcccQR2U6CEELMOuvWrcvE2/yJ4ZUvB1ABnADsIW7y5Vw00TJq48aNACxfvjydyZk2Znv+Qc6B5F/yD5PL/0TKqXFXvpRSHq21zHkiprWGzkY2NW5jb9sBwtEwfpefOQVVqLKF+N05+YBbCDEFtNbnjLROKVUDPI6ZC0wIIcQ49YZD7G7dR8Djp9xfmu3k5ISJtHzVK6X+CtwG/ENr3ZfmNAkxJaLRKOv2vsi9+iE2NGxOuo3DdrC6cjmnLTmZNVXLsawp7fEkhMhhWuu9SqnrgS8AP8t2eoQQYrrZ3PgazcFWaIeA24/XNdqc9rPDRCpfv8HMWv4RoEkp9RdMt42HtdbS91zkpMauZm5YdyvP7X1p1O3CkTDP73uZ5/e9TJFdyVvq3s4pKw+hKODJUEqFEDkmDNRkOxFCCDEdNQdbB/7f0dsllS8mUPnSWn8B+IJS6kTgLODdwPmYFrE7gNu01o+lN5lCTNyrDVv4zr9/QVe4c2BZpNtHuKmaSGcBRGwsVy92fiuOonost+lV2xI5wK3bb+SWpxawzHMcpx23kONX1+CwpTVMiJlCKVUxwioPsAb4EjD6UxshhBAiRRMOuKG1fhx4XCl1EWZQ8unAW4BPKqX2Yrol3qy1lkJLZM0DG57kNy/eAlYEgGjITWjnMsKN1YCpRDkdFk6HTaQlSmhnGIr245yzBdvXiWWBs/o1NnU08dJthzHngTLOe8dKjlpRlcVcCSHSaD8jRzu0gB7gw5lLjhBCiJksXdEOXbFjuTGFlQtTWF2slPo7cJ7Wem+a3kuIlPz63//gwX13YlnmvircVkxp8wmcdPgiVi4soaYsn4DfjdftGBjbFY1Gae8Ksb+pnXs3/YP/HnyUKFHs/Fa8K59k7+bDuerGDo47pJrPnLmGwnzpjijENHcVyStfYUzF7K9a64OZTZIQIpc1t3UTiUYpLfRlOyliGppQ5UspZQOnAO8FzgDKgDbgL8DngIdjm74T+B2mFez1k02sEKmIRqP86N4HeLLjHizb3FM52+fw2aPO5sTVtdijdBu0LIsCv5sCfykX170fffAofvSfX9MUbMFy9+BZ/l9C2w7hyZdA72jiyx89ihULJHqPENOV1vrKbKchF/X29dLV102hJyCBh4SI09rRw4tbzPOYlQtLKSuSCpgYn4mEmv81plJVAgSBezCVq/u11r0Jm9+plPog8ObJJlSIVESjUa67+xGe7LwPy2EqXqWRxVz7wc8QyBv/IE9VtojvvPFSvvf4L9jctB3LjuBe/AKhPR007VnM5T9/gs+ceShrj56b7qwIIabAKGO8RqW1rk93WnJVJBph/f4N9IZDLCiuY06BdLMWot+O/W0D/9+yu0UqX2LcJtLy9RHgQeBW4C6tddcY298H3DuB9xFiXKLRKD+7+0keb/8rlisMQLV7IT94x0U4HRPvYVvkK+Trp1zML565hcd3PA2Aa85WbF8Hva+t4sd/ep6OYIgzTlqUlnwIIabUaGO8RuNId0JyVUt3G73hEACvNe+SypcQQqTRRO5IK7XWLUopr9Z6YOJJpdQC4EBiZUxrfdMk0yhESm647zkeabkD22saYMtc1Xz39AsnVfHq53a4+Nwx51BXUM2tL90FgKPkAB5/K6Fth3Dj3S/T1R3iA29S0kVHiNw20hivKaGUegfwB611IG7ZEcCzSTb/gdb6S5lKmxBCiMybSKj5FqXUt4ALlVJHaK03xVZdBZyplLpSa/3dtKZSiDHc+eir/P3A/2Hnm7p/wFHMd976BbzO9AXEsCyLd614C3MKqvjpf2+iu68H29ONZ/kzhJsque2xdnp6w5zz9hVSARMiR2VyjJdS6njgFvpDqw5aA3QCaxOWS2CqHLO7dR/1nY0sLK6jyFeY7eTkvFBfhLbOHooC3imZlqW1owe9o5migIelc4vTfvxUWMN+zrPHjn1ttLT3sLiuCL/Ple3kTFsTGfN1CXAZ8HugJW7V/wLdwDVKqSat9Q3pSaIQo3vixd3csvGPOIrMRH5eO49r3vIFCryBMfacmKNrD+Xaosv5yVO/ZXPja4BpBXOUHODe3ZsJ/u0UPv22k6bkvYUQU0Mp5QP8gB232AkEgDdorX85jmN5gIuAqzGVLHfCJquBl7XWT00q0SJlbT0dOG0Hea7Ux+f0RcJsb9kNwMv1mzhx3lFTlbwZ46WtB2nv7KW6zD/uylE0GiUU6cPtGPmmfv2mBgCCPX3UlOeTLxWAtAuFQzR0NlLoLcDvzhtY3tUdYvs+M97thc0NHL9a5p6fKHvsTYY5H7hRa312/ABkrfU6rfXHMZWyC9OVQCFGs2FbIz967GYcReaC7MDFladeSGV++ZS+b1V+OVef8iXOP+IDBNz+geWOknoe6biNC+/8LhsbNk9pGoQQk6eUqlFKPQp0AAeAfXH/dgEbgOvHedjTMA8pLwF+kmT9auDFiaZ5qs20J/stwVZe3L+R5/a+THdfT8r7RaKRcb1PNBqlKdhCR2/neJM4Y7R3mm7/+w6O/xy8Uq95evd69renFtsm1Bce93uIsW1qfI1tzbt4ft8rQ34D3b2D5zvUN77fxmT0RcLsadtPS7A1Y+851SZS+aojeV/1fk8CEnlATLm9DR1cde/vsct2mQVRi/953SdYWDIvI+9v2zZvWvx6fvL2q/ng6jPwWINPVPf3bufrD/+Qrz/8AzYd3JaR9AghJuR7wPGYqL2/x3QR/A5wA9CI6dFxwjiP+QywQGt9HcnHlx0C1Cml1iulepVSW5RSZ080A2J0Gxq2DPx/Z8ueKXufhq4mNtRvZv2+DeOq5Ano7uuhpbsdgC1NOzL2vq2dfWzfH6S1Qz6vfs1xlZy+cN/A/6PRjA2VHWJ78y5ea97Fy/Wb6OlLDKo+PU0kEsF24GRgpC4YJyD91sUUa+3o4bLbbiVSqQeWfeLID3NYzcqMpyXP5eOM5W/mtCUn89177+DFtqexPSYWzcaGLVzx8Pd5z4q3cuaKt2LbE3neIYSYQmuBm7TW5yulColF9NVaP6qUugpYB7wHSLmLoNZ6xDt8pVQNZm7MJZjWsWbgA8BNSqmo1vrm8WZg48aN490FgGAwmHT/9lAnezsGs7CxK39Cx88Ve1p2D9w4drnbCTeYG+2R8t8vFOljb2vq5+Gl5sHy6D+NXVT7JjSrQUaNdQ7Ga8/ewTDsG33tKe/XE+5lb9vY5zr++L5oM4G8yQXU0jvN6Jn7HlnPYYsKUtpnx94u2oKmUuJ22mx0tIyxR+5K9vnvbR78HF7t8OKyzTlu7exjz/7BmHqpfr7xx3O0RGlwj29ISPzval1LhGJ3ap9TKtL9/U/VRO4EbwTOUkp9PxbhEACl1Fyl1DeBD8W2EWJKdPf28ZXf30lX+fMDy9697O2cuvj4LKYKPE43V7zz/byx4Gx6X1tJpNv0lY5Go9z+yn388D83DIRvFkLkjCJiFSutdSumq+HRsb/3YlrATk/j+zVj5r58ndb6/7TW/9Ranwc8AHw9je8jJinXO1+GIn3s6TpAY8/0vfkXs0uu/6YyZSKPDH4ILAMuBr6glOrv+GljzutNmC4bQqRdOBLlm7f+g/rCx7Es8yTzxNrjed/qt2Y5ZYZlWVzwzjWEQvDgf+fgrNmKs2YrlgVP71nPtx/9KZe+7jN4nInj74UQWdKICarRTwOr4v7eAdSm68201kHg70lWPQC8RSmVr7XuGM8xly9fPqG09D/tTdy/OdhKb/1gFyNXvo/agiq8rvFPVJ8Lmnd2Eom1fFX4S1lathAYOf/9QuEQrbsHZtRh+bzRz3PjjsGPrSZQycKSuZNK91heqd+EN2jGHM+tnjckOEKqxjoH41Uf3D3w/+XLU//ZBEPddOwd7FI20rmOP/6SJWUUB5J/JyORCBsaNtEXibCifDHuEcrc57f+F4A5NXNSTm+f6yBNbeZ74XE7WL68OqX9clGyzz/+e7ysdtlAAJTG1iA9duPAulTPV/zxFpctosxfMq40Dt1/IRX+0nHtP5p0fP/XrVs37n3G3fKltY7GAmuswXSZ+CXwa+AK4HCt9ce01tnpGCpmvOvvehJtP4jlMAM/lxUv47PHfSinQrtblsWn3rOGNxw2l749S+jdfDjRiPmpvVK/iR888csh/aiFEFn1CHCBUqou9vdzwFqlVH/flpOApnS9mVJqqVLqU7GIiPF8QBATHTGrekNh9jZ0cLDFdMnZ39HABgkglHPix+a0T8MgH63dbWw6uI22ntSeNYTDqQd52N22j5budjp6OzM6hiwTotEo9c1dAxXATOoOBwlHpuf9Szgcobm9m0gk+1WUCXeW1Vq/BLyUxrQIMarbH9nAv1vuxM4z/fUrvdV85ZRP5uQ4Kodt8fn3H0ZPKMyTL0Hvq0fhVs9iOcKs37+B65++mc8de25OVRqFmKWuxHQ73KqUqsZENrwIeFUptQ84FDOVSrrMib3HfuBOAKWUBbwbeCwXHl5u3dNKayxqnc/rxO910RXK/I2eSF2qJUkkEsWegvm3JuKlA2YsT31nI0fWHDLm9jv2pz6GrCsUHPh/W0/q+2VaNBrlQJMZR1VZkpfSPUF9c5BXt5vnQYcuLacw3zzH6Q2HONDRSKTbRXlhAXne9Ibhb+g6yM6ubTgsBwv8S9N67Ex4eWsjLR09E5oGId0mVPmKDUo+HagEHEk2iWqtvzeZhAkR77EXdnHrpj/iKDRPyPyOAq5+00VpnUQ53RwOm0s+fATf/M3TPKehd/PheJauAzvC4zufoSpQzlmr0jmURAgxXlrrTUqplcBHtNaNQKNS6q2Y8VclmGiI6RyL9SjwOPALpVQxJqT9BZjw8+ONqjglWtoHK1rdPX3403wTt+9gJ60dPcyrLsDnmVzAhNF09/Tx4taDvNbaRl11PnbCjW1fpI+GnmZKOysm3ZVpKqMoxqvvbKShs5G6wvHPsVTf3MWmnc2UFflYNi/1rl/doW7aejsp9RXhsJPd8mXGrgMTq0T1RcKs37eB+cW1FHmTB2sIR/po7W6jwBPI6EPRhpYgekczALZlUVEydtfRLbsHx/jtru8YqHxtrN/Ci9v30N0bRhWs5IQ1c9I60fX2lp0AhKNhtnRsZHVXgNK87FZiRhKJRrCtoQ/mW2IRLfcd7Jx+lS+l1BuAezFdJEb6VKOYAkuISdv4WiM/fvz3OMpMX2Mnbq5640UU+QqznLKxuZwOLjvnKK684Sle2QY9W1fjWbIegNtf+RuV/nJOWnBsllMpxOyllCrRWu8Dru1fprV+BNMdMe201mGl1DuBa4CrgFJMV8c3aq3HP3ggB3T1Bmnr7aA8r2TMm/Punj427TQ3mx3BEEcur5yydOkdzQS7+wj29tHY2k150eB0IC3BVja2bgVg08Ft5LvzBiZgbm7rpiMYoqx4cJxQJBJl6+4WnE6beVVDb+Cbg63sbJ36IM/RaHRg6pLmCcx5tPE101pyoLGLBTWFeFxjV6Si0Sjr92+gLxKmKr+cxaXzk27T2tFLwD81Y5mj0SjRpDM2pK6jt5OXD+ikE2VHo1F2dG3FfaCBhcV11BRUjXicTTubh3T3SyX6ekNnI12hIHOz5MKgAAAgAElEQVQCVTgdQ2+7dx8Y7HK5q749pcrXiGnbd2BgLq5IJEpnMETBFH0mYKI5T8XE46O1zqYy997mxtdo6Gxicck8KvLL0p28tJjII6fvYiaj/BiwHpDJEcSU2Xuwg2/89U/YNWYuLytqc+kbPjWhp37Z4nU7+dp5x3DlDU+xcTuEdi3BVWfGT/zi2Vso95ewomL6NeELMUPsV0o9CNwK3KW1TuvgGa31lZiujfHLmoBPpvN9siUSifDcvpcB6OjpTHpzHq+rZ3C8SGdwaqO/tgcHAziEQoMTxHb0dvJy/aah2/Z0kOfy0d3bx4tbDprtugd7VhxsDRKNmBtln8dJRXHekH3Tpb6zkX3tB6gtqJ5Uq0J/hSg/z4XTYQ+bxyp+3Et3b4RoNEp7V4iG5i6qy/wDXdZ6+nroi5hzt7+jIennu3lXC/sOdlKYP/RGv72rl43bmyjwu8fV0havLxLmhf0bCEfC9EYCuO2J9HaJEo4wYitQTzRIOGq+l9uad41Y+Wpp7xl18uieUJjOYIjigGeg9ayztwsdqzCHwn1j/j76whFe3HyQKFFWLy7D5Uy9pbGlffAzjhJN67xc6Rqn/urBrRzhzsOXJHhPNBplV30bO/Z2UF3mZ3FdUcrHbe/qpbsnTGHAxYEO8/vd1PjajKp8rQYu11r/Od2JESJea0cPX/39PYSrXh5oYj3/iA+wumpZVtM1EXleF1ddcBzfvvkZnns1iuXtwlm+h3AkzPee+CXfWvs/1ASm7gmwEGJEPwDOBG4BgkqpezEVsb9prWfGjJ4pCoVDNAdbCUfDY28c0xky41V6esNs2LuTuQV1uEdoUYlGo7wUq9jEa2nvwet24E1DF8TO3i4OdjVRHutG2NxrbmTjW072tdePuH/8Dey+g124Y/duze3dlJrAgjS2dA+pfAH09oVx2vakx1P1t2xNtlVh+742du5vx+9zceTySjbvSh6OfsP+A+xoPUi3x0dvl6k87W/q4oTVyR9wRiJmjJLH7aCkwNxA91dIWjuG/lxe2NxAOBwl2N1HVYmfosDYFafG1iDBnj6CVX34PE6e276FV/fvp7woj4ZgC/P8i1M+B0aUbXvaCIXC1FYOnV8qFA7REN5Hb7SHIpLf6Hf1Bmnv7aAsr+T/2TvvMEmu6m6/VdXVuXtyDjsb7+5qV1krlAUIDAgDMhhsAwY5fOQcZcAGRMaAMWAbMBibYJJtgZAECATKQlkrabW1cXJOnXPV90d19/TM9MSdmd5w3+eZZ2aqK5yqru66555zfodkemEHxDQtHj04Qjpjsrk1SFtjgGMD04wnxsBlAcqCzmspxwdDROL2dTw6EFq107pauqf6Z/2fzWVxqBp/OGYwPBlfYKuV8czYYc7P1/gZPZPEk1k8bo3u6BH6x0O0e7sYGLOW7Xwl01kePWh/pp1VETLkyJkWbuf875OsmcWhrl+q83JZjVLByJpbIZHMIZXJ8bH//B2RhgdQVPuh+ZyuK3ne9ssrbNnqcbscfPj6i7ni3HYy3WeRC9lfqrF0nM/c9bVlKz5JJJK1wzCMGwzD2A5cAPwzcD7wv8CoEOI/hBDPF0KcfKo+68AzY0c4NHGc4eRK65csjg2GGJlMFFPbyjEVmZ8oMzIZ54nDY/zh6eFidCZr5uidHmAsNjFv/eIRrdkz+4W/Hxt6mr7QEPuHnyGdSzOWWqMhS0kQYW5JUCiW5mh/iCP900sqqeVMqziIj8bTPHFojJ7h8KLbLAdlThVIb16cIpbIkExl59lc4GhoiCwZnhqZUbPMZk1CyTD9oSGycxzxgbEoh3qnePLIOLFEhtwi55vLzbw2OjV74D5cxgFOpnOMTiWIxDM8fcx+748NTZHKmPSPRUmZc+6fZQR2IvEMqUwOE+idUzN2fKqPlJXAYn4q21QiRO/0AI8OPcVTQ0f5Q++MvtzcyYlYIsNDB4ZJZ+z9HBmY4ujABINjMYYn40yFl5cgZlkQjc9Eg0v/Lr/+zAWY+z4MxLuLEUvLshieiBXVSxcincvQHx6atezRoae4++hjHB0eJ5NdvtrkYhTEe8amEgxPxAnH0hwc6qNvfBoLi4H4ytQpRybieftTPNXfy7GBEMcHw0UntsBwop9jMYOJ1MKTLxvFaty/rwNvFkJ82zAM2dlPsuZYlsWXfvgQvZ7foer2h2db9Rb+5qJXVtiyE0d3qLzn1Rfg9+jc9mAO1+4HUD0xhqNj/OM9/8ZHrn4Hura2xe0SiWRpDMN4DHgMuEEIcS52NOylwF8CY8DChSCnCeUmgEanEqSzJi115WtRFBRKx33T0YUHmtkyUuEF1TaAxw+Ncc72BsbTQwxHxwDw6h7CYYue4TCdTQFaG/ykMjkeN0ZRFIXzRAPDkzH+cMygscaL6rajJ9PRFPWOjelLdjhfw5YzLSYjSeqrPGXXy5kWDz49TDqTo6slSPeQ7XRNR1Mk1UniudVNwCVSWe469BRbG1vY27oNxzJEMQ52T7KlrXzddM7M8nDfAbqHQrhULz6/SUM+0re/uw8Tk4CjipHJOB1N/mXZWCpyMB6fLCv/ns7MTkntHy0vsGFZ1rJFMRZzhqeT5Z3eZDbF06OHAIuBsSjhWAYIYTX7mEhFmEyP4XdU0eKx+1w9dmi06GhmzSzHY4c4FrXo8Nr95KKJDDXBpe/FxWq05p5zLBthKNFP3FHDjmwNDz8zPGv9hJmgPzxIXXAbI5PxoqhHqToiwHhqilA6wpbs1gXrqSajUVLmfLXTcDRFJptbUWpkKfHkjHNZ6tCamCRzCYYj47jwYXvZ9rkv9q5nLXt/hbe8fzQKJe27wlm7TnIiPbYqe9eS1ThfSUDHluX9PfZDae47ZhmG8ZYTtE1yhnLrfcd5MHw7jnr7i7HKWcUHrnrDsh4opwKaqvCml59N0Ofkx3dncO1+AEVPc3D8KP/y4Hd5u5Sgl0gqhhDCAbRgC2EEsZ/3UxU1qsIU0gI3gqePT2BVzQyOppIhjvbaA7PDfdO0Nvg53DvFVCKCS3VzdCDEwaFeplKTTA1PsqurhtGp/Ax/yQgnlc4tOhAfjU0QzyQxMws07S3ZdH762cz3tTXnGNORFA6Hit+jMzoZJ52vPSs4XjkzSw6TnqnhstLg3SNTHJ/qob2+mq115Zs2F/b1cKSbKq+bLbWb5pk3NzIWjqV5/FD5QehUZoLoaATTgkQuTiJk1y4HfE4Gk3b9teW2UJQgg5ERhhMD1LsacajLmzg0xo8ua72j/fNFRZK5OAOJXpyKk73WYgqViz9DLcsikSofWQrlnbKpSCrveNkcGD5W/DuSDdFktQLarAjfeHqkmOI6lOijyllbfM8XYyo9TiqXwuOZ3bjYsiyGoqP0Tg/QGmiis7oNy7IYSNjKg+F0mNueup9gbv69EU3bzvzRgRAZM0POysxSRwwlwwzF7SjQQwNPcG7L7iXtLGVgPMYT6jg+t04olmJXV+0sxy6dyTEZTpIzTbQVtgTqjR9j4hkHSsaDw5Ompc5XbJQeSUUZi03Q5G+wG4sv8lYnUlmcujav3i+RSRLLxDEta54K6kawGufrCyV/X7fAOhYgnS/Jijk+GOLb99+Co8NWjtIUBzdc9SaqFpCHPVVRFIXXvHAXfq+T/7gjhXPnQyiqyb29D9Hsb+BVe6UEvUSyUQghdOCPsKNdLwGqgH7gR8B/56NiZzSjE7PTxsbjk8TScapcgQW2WJyclSOejeF1+NCUGcfONC0UCoOm+QM2y7IwRnuYTNu1Y6beQTSzdNpeKmNyfDBE3fbqskqBoWTE/omm8NNVXB5PZorpkOlcilB2imSuijsfTdPa4GN7x8KiGBOhBE8dtdPn9p3VXBw8FphOTzCaGsahOGgLeMiZJpOhJC5dI+h3MRFKcO/hp4nnYoTTYao9geI1SGXMsg7xsbFR3LnyTkk4M81keoxaZwNBfeF6msK1LSWazMxSMxxPjhDP1DOe6iOcnSZrZWj3dpXdXyqXZCjRh9YzxM6GrWUVAicS0/McxHL0x3swMUlYCSYSk9RWtS25zVyS2RT3HzI4MjY7RXZ4IkbQ5+TwRDcw/56fSzkFxqw5P5qzWGpmIpUlmYsX02MHY1Cj2ucUS2S4/8khuhPP0NkcoDc0SGd1G5NzIjeJbAolN/+eLhw1Z+XoiR2xI5Z+DXteCfZ399M3nqQ2YDvNjw8dWPR8yxGNp4vCOU8cHuPK82acx/351NSBTJTO5iCmZRGJpcvWYpUjlsgCEYiAS1cZnUzgytSRcXYDMBgZXbIu8sGnh3E7NS7aPTtx4ZFBO400m0zS5Nl4UY4VO1+GYZwRue+SjSeZyvKpH/8Kte2Z4rI37XvN/Fm804iXXbWVgFfnq7en0LfaEvT/c+BWmvz1XL35kgpbJ5Gc/gghvge8GAgAE8APgR8YhnFPRQ07yShNb0lmkhwcs6MX4/ryg4KJbJJkLo6qaIwlh4nlong137xB+1QkyfBEHIem4FRHSJtBsmYGj+ZlbCoxyzkYjg+RMGciUYvVpaSzJgNT4ytqPlva2Lc7fsS2Lz3BjsBZDI7FcHgTTKTn15AMRkYYmJpxjnqGwvi9s487mrJTxbJWlslwEkWhGGlxuxwMT8SJ52wxi7GpBNG07Qz0DUeIpbLUV7mL6YAF+kci6DG7IiRnZolkw6SytoNYqOUbTg4s6nwthxw5EtlEUTmgYGc5euIzka7CfTOX41N9s9QpF8IsuRN7Qn0011QRcC2c+jg3SpnOZXhy+CBHxobnrTsVSTEVsSM44WiqTCXY4kynJ2ddBxOTqdQ4Vr5uPZHKsv/IGHVVbtoabEc6mzNJ5mZS+qLZKCUdDoim4sSSWSIx2/mdSoQYT86+37JZi1hufoqmkve+JuLjxevWG+0hMJLBr/sZmYyTMy3GQmm2rSCVs5RwZpqkmUBFpd41WzSs4JTFkvZ7MDYVZzJf/3b1lpVd3ZHJRP53nNoyCeBpM0UkW779QjKdm9UeAGyn0alrjCcnTg3nqxQhhB9oA/qAlGEYy5dIkkjm8C83PcxU7f2o+S+q5225iiu7Lq6wVevPcy/qxO38Y77wmxiOdrvo+V8f/C5+p48L286usHUSyWnPHwM3YSsc3n4mPcdC6QjDyTGC4RraFultNG+71MxAL5GZPaixLIvx2BSPHpjApbkRm2pIpXN4fRZPjx5gID57kF5u0D6cjzhkcxZPdY9Q0Plqdrdh9M6e/y2VrofFna+1xrIsfvPUk7OWhfIz+wGfk8nUGJlchuq8ZGK5NLoCkTniClORJJo1I5BgAZFYGsuyiOXPeTyUnOd8ldp2NGYAsH8kgxmfr6abnitgsQjhWIrmOT2olqNkvlAdUc60CEdTeNwOdIeKpirz1BLzR1lw38eHQ6Syj3N+87kEPE783tn1Uql0rjjYL/Df991D2lzcyUumswwsIim/EKOpoXnLcuTID2noHgrTzaMwAH983vnU++oIZ6bLbldgMJ9e2D8WZZevllgmPi+SZn8G5kd/C1d+rlBJKBlhMh5iKjMj2zA2nSgqeFqWRe9whKxp0tG0eGR7LDVcdOycqgvTbGcsFCWUmSSSiRHQZ7KWSt+LvskxFMrXRi7FyEQMXVepDdrbm5ZJT+zIovorR/tnS1T0jUZRAF+FhA9XdVghxHnAF4HLsec9ngeoQoivAe8xDOMXK9jX3wLvB9qx+4a92zCM+xdZ/1Lgk8B5QBz4DfA+wzBGStZ5EtgzZ9MJwzBOTsF/CXc+2se9U7eh1dgP8o5AO9ef/4oKW7VxXHZOK5H4dXzj4R/gaOzHwuIL93yDD139NvY0iUqbJ5GczjQZhjG/mvwMoDdmp3cfn+qjyVdPzjSLim0romTUE85Oc+sTB0llTLb4dhQL/QeSx6iuOrHEmeVEbMqJepQyEUouK/K1nB5J5dLOMllbma9TCzCemizWTTXnzgLsFDAVdckow2Q4hcM1W+3xcN8UDS2z1zvSX173bDozk1I3PBVBT89OUbQsi+7YkUVtKMU0mdfj6vGBw/jc84eRaTONruiYVo5ItnxK6NB4dJbD6V2gzcBS78LgeAxXYgxd1dm3p5H+yADOvGjVyOR8B2opxwvg+ODK1SfHUvMjaUUsW5yilCeHj9DmtOYpiyZTWSjxITPWzDWaCCWYGJmt3hlPLix/3z0Y5lmbcgtGhEqZCM20T5gMJ4uTGoNjMXLmwp+p0khkLBehbzTC/UcPEDfD5EwLTekqu50xeZSdwZlhejK3uBJjgayZZTKvmurS7XsmnokveZ8Umk+XYjETldtoVvxNmHe87gY2YSsfFogAHuD/hBDPW+a+Xgf8G3Z/lZcD08CvhBCbF1h/F/Db/LH+HHgvcFl+Gz2/jhPYCXwQuKTk549WdKKSDWN4IsbXfn8TWk2+T4Pi4gNXvmFeJ/jTnRdcsplX7Xw5uUl7hjJHjs/c9S8cyeefSySStedMdbzm8sTwQY72h4riDeUYGo8t6ZSMJAdJ5R24Ugcgs4RTBHZtUCi1sFQ9LO0UDYzNDLgHE33zXo8mMmSyOaYjKXIl+4olMhzqnWJ0Ks5kaoyj0YNMpxe3ZTFGS3oiJc0kE6EkiWyMY1GDnviRZTl3o3MG9OW2WCjSV+oMpNK5eZL7R6LPzN2ErJmhJ7awGEYoNt9xKR28WpZFf7yb7thhBhO9HIsZC0Z15kb65kYwV8P+/qOMRMfpCw0xFB7bsIG1aZlMpRdui2DCvEha91CYe3vml5IudleMTiUYTcx+HxerJwOL+/aXv/6LbZcuuacSqeyyJ2Si2Qj7e/qIZEPF/fcnugHm1TuCHU0FmEyNLZq2Wkppim8knubRwSc5PL30JEJmGU73RrKa0e2nsdMMLwC8wJsBDMP4gxBiL7Zj9hHg9sV2IoRQgI8B3zAM42P5ZbcDBvAu4O1lNnsrMAS83DCMTH6bw8CD2NG3W4Hd+fP6mWEYB1dxfpINJJM1+cSPfoXV8kyx1Pbtl77upO1Kvt688hrBZOSl/Gb8f9CqJkibaT7x+69w4zXvoaOqfNNLiUQiORFiiQwHRyaXnD02eibpHgqRJIwetMiZ83telbIcAYUCpmXSEz+65Izw0eiJP9Z7hyOksybxaIaWfIFNaQ+o8Zw9wCtXy7Vc5s60d8cOF6MuaTNNKLNyAc2FUviWIlHGsSkXtRtNDZWVFF8uh6Mzgg2xMrL5OdMkl7MWbMJdymCilybXyp55E4kJgnm1vb6R8jL1a006kyt7LU+Eo5GD1LubGEkOnvC+yt0z8WRmVi3jXCJlnOzlMpzsL7t8Kjz/vnpg4FEaXS2Mn8DnLJ5Z/H7tjh2mw7OZvvjxVR9jPVhNDsBlwLcMw4gzx0k3DCMEfAPYu4z9bMOOnv28ZPsMcAvwggW2eRr4QsHxKmyW/12Ilp0NJIDDSE56vn3rYwz77y42Un7elqvZ135eZY2qIIqi8P9eeg67leeTi9jpNfFsnI//7suMRucrUEkkEsmJ0jsSWdbw8XjsEE9NPslAaIxnuqc41DuF0TPF0YHyaU0pM0XOzDKaHCRtphaNfi130G+uWAZhPoWZ/ULz3cXSqhbCsiyGykTWFjzmnJn3xep8FiKUmWIitH6B2mh2fR2WI33THB0IcWyB+2WuLSOpQaILpC3OZubuTaazjE3Fi9HX9eR49BDdscNrMiFQSo7cmjheSTPJeJkm430LOF4jkzHCsdQS0bTVUWz/kKfQw201n4O5LBZETptpxlLDZK3KpBcuxGqcLxNY7Cz8LNVgwWZH/vfceOExYKsQYt7UiGEY/2IYxtfmLC5ochfu/rOBSeBHQoiwECIkhPh3IcTq9HAl68bDzwzz64GbUV32w6TN187157+8wlZVHk1T+eBrLqFh6krMmH3bhlJhPn3X14hnlpcXLZFIJGtNYQCTyM2W4F6oziqaDXM0ZjCdj/LMHYDNYjnqDetA72iCQ73l66YWYzw1XDa6s96MTy/+DMha2TUZuK8HhTF9ahl9r2D5zmBP7CjRTJhwPM3xwTDj6+iglmJiLquGrJKUpv4CYM1vzFtgMpyalba7nqxivmMeU5EUh/umlvxMhJeoecuYG++Yrcb5ugd4fb4R5SyEEHXAG4H7lrGfggTK3E9XJG+Xb6kdCCE6gH8EHgbuyC8+G2gGngCuBT6MXU920zJskmwQk+EkX7jtZ2i19qyMrri44dlvPOPqvBbC59H5h+uvRO+9BDNpF8EORIb56gPfWXXqiUQiWRohhEsIIVuqbCCmZdKXrw2pjAu2cqbmDmpPEiysVaU0nsqYmAwm++bVkUlOf7K5E//GOBg6irkW3uAKWM0D5u+ArcCjwPuwvytfKIT4JHAAaAL+YRn7KUTHFrpyi16JvOP1W+xz+DPDMAr7+QBwuWEYNxqGcbdhGF/BdgifI4S4Yhl2SdYZ07T4zA9/T7Z5RqL3TfteTaNvsW71Zx4t9T4+9NoryB29ACtnB4IfHtzPj59atpioRCJZBkKIdiHEfwghRoEYcLUQ4iohxO1CiAsqbd96kkhXfjKnp0R171RxviSSU5FIQjqopUxGMkzFsozFFxZMWQ9W7HwZhvEEcCUQwpaIV4D3ADcAA8AfGYbx0DJ2VYgDzk0HDAA5wzAWjOcLIfZgR9eCwPMMwyjK8xiG8ZhhGA/M2eSX+d/nLMMuyTrzkzsMjqp3omh26sG+lvO5vGvxLuVnKnu21vPmay8jffScYlbO/x64jfv7HqmsYRLJaYIQYgt29sR1wAPMTAyq2Eq5dwkhLqyQeevOyPTyez2tF6Vy2hKJRLKRhGKZJVMX15pVpVbkHZwrgAbgYuBSoN0wjPMNw7hrmbspCGJsmbN8C3BooY2EEBdjKyrmgCsMw9hf8ppDCPH6vBx+KYVOblKxoMIc7J7kR/tvRQvYOfZBvYo3PevVFbbq5OZ5F2/ipedeSrZ/e3HZ1x74L/rDJ16oKpFI+Cx2HfNO4K/IO1+GYfwO2AWMAh+vmHUSiUQiWVcmw6eA81XAMIwJwzAeMgzjAcMwVlrheRhbsv5lhQX5Xl3XYqcTziPf/+s2YBi41DCMWYqGhmFkseXrPzpn05cDGWDB5s2S9ScaT/OZn9yO1jKTYvLOy67H5/RW0KpTg9ddu5vzai4lO9EM2Ao+n7/7GySzlZ+1lkhOcZ4L/KthGMPMV/DtA74G7KuEYetNehm9tyQSieR0J5nd2Oj7itUNhBAHll4LDMPYvcTrlhDiM8BXhRBTwL3YfbzqgS/lj7UVaChJI/wn7FTDtwCdQojOkl32GIYxBHwS+LoQ4svAzcBFwN8D/2wYRs8yT1OyxliWxZd/8jDRhodQ87Ly1+54LnuaRIUtOzXQVIX3vvoC3ve1MCOJX6N6YgxFh/n6g9/n7Zdcj7JYsx2JRLIYTmAxuTsTcG2QLRtK8iSo95JIJJJKk8ye/JGvUWBkzs94fl8C0FggcjUXwzD+BVu047XAT4Fq7JqxY/lVPkI+WpWPir0ov/8f5JeX/rw6v89vANcDz8Z2vv4fcCN2fZqkQvzygR4eCd2J6rFlTFv9LfzF2S+tsFWnFl63zj9cfzmuwX1FAY57+x7i9iN3V9gyieSU5mHgleVeEEK4gdcDj22kQRKJRCLZOMLp5fSTWztWHPkyDOPqhV4TQpwD/BpYbt0XhmF8AfjCAq+9HvvBV2jArC9zn98BvrNcGyTrS99IhH//3R04tvYCoCka777sr9G1Zb2dkhIaa7185NXX8KEfTqJ1PQHAtx79EdvqNrGldlOFrZNITkk+CvxaCPFL4OfYqYfn5TMv3oFdC3Zt5cxbH0zLJBQ7uRqPSiQSSSXYaJXVNe1lkldC/ArLk5qXnAFksjk++4N7UTuKuii8+pzr6Kxuq6BVpzY7N9Xy7he+hOxoBwAWJjfe8a9E0xvTHFEiOZ0wDOP32LXHO4CvYgtufB74OnYa/GsNw/hVxQxcJ2KJDDlTCrtLJBJJIrWxE1Hr0UhyErsPmETCf95ygCH3/ShOWxhid8MOXrTj2RW26tTnsrNbed25r8CM2b3KY7kQH//117EsOZiSSFaKYRi3Atuwa4RfBfwFcDnQYRjGf1fStvUiEk9X2gSJRCI5I1lx2uFi5PtvvQM4stS6ktOfR41RfnHgLpxbRgFwa27e9qzXoyrr4fOfebz0ih0MTr+MO8I/QHFk6Y4d5uv33MQbr7iu0qZJJKcchmGYwCP5n9OeTE721pJIJJJKsBq1wwTl0yN1ZiJpf3YiRklOfULRFF/86d3om58pLnvjvldT562poFWnH2988bMY/OEQBrcDcMfA7XTsb+Pas09LZWyJ5IQRQty6is0swzBOq7qvtCmdL4lEIqkEq4l8/YjyzlcOu//WjwzDePKErJKc0liWxT/96BESTQ+jaTkALu+8iEs7L6ywZacfiqLwD698GW/9/iCTrqdBsfjPp/6Lak+Ay7bvqrR5EsnJyG5WXl8t83klEolEsiasRu3w9etgh+Q04tb7unk8dB96m906p8ZdzV9fIIOh64VDU/nCn/4tb/7J50i4BkHL8eUHv061592c1d659A4kkjMIwzC6Km2DRCKRSM5cZPGNZE3pHQ7z7d/9Dkfr0eKyt19yPT6nt4JWnf74PC6++LJ3oqdr7QWOFDf+7iv0jI1V1jCJ5BRCCLFHCPFiIcQLhBDbKm3PepLKpiptgkQikZyRrGXN12JYhmH4VnosyalFJpvjs/99N2rX4yiKveyVe17MWY07KmvYGUJdMMCnXvhOPvDLz2LqMUxnlA/+8gt87kXvpaOuvtLmSSQnLUKIVwKfAzqwpeYBLCHEAeAdhmHcUTHj1omclau0CRKJRHJGsprI18eBIcAJ/Ba7L8o/Av8HmPl1fopdG1b4+fEJWyo56fmvWw8w7L8XRbcLuc9qEPzJrhdW2Kozi031DXzk2W+HrAuAnDPE+z7nJdYAACAASURBVG/7HMdHRypsmURyciKEeDnw30ACeA/wEuA64AOAG7hNCHFF5SyUSCQSyXqibnAi4Gql5oPAeXOFNYQQbcA9QI9hGB85UeMkpw77j4xxy7FbcbRMARDQA7zz0r9CVWVm60ZzVlsnH7j0rXz23q+CniKnR7jh15/nxmvezfbm1kqbJ5GcbHwEeAi4yjCMWbl4QoivAfcCnwCuqoBtEolEIjnNWM3I+K3Al8opGhqGMYAdCXvDiRomOXWIxtN8/hc/w9HSnV+i8J7L/4Yqd7CSZp3RXLB5Gzdc/naUjAcAU4/x4d/+I4/2yhZ8EskcdgDfm+t4ARiGkQD+A7hgw61aZ2Q/dolEIrFxa54NPd5qnC8fM+mF5Qhi9/ySnAFYlsXn//e3JJseKy577Tl/wm5Z51VxzuvawkeueidKxhY7sRwJPnPvl/mt8XCFLZNITioOA+cu8voWoG+1OxdCvEQIEZmzTBFCfEgI0SuEiAshbhdC7FztMVaDpmobeTiJRCI5aVGVjc3SWs3R7gLeI4Q4b+4LQojLgHcCN5+oYZJTg1sePMgB61coqu2P72u5kBeL51bYKkmBPR2dfOK570NNVtsL1Cxff+xbfO+h2yprmERy8vAO4FVCiI8LIYrheiGELoR4C/C3wJtXs2MhxKXA95gR8Sjw98CHseul/wyoAn4rhKhazXFWQ9ApMxMkEomkEqym5uu9wH3Aw0KIB4Bj2A+W7cCF2LOI71kzCyUnLd3DU/zX099F8dnZOo2uVt5+2V+iKHPHGZJKsr2lmS9c+wHe//N/JuMbAgV+fuznDIRHed+zXyvr8iRnOl8BksCHgBuEEMNAGmhjJovjFiFE6TaLKvgKIVzYTt2NQAxboKrwWgD7OfpRwzD+Ob/sbqAH+Gvgi2tzWosjv6UlEomkMqymyfIhIcQe4IPAC4BCBOwIdlHy5w3DiK6diZKTkXgyw0du+Qb4bYEN3fLwsee/FacmM05PRtrqq/nKK97H+376b0R8hwB4ZPwB3vXzYT7+gjdT5Q5U2EKJpGI8wsrbpyzFC4EbgPcBdcyekHwW4Ad+XlhgGMaUEOJO7Gfqhjhf1pqfskQikUiWw6rUDg3DGMZOL5ScgViWxYf+57uk/N32AlPlg1e9iTpvTUXtkixObdDD117zNj74o+8yoD+IosBQqpu33PQxbrj6jZzVfFr3lJVIymIYxuvXYbcPAZsNw5gWQnx0zmuFgtijc5YfA166moM988wzK95mdDpJNpsFYGpqcjWHPeU5088f5DWQ5y/PHyAVm1rV9+hqWa3UPEKIq4BrgXbgU9ipFZcCPzYMI7M25klORr7861sYcDxU/P9Vu17B3tbtFbRIslzcTgdfePXr+fzPGnkk/isUR4a0EuNjv/8if7ztRbz6/BfJNETJGYkQQgeaWKAW2jCM3uXuK6/8uxBBIGUYRnrO8kj+tQ3B41z1418ikUhOK2oCG/t9uOKjCSE04LvAq0oW/ztQn1/+RiHEiw3DCK2NiZKTiR8/cB/3Tt5KQRjmotrLefm5z66sUZIVoakKH7zuWm7+Q1e+Zi8EisXNR2/h3p5H+OBz/oaumrZKmymRbAhCiM3At4ErWLwUaq3kARUWTnNcTEl4QXbt2rXibaYjKQ4PRhnIdVNTU7uaw57yFGb7z9TzB3kN5PnL8wfYI3aytXbTqvbxyCOPrHib1bh6f4fteL0VuA07VQLgZ9h57Z/FVnKSohunGXc+c4CfHPtvFM0eN7RqO3nvNX9RYaskq+WPLz6L3e3v56O3fJtUlZ0BNZkd5v2/+hRXtV/B9fteite5sb0vJJIK8A3gEux+XseB3DofLwS4hBD6nCyRQP61DaHK70TZYHlliUQiORnZVLWxE86rcb5eD3zLMIx/FULUFRbmG1R+SQixBbgO6XydVjzd18/XHvkmim7nxwZybXzu5W+RyoanOFvbavnm697Jl26+nUdiv0F1x0ExuXPgTu753wd40bZreNW5z8fpcC69M4nk1ORi4JOGYdy4Qcc7jB392gwcKlm+BTA2yAYURaGtzk3/yEYdUSKRSE5OHNrGph2uZtqrDVisS+uTQMvqzJGcjBwdGuXjv/sK6EkAnJkavviyd+F0yJqB0wG3y8ENr3ghf3fJe3BOb8eybIc6p6S4+egtXP/TG/jmvT8nkUlW2FKJZF0YATZSofc+bGn7lxUWCCFqgKuA326gHdT45Xe4ZG3xO6RyruTUYkdV54YfczXOVx+wd5HXrwT6V2eO5GTjyNAYH/r1l7BcYQDUrJdPv+hdVHkXbHEjOUU5f0cr3/6rd/CSxutRQq3F5Rklzu39t/H6n3yQT//yB4xFZDmn5LTiM8A7hRA7llxzDci3YvkKcKMQ4r1CiJcAvwTC2PXTG4buUGmqdhX/r9ZPfcVar7b2z6ZNzSfmULidKy8XXI/zWAgHa9ciptWzdgNZ5STvRlet19Du2USNXlf+df/GZowEHKd34/T1uB/a9A52NG38995qpr2+A/y9EOJ+ZmbpLCGEG7unyZ9jN5aUnOIcHRrnw7/6EqZnGgAl5+LDV7+NjtqGClsmWS+cusZrn3MRL7/0XP7zjgf4/eBvsAKjAFhaisdCd/Pmm++nU9vLay96Eeduaa+wxRLJCfMd4E+Bp4QQh4FR5gtiWIZhPHcNj/l32OIa78Xu+XUf8LpKCFV5nCrpfOVZnasJp+piNDW85HbNtV6GJ+OrPq6mKuTM5fca6/RuoTd+bMn1vA4/8Vys+P+ezhYOD42SysyU8rV7NjGcXP4csdets6urlu7BMIl0dtnbFfB5dJLphUsJvZoPh6ITztrPWp/mp827iUORp1d8rIVQUTEX0HNxKq6yyzubAvSORNbMBoBdXbUMjEUIx5YWxXYoDjLW/PX8jgAKKpHs/I9LQ42H2qAbo2dq3r6y1srfu1I6vJsZiPcUr+NFu9roOW6hq06mMhPz1m+u86HrGmNTiSX33ebpZCCxbEHVeQQd1TS6W4hEw2Vfr3M2kLNyTGdOTFJ+seuoqmAuUzKo0dXCaGpoGes109xmMTKo4XcEyZoZeuJzu3Ssjk11DbTVuytSPrMa5+szwFnA94DCp+KHQE1+f7cBn1wT6yQV44mjQ3zqzq9i+ewvMCXn5ENXvp09bV2VNUyyIXjdOm960RX8deZS/u8Pj3DLkdtJuPtRFFC0LH08xicf2I//d1t56c7nce3Fu9EdsnhfckryOeD5QAJwAs1ruXPDMD4KfHTOsizwwfxPRdkR3MxYTkfNeNAUjdZgE/GpGNGsPeguNwB3q25qgm50h8pEKEU8laHB1YQFZM0MTtWFruonNJgEuHj7Znr60jhVF27NQ7uni/5EN2BL5ZdzhEojRq3Bes5p246ppZgMp3AnWtBVJ4qi0O7dzNjkWHFdh6aQzc04g3XOBlyqm3B2mgZfLWOxSbpagyTTOY4PLt9HVlCodlUzwcIObYunAyyLeC4KWDS6Wxdct97ZyHh6dNnHB3jOnp3092gLOnOaMn8oGPDqlBuTFqQ6dUUnqNcwUWLLpuaA3XSoDB6Xg+Y6LwBNtT6iielZA/VNzQEGx2NksguP3gOOIG7NQ5Vei6qo+DNBpjMTJHLxos31VbZIlFNXSWdm9rXFL0ibaUKZScKZaXLWws5wZ3OAsakEidTM/eVUnbhVD+3eLvrj3WiKRkdVMyPOUbLJ8s8+RVGor/Lg9+gcHwzT4GpiLDW/yNLvCOBzBNjq38locohINoSGRo4cDdUexqZnnDcVlVpn/ax7oNZZT72racHzAahzNQJgWjnCZZzWUqoDLuqq3MTiGdLZHJPh1My18W4l6x/EqatMR1KMh2bKEbZ31MxzemGhz+rSEy9b26q4cvNeHJrKnWP2ZImm2U5YNDvfyfQ7AsXvraWo1mu5Suzh2JG1ceRWyoqdL8MwcsBfCCG+hZ2zvgVbgrcX+IVhGD9fWxMlG82vHznEN5/4ForPvrkV08ENV7yVs9u3VNgyyUbj1DVedfk+XnnZRdxrHOKHT9zCiHUERbFQtBwx/yG+33uYHz+1iZfu/COuu3QvTn2tFLklkg3hdcAvgD8zDGP1oZxTFJfm5Eqxg9HJOLVBNwNjUZoSbZAcRFVUni/2cVPqbsZLBoBt3i621LjwN/uJxSwePzKIR/OiKArVARfTkdS84ygoWCUDLmuJwVeNs46zW3dQrYY5Pmg/i7wOH1t8OzgWO0RTnZfuoZkBmOisoXcghVvz0ORqJW2muGbv2bgcOhe2noPVYvGHJ2ecLU1x4HNrqIqCz+Oguc5HOp0jEk8zHU1T62xAURT8epCAS2csNpk/j9kEHdXFiFU5Nvm2sbmqjrHYRDHaMzfqpykaKLDZZ2e+LjQT71JdBPTqFTtfLcFG+pkfmSmgoMyLLPrc81MRW+t9DI7HaHQ1U+2sYzI9XnZ/HZ4upjKTVOnVeDU/h6MHaKzx4M73lnNoKtvbazB6ZwbqTl2bd207mgIcG56J1DS521BLFDoDepCAbkdD5kZFOxoDHB2wnQyX6mbvtnqqfE4eeMpNQ66Zlnof+0eeKdtc2OfWGWPmfnfpGp3urSgouDUPW/yCGr8bTdXYu62ehw6MEHBUEc2GaXK34lAcTJkzrf7cTgdb26pIT3nnHUtBocllO9uaotHiaafBbMKh6liWhaN6eJbz9Yp9z8LlcPLd++x7wKFosxyvWmf9gu8LgKrMPJ+baj1U6R66R2f231jjoa7gwAbtddMZk2jCvnfP39GMy9PEo4NP0VDjneV8qSX3rYLCppYALqf9GXume+mIW8CrE4nPRDqduoZDm+/YNrlbScUSZKzMrEmTRlcrKsOznMs6ZyNpM0lkjrPW6G5B19Yu3XalrKbP13eB/zEM4yY2uDhYsr7kTItv//oP/Grkx6g++8OomA4+eMVbObddNlE+k1EUhct3Ci7fKTg+Psy3HvgZh6L7QTFRVItsdTc/HfoGN327g2t3XMOfXn4+LumESU4NHMDNZ6LjVcCla3Q0zdQ1aYpGq6cDsD/7DdUeFIVi+pSuOmgN2gFCv25R67UjQru6agn4nDx8YATTmu1cBfUq4tlYMY2std5P/6itc1KY5feX1KzUOe2Z+s7mIOmsyUB+3aDXQ7vXj8c1e/iiqgpba7pIp6DKWUPA68TlsAdXrjJqrXVBN7VJJ5oCrU1BntVxPo8PPU2VP0OTXouVnRlIurWZtDyXU8PjcpBIZdnd1k42XEU4Mt/5cjs1kukcTtWZj/r4cTmTeJwO3E6dwfFIcUBboOB0nScaecyY72C1uDvQVZ2LNm9nf08fKTNZdOQ2ebfSFz8+L7Ww2d2GV/fMGhjPRcOBW/Pg0/zEcgtrz1T5XexrO48Dx2yn6ext9dzx9PxIjsfhw+OYiUC2e7pwahGq3QHCqSimZaKqCkFHVXGgPNc8n9tBld9Fld9JKDq3HznUBF0k0zkSySwOVWezbwfZ4EwqqVPX2NVVSyqd4/y23dR43QBcsLORWDJDTcBNylXLsYGeefve07iD7qHZunIX7WphaCKGpiqYpkV7/vPideuoikKLp90+L0WlocbDCzfvBOCenofsa6wpeDQv1XoN05kpmtyteDQvGhqaat/L1X4X09EUDtW+b3Vd47zWPTzTfVfRDq/uRnfoNLpaiOei1DtnR7xqnQ0oKCRy8VnptwVcqn0dmmu91ATdDJYEigKOKmD+tS79bqgJuue97lScpK2Z7ar1WjvSpg0teN+Vm3rRShwtBdhe11V2W03R2OzfQU/sKG6PSTKVJZUxcWo6zZ52wiV16XWuBjJWklq/Rc+wfbKOMpHejWY1FrwCuH+tDZFUlslwkk/86Fb6PL9HddsPBN3y8tFr3s72htU1npOcnmyub+YTL34Dk/FpvvPgzfxh+A9YSg5FschV9/KzkW/zi+/8kuduvpy/vOpyXHrlZpckkmVwM/Bi4JuVNuRkoKHaw9C4PWjrLBGaqA24mQwlcate9m6rLy5XVYULdzeTSmfx5qMlz9rbTCpjknomxkC8h82tVZxVtxuPW+P4xBCZbJaagJfw5CCqolDnbGT35gbSmVwxyuUqEanY2laF26nZg97GAPf19c2ze1/7uew/NEk6Xw1Rbsy3vaOaw33TeN0Ozt7WSO+Um0Q2SXuwGYeqcUHrXnKWyXHCDI7NDFxrvdU0+GqJpROI+i20BSdIZ7Jsqe3gvv3DeDRvMfWtQFuDn4GxKPXVHppqvRyJKjMpcZpOR1OAVDpHIpXlsl2t3PvE4Kzt2xv9HMoPjHd11UAyQC7moibo4uzOdva2b+bA0HGSVoRtdV0cOByjS9nOVGYcj+rF5wjMiqCdt7OR5JFmBsKjs1L7XIoHr+Kff7EWoKHax9nbNXSHhtupEPAeKkYrWqsamCiTduh1+Di3uYsqv4tsLotpmaTNDNnxSeqsRo7HDi94vL0tW7jn8EH8jsDsqJfXydnbqugdDjMwFmVbew26p4qnRuxuDTvrtxblw6vdM0692+XAnXfcrZIJAgWFoF6NV/NR7anC7/CTSNlOdae/C59HZ1t7dflrUuNhZDJetG97x3wBB01VCQZdQOuCaaUOh0rA6yQST+e3UfDqnqKT6lAcM+fkrKUauzFywOckErO3URWVOlcjkUy4rPMV1KvxBnI01bvpqGplamQCB1m2+neioFATNNnW3MCBscOkc7MnB4Ku8vdJl387OSvHroYg6fGwHckFNtdspjdipx57XA68Vg2h3ATZnInfESSSCZE07QmdTd6t7O5o4PFjA/gcfuqr3TT5Z/QF/F6daHzOZEX+Gm1urSKbM2lx+hgYm5k82NVVw966BjwuBw8OTq1LDeNqWY3ztR+4YK0NkVQGy7K4Z/8A/3LX/5BtOFh8YPnVGj79gnfTFKhffAeSM5ZabzXvvvq1hFPX8V8P/oJ7Bu7DVDIoCpjBQW6f+DG/+eEvOK/hQv7i4qvprJEdKCQnJd8Evi+E+A12+uEoMK+YyDCMH2+0YZWgJuhme2c1mYxZnN0H28na1l5Na6CF6sBsgQZNVYqOF4DusAfn15y7g+lkMy6Hjs9pp1ztbd1aXG+sWi/W1dQG3Th1jZqgm/HpBM11M5ETRVFob5yxxe1wkcym2NZai5auprOhBqemzxpMl6O1wU91wIXL6UBRFDb7O0jmkmyqbi8ex6GUj9iL+hm7N+fPJZeznZhmdzv98eNkrAwq0Fzvw6lrttO5qbwSHtgOpss5P7VKUWBrezXNDVdwYPwwmqJxTscOEikTb95x0FSFvW0zpQABb5ps1qTB1Uxnc4CGGi/D4zGa8nVWfo/O8/aew9PdIxwfGWcsNUyVXotPmx/pKODTvcDMYLXgXNQEZqIf1+59Fs8MDBDwutje0MqwmuBo/8I1RQXnwYkTRZlCV5zsCJzFJe3NDI7cRzo7kwJX66miq7qT8TEFM1e+rqqzOUhnc8G58nD5posWPPZi6KpOk7uVxhr7el0lzuGxQyNoisbersXHQQGfk5G8+Ex9tWdW/fOeJkF/aIhmfwN13hpSmRyxRIZDvdNFpy1b4gzv2lzLg0/b9YG7umznqtHdii8bKKb2gn3vpPIiLvqc+2fP1joyipuHeydJpLM0VHvo8gTpHgqjKAoXdu4qfoa3BTYRccw4TI3+WvwuH/vazwXg0cGniGeWFgzRFI06bw2aMuPwlUa9OpsC7K7dSVqJkohbDA5nObdtBweGunFrHlyam7b6IMmkRTqbY3vHbEd39+Y6jg2E8Ht1qnwu9h8ZI+AMUlOdQVEUnLpGwOeEfGZxwKMDClV++zxrPFXM7WFfyTa1q3G+vgt8SghxFnAv9qnOrZC0DMP4/IkaJ1lfBseifPlnv+eoejdqY7iYb93p6+Kjz3srfpeUk5csTdDl561X/BmvT/8x33/4l/y+925yil3zYTnjPBq6i0d/fRdBrY4rt1zIvo69bKvrwqHKtETJScHv87/bgOcssI4FnBHOF9gpgeVQVWVF6cSqqlDrrVrw9T1b6+gdjlAdcBVrRQNeJwHv4hLde5t2MhGfpM5bOyulsLFmpg6svtpTdttSJ1FTVHwO77waq9J1gr6FbSlsp6s6Xb7tNNZ6GVeOFgedbcHy2i2mtTxJOJ/Ly4WtZxeP4/csfO13dNaw/8g4mqrQ2RRA01S2dcyP1Dg1JwG9ioBuvy8D2LVJrQ0+okM1xBJ25KA90M7mulYmxxwMJwfQ0Dinede8/QXcXvZtnSlLaG8M0FLvR1MV7nx0Jg2wXO2Omk/hA1tI4ept57H/+BBT6Um2NgXprG5HVRUu3t1GLJlh/+GZWqa1UKhr9M04xlV6DZ3NgaKTXxNwc842O/W1tkyqXSktdT5C0RSZrDnPaah2B2dH3pwO3E4Hl+y170+vy8HhPjvC1lrvw+NysO+sZkzTwuex70NVUYvv13KoDbrJmg6qAy6qcdEaaKS9OoCi2OmYcydPtrV4SeZfa6qdPe5rCzZxeKLbti8wk+K4o34Lg+ERWtyz19/SVsWxgRABn3NW9FpVFeqrvIAXgrC50UJVFeqCfnqGImxqtiO15e5ZsCNnZ22Zeb/2ndWMqjbTPd2LaVnsqNuMoiiEoj5GTDeNte5Z171A0KcTj1vUBiujclhgNc7XP+d/78v/lMMCpPN1kjI2leD7dzzCPcN3otT1o5bcfy/Ycg2vu+BlaHJgLFkhfqePN1z6cq6/+CXc9Pg93HLwThKOmXqAcG6CXxz+Fb84/CucqpM9TTs4u3kXexoF7VUts1JKJJIN5NmVNuBkZ2fDVg6OHUVVVFr8jWu2X69bZ2d+dn8luBzOYs1ZKe1NAdLZHAoKbQ3LT6WbS0udj8lQklQmt6h9qqrQ2RxgeCJOa72PzuYA43Ewxo/hUDU2VbWV3a7BV8dQxK7p6spH3WqCLqbyqnKl9WzLHSC6nQ727V65UOeWZg/JtMnm1ioGx2I0uVuxLIt6jz3QDerVBHV7QFyIXi6Flh9U7N1Wz8HuSWqD7qIjUcp5opHe4TD11R40VaG5zo+mtqMoHTTUzDjPTl3DqdviFk8eGUfTTuz9LdDkbyCo1mBhUa3Xsbl1toNTEJ5YClVV2L154QjnYhQivJqmFuup5tYzet0O4smVyeTrms7ZzbuIpeM0+upsp7y5fB+wgNfBudtacGgqqjr7fmv01WNaFgpQ560pWV5Ho6+O0NDslg0dTQHqqty4nQ4mEguLbBSO01rvX3CyZzEK4i076mcLwe3orGFb+xXEMnH8zvkBhNZ6P7msyu7NK//eWUtW43xtXnMrJBtCz1CYH979CA+N34NSO4RaP5OiUaXX8q7LX8/uRimsITkxnJrOKy94Nq+84NncdcDgRw/dyUjuKKpvRm0obaZ5dOgpHh16CgCv7kHUb2Vn/VZE/Va21W7CWaZIXiJZawzDuLPSNpzs1HtrObfFhVPVi2ljJyOaqpStt1kpqqrMqmtbjM2tVbMG7Q2+Ory6B5fmRFVnJpTags0MhO10shZ/I42+OhLZFPX5Ae3OTbUMjseo8jvLRonWiyqfTpXPjky1N/rtpFugvtpbTGtbLbVBN5fsbVnQgfR79FlOi6IoNNYu7ODVBt1ctLsJ3aGuSWsTRVEIqjXFvyuBqiq0LuFI7t1az/BknLqq8hG4ucqhhXMJuvwL1mnNZSGVYkVRaAksPOHS2RygdzhCa8OMo+Mto5S5kaiqSmCB81YUBZ9HnyXuUQmW/BYVQuSA1xqG8QMAwzB68suDQNQwjGW2VJNUgkQqy737B7jpsXsZ4gBa1QRqyQSNhs51u/6Il531fJwVlN2UnJ5cuVtw5W5B30iEn9z9BPd3P4HpG0MNTqI4Zopn45kEjw09xWN5Z0xTNLbUdhadsa21m6j1VFc0TUBy+iKEqAIuwW54XPpUdgAB4GrDMP68EradLJSbRZaUp1yEqLOqFaem43a48DrtiErpANGpa3S1lI9MrCW6Y2aQXZoWBtDVEsTl1PC6dTwuB658xCmdybG5dXW2rfV39loP7Dc3eRgLZZbtbFcCt8sx794IeJ2k0nYtls+tF6OmG83m1iraG/2z7qsCXn0mcuhfZtT0TGE5U1jzPjlCiDrs+ZHnAXeciAFCiL8F3g+0A48D7zYMY0E1RSHEHuDLwMXAJPA14HOGYVgl61wB/COwFxgAPm0YxrdPxM5TiWgiw+PGKLc/+SRPTz2FUtOPUpWi9KPhwMnzt17Fn+x5HkF3YMF9SSRrQUdTgHe/4nKSqWfx4IFhfv9oP4/1Hgb/OGpwCtU/PcsZy1k5Dk8c5/DEcW42fgOAR/PRHmhjW+0mdjdvYXt9F7We8vnhEslyEUI8C/gltpNVoPDcKzxXFm6cI5EsA03VFqwB20g6Gv2MTMTI5Ez2bKmjr2dGJl/T1FnCJqqqcP7ORmKJDDVz6oROF6r9OtV+fcm6rpON7R3VJFJZVFVhU0uw2LahEpRzvMCehNhc00EkFS2m10psTiR/4ISnM4QQrwP+Dfg48BDwNuBXQohzDMM4Xmb9RuA3wFPAK4HzgU8COWxnCyHELuwH6c3APwB/BHxLCBE2DOOnJ2rzyUguZ3J0IMQjB4d44Pgz9CWOoVaPoHpiqHOannvVAC/YcRUv2f2cWbMSEslG4HY5uPK8dq48r5148gIePzTGIwdHefTQCBPJMVT/FGpg2v7tnq2wlMjFODx9iMPTh7gt309TzbnxWvXUOppo8jbTFmyms6aZhiq7h0lNwL0m6SmS05pP5n+/EdCBrwLXAR7gDdi1zZdVxjSJZG3RNLUo6LCc1CuXrsmejSchTl3jwl0zA7xzdzTQPxotqjWeLJwMEw5gi+uU+7tSVCx5WwihAB8DvmEYxsfyy24HDOBdwNvLbPYWbJtfkm+IeasQwgXcIIT4smEYGeCDQDfw5/lo2C+FAGcAjwAAEWhJREFUEPXA3wOnvPOVzuQYmojRMxTmQM8oTw8fYyjRj+WZQg1MolRncZQJBmwL7uBPzn4u57fsmZWHLpFUCq9b59KzW7n0bLvnyehUnGeOT2L0TtEzFKand5SIMorqn0b1hVG9YRTH7KJjU0sSpZ8o/fTG4aE4WEMKVsqDlfBhpT04LR9+PUC1O0iDv4aGYBWNVQFaqoPU13ipr/LgdTtkSuOZy4XAVw3D+KYQQge+hK3Y+0MhxE+Bh4EbgTM67VBy+qAoCpomv+9OJ+yG1KdndHIt2FzTyWRiGgtrnkhHJahk5ew2YBPw88ICwzAyQohbgBcssM01wG/zjleBm4APAxcB9+XX+V5pGmJ+ndcIIVoNw5jdybACJFNZekcimKZFzrTyv01ypkU2Z5LIpJiOxZmORwnF44SSUcai00wmpkmYERR3DMUdQ3UloQbUBeqLW70dXLP9WVy26YJ8jwOJ5OSlscZLY42Xq86fSU+YjqToHQkzOplgfDpOX2iEofgAU5kR4uoEpnsaRZtdFK4oFoo7Dm77a8IEwvmfXgu71UcI6AUrp0HOgWI60BQnTlVHV504NScuzYnL4cKju/A43Lh1F149/7/Tjdfpxut04Xd58Lvc+Fwu3E4dp8OBpmioqoqmqGiqJpUcT25cwBEoPoOOAucBPzcMIyuE+E/gHZU0UCKRSCSrx+VwcmHbOViWNas9RaWopPO1I//7yJzlx4CtQgjNMIy5Ujs7mOnJUro+wA4hxBNA6wL7LGy/Ic7X40NP8/39NxFNxTAxsSwLy7LIWSbReNpWp1EK/qGVT+K0l5WdgPfbP4u9YbriZHe94OJNZ3Ney1mzZEElklOR6oCL6kBDyZKds15PZbIcGu7nmdFj9E4PMRIbZTI1QdScwprXfnA+ipYDLQekyBEjARSTHXP5n7WoY7Zg4UxtZc56i7y+6u2t+euW4FBV3C7HzKslX0KlWyiF/5Z83f7ld/p4zTnXcV7LnkXPoML0AV0l/xvAOSX/x4HSm1AikUgkpxgnk6jccp2vOiFEZ8n/BYH8xjnLixiG0bvEPgvSLZE5yyPYalM+7MnquduUW7/w2mL7LD3munOz8Rt6pvvLv+g48YI5DZ16dz1b6zrY07KNbbWb6ahqkf25JGcULt3B3o4u9nZ0zVqeM3OMxSeZjE8zlZxmIjbNUHiCscg0kVScWDpBMpMiZabIWmlyZEA9MVnlRSlMrpTFmrPexpMFoum1V8uaSoS49dAdJ7vz9TPgbUKIg8CPgDuBG4UQ+7Adsb8ElnqeSSQSiUSyLJbrfP1T/mcu319km6W8gLlqUnMpN21dOoVbbv3V7HNJHnnkkRVv86LA5bwocPlqDrdypmFieoQJRpZeVyI5w3Cj0kYtbY5akMHgirCa79AN5EbgUuB7wK3AN4F3AvdjP0tU4P9VzLplcKLX9yR/f9adM/38QV4Def7y/DeS5ThfH1unY4fyvwMwy2sIADnDMMrpZoaYLQdMyf8hZiJli62zIi644AJZlSqRSCSnKYZhhIBLhRD78n+Tj3q9CTvL45eGYdxWSRsXQz6jJBKJ5NRiSeeroES4DhzO/97y/9u7+yi7qvKO49/BRKoQqEisuKTFoPzaujDVFsHGVkiCVDExLqSIqJGFL6AQbCRCSFKg1BjLixolQUSXUqVqldYXlACTVK2UFLFQW+yPlNgWBKVieEmqgiH94zlXLicz914yM+fcOff5rJU1yb57kmfvnDl773P2C49fozUDuL3D95S3KWn92ba3SrqnU55djDWllFKD2f7ntt/fy8Q9eEwppTTA6tyCaxOx0HlBK6HY5vdoYHiU7xkG5kraoy1tAXAfcUBzK888SU8q5fm3okFNKaU04CTNkHR8KW0fSRdJ2ihpg6TFkurfGiullFJjDO3YMdryqIkn6R3EgZbvA74NnAq8FPg925slHQhMt31jkX8/4PvArcAFxI5U5wFn2W4dsjyTOLD5q8Tc/SOJc8OObeohyymllHonaRVwRvHHJ9t+VNI04GbgQOAnwH8TW87fCMwuzpFMKaWUxqTWw2dsrwGWAG8kDkD+deAo262t4VcQi55b+e8hzvGaUuR/G7CsNfAq8twKzCOmGv4d8CrgxBx4pZRSkvSnwHuIMyZfbru1EdMK4vzJjcABtl8MHEoMwP6sjlhTSik1T61vvlJKKaUqSRoGptr+41L6PcAziAHZcFv6GmCW7ZmklFJKY1Trm6+UUkqpYjOJs71+RdILgd8gdszdUMrfmoqYUkopjVkOvlJKKQ2SPdj52JE5xdf1bdMQW36NOIc6pZRSGrMcfKWUUhok/wMcVEp7NXGg8tUj5P8jYvONlFJKacxy8JVSSmmQfAk4SdLvAEh6JTAL2AZ8sT2jpCOAY4CvVR1kSimlZsoNN1JKKQ0MSXsT28c/F7gHeBbxIPJtti8v8swGTgSOBf4XONj2/fVEnFJKqUly8FWB4sDndxNb4z8T+Hdgqe31tQbWRyTNBz5je1pb2hBwNvB2YF/iLLjTbP9HPVH2h1Hq6inAcuA44hrbBKyy/bl6oqzfSPVU+nxf4DZgje1zq4yt34xWV5JeBywDngfcCay2/eEaQhxXxZlepwEvAbYCn7S9ru3zlcCZwNeBU2zfWUugE0jSW4kt958N3AIstv1Pnb+r/xTt6+nAW4HfJKaIrgEusb2jl3ZE0u7AKuB4Yk3gOmCR7bvb8jwN+ABxlM1uxFvSxbYfnPBC9qgoxy3ARttvLtIGovyS5gArgRcA9wKfBP7C9vam10G3PmaTy7+rfcfxKq+k/YHVwGzg58CngOW2H+4Ud047rMYS4qbwCWABcAdwTbHD1sCT9IfAp4Gh0kd/TgwoLgReB+wNDBdPrgdSh7paC7wT+CBxjX0L+GxxptHA6VBP7VYD06uJqH+NVleSjgOuJAYgrwQ+D6yWtLDyIMeZ7Ydsr7Q9z/bx7QOvwoXA02y/qqEDr4XApcT/+zHA/cA6Sc+pNbBds4JoXz8NzCeu0w8S7S701o5cCrwJOIt44zkT+FrRqW35InA4cDLwruLfunJCSrTrzgF+u5TW+PJLmkXcp74PHA18hHh4srzI0vQ66NbHbGT5x9h3HHN5iwHctcBvEecVn0/0wy7uFvuUHsuYxmYhcKXtlQCSNgAvBU4CTq0zsDoVF+7pxAW7DXhy22fTgDOAc22vLtK+RTzVPIkeLu4m6VJXzyCusbfY/niRfL2kA4k6/HzF4damUz2V8s0DXk48qRpIXa6pIeAC4q3ge4rk9ZIOAI4knu41lu2f1h3DRCn+b88DLrN9XpF2HWDiMOlFNYb3hBQdpcXABbbfWyQPS5oOnCFpLV3akeI++Sbg9a2ZApJuJerj1cBVxdq/I4DDbG8s8txF3GdfZPu7FRV5VEVHexHwk7a0ru1oQ8q/Cri29baPuFc9HThC0sU0vw5G7WNKWkrDyj/WvuM4lvf1xPT159i+q8jzM+BSSefb/vFoZcg3X9XYnTg/BgDb24mtjvepLaL+8ApgKfHUpjyV6TBgT+DLrQTbW4BvAH9SVYB9pFNd7Uk8xbm2lG5gMj7JHotO9QT8as3PWmKaxi+qC63vdKqr3wf2By5rT7R9gu03VBNemiDPJZ7Utt9bHyF2epxs99a9gCuAq0rpJt5qz6Z7OzK7+PrVtjybiKlbrTxzgXtbnbDCBqJdr73OJE0h3npcAPyw7aNe2tFJXf5ioD2Lne9VZ9k+nAGoAzr3MZtY/rH2HcervHOB77YGXoW/J15szaGDHHxV4xLgjZLmSNpb0unA84HP1hxX3W4inhisJrZ5btfaCvqOUvpmdt4mehCMWle2N9t+3LqU4onwK4BBWx/X6ZpquRC4zXaj3970oFNdvaD4OkXSNyQ9LOlOSadUG2KaAK3753+W0jcDB5am3fQ121tsn2r7X0ofzQPuItazQed25CDgR7a3dcnzuPoqzoP7L/qjPTqTePr/vlJ6L+3oZC//wcS0s22SviLp55LulXSupN0YjDro1MdsYvnH2nccr/KOlOc+YoDWsU5y2mE11hIj7evb0pbb/vIo+QeC7R92+Hgv4BcjLFp8qPhsoHSpq5GcR8z9nz8B4fStbvWk2MXueKLBHmhd6mo6sJ14eriGuJ4WAGsk/XSQN3JpgNb986FS+kPEA9k9aHuKPtlIegvxRHoRvbUje7FzXbTy7N9DnlrbI8WRCcuAObYfltT+cePLz2Prdq8g1uNcDLyMWPPzM+KabnodjNrHLKYdNqr849B3HK/y7nKd5OBrghXz69cBvwu8g1gQOhc4R9L9ti+pM74+NsToby4erTKQyUbSmURjfJHtr9QdT7+Q9FTgY8A5tn9Qdzx9birwJGJd0Moibb2kGcSi/hx8TV6txemNu79KOoGYgv0FYtOFpXQvZy9tzRCj10tt9VW82bkc+LhH3qmy17JNyvIXphZf19lubbKyQbGb7XJiPVhj66BbH5PBuAbaVVneXe6n5rTDiTeLWPh4su21tv/B9nLi6cxfSdqz3vD61gPA7pKmltKnFZ+lEklDxeLiVcTbiiVdvmXQvJe4dj4iaUqxTgJgt7bfp7C1+HpNKf064CBJI25kkiaF1v2zfATDNGC77a1MQpIWA39NrOM4wfYOemtHHmDnutiVPHU4jdhef0XpnjZU/L7p5YfO96o9iZ08m1wHHfuYxIYUTS5/WZXX/C7XSQ6+Jl7rFeaNpfR/BJ4KHFBpNJPHJuKpQnnDiBnEYurUpngCegWxW9lK2+8sOh/pMa8BXkjscPhI8WtvYqvqR2qMqx+15rGXB1lT6fxEMPW/TcXXGaX0GcDtFccyLhTnsl1EDL5e2zblqJd2ZBPwTMVZiZ3yPK6+invuAdTbHr2GWNe2hcfuaTOJndxaf25y+aHzvQqaXwfd+pg7aHb5y6r8mR8pz9OJKYcd6yQHXxOv1ZjNKqUfCvySWBScdnYD0Ule0EpQHHj3MmC4rqD62EXAG4B3215WdzB9ah5wSOnXVmIq4iE1xtWPvkn8/B1bSj8auMn2L6sPKY2TTcSB2e331qnE/+2ku7cWmwssBT4EvLl0bfbSjgwTU2znteV5HrFhQXue/SS9uO3vPoLoZNVZZ29n53va7cTbv0OIDReaXH6A24gdHke6V91N8+ugWx/zKppd/rIqf+aHgT+Q9Oy2PAuIAf83OwWZU20mmO2bJV1NLFTfh5iPezixO9GHbN9fZ3z9yvZWSR8Gzpf0KHGDWUYsBL+81uD6jKQXEWdeXAfcIOmwto+3276pnsj6i+3vldMkbQfutv2dGkLqW7YfLN4mnCvpQWKb3uOIBuzoWoNLY2J7h6RVxPTbLcC3ifMm9wU+UGtwT5Ck/YD3A98jOtmHljac+A6xFfWo7YjtOyT9LfCx4hiKLcSugf9KbBsNsB7YSJz/s4R4q3IhcLXtmye0kB3Y3unpenHO0H2te1q3dnQylx9iBzpJZwOfUpzr9gVizdNC4JTiXtbYOuihj3lXk8tf1kvfcRzL+zfEzJlrJK0AnkVM9bzM9o86xZmDr2ocC/wlcQHsQzx5XAR8tM6gJoGzielNZxBzt28AFtrup/nF/WA+8Zr9yOJXu21E3aX0hNg+X9IDxLqSJUQjdoztr9cbWRor22uKKTenE1OVbwGOsr253siesKOIM44OBkbacGI6vbUjJxIDz/cTM4KuBxYV5yW1BqzziYHcZcT5gF8i6q7fNb78tq+Q9AhR1hOJN7sn226d/dX0OujWx2x6+csqKa/t/5M0l9jc5zPEOq81xb/f0dCOHbksJKWUUkoppZQmWq75SimllFJKKaUK5OArpZRSSimllCqQg6+UUkoppZRSqkAOvlJKKaWUUkqpAjn4SimllFJKKaUK5OArpZRSSimllCqQg6+UUkoppZRSqkAOvlJKKaWUUkqpAv8P1sQIgD7RyREAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pm.traceplot(trace)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[,\n", " ],\n", " [,\n", " ]], dtype=object)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvAAAAEsCAYAAAClsoezAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4ZFV1sPH3QgNC04BMMqhIo660Jvppq6gkX0QxoChqHBKDAySoUVEQI4MMiiAi2BJGiROiJEZRozIoCg5EFJVWomizhKB+oEwiQ0MjU9/vj30Kqqur7q1zu+rWrar39zz9nK59hlq7btU6u3bts8/E5OQkkiRJkobDWoMOQJIkSVL3bMBLkiRJQ8QGvCRJkjREbMBLkiRJQ8QGvCRJkjREbMBLkiRJQ8QGvNQiIr4ZEUfW3OdTETEZEY/sYRzPqY55WK+OWR13+4j4bETcEBF3RsR3I+KvW7ZZLyKuiYg9e/ncktQPo563W57jFe3iNm+PFxvwUpOIeAPwROC4QccCLANeC3y5VweMiG2Ai4FdgY8AhwBbAhdGxHMb22XmPcBBwIkRsWWvnl+Sem3U83aziHgG8Ml268zb48UGvFSJiIcDxwPHZuZdg44nM2/MzLMy84oeHvYIYBvgeZl5ZGaeDDwbuBE4peX5zwauA47t4fNLUs+MSd4GICL2Br4NLJji+c3bY8IGvPSQNwPrAJ8acBx9ERFrA3sC383MnzbKM/NW4GPAooh4WstuHwFeExHbzl6kktS1kc7bDRHxfUrP+/8AF0yzuXl7DMwbdAASQER8B9gE+GdKz8HTgbuA/wTeBfwVcDTwJEpv8b9l5rEt+/9lZs5rOe5ewBnAazPzrCmefx3gbcB5mXlHy7oJykliHyCAO4DvAUdk5rKWQ+0QEScAzwfWBn4EHJSZlzUdb62qnq8FngCsD9wEfB04NDNvrLZ7DqW35fDMPLoqmwROBC6l/FS6CLgN+BJwSGbe3qmOlJ+YNwR+2Gbdj6rlM4DLmsrPBk6rXpuDpzi2pDFj3p6VvN2wsKrrR4BPTLOteXsM2AOvueSRwDeAnwEHAD+nJKAvA1+gJMV3ALcCH4iIV/fwuXcEtgK+2WbdmcCplIR7CGWoyV8D/x0Rj23Z9jxgAjiQkkB3oowvbx6PeHJ1vN9U2x0AXA78E/BfXcT6EuDfKL0wb6M0uN8MnD7Nfo0Lnq5rs+531XL75sLM/CPwk+o5JamVebu/ebthu8w8JTMfmG5D8/Z4sAdec8lmwDsy818BIuI/KT0cuwF7ZOY5VflFwFXAC4HP9ui5d66W/9NcGBE7U3pczgD+KTMnq/JvUHpp9gf2bdrlzMx8a9P+dwLvA14AnBkRmwFvBM7OzOYT2SkRcQnw7IjYtErAnWwHLG4Mg4mIjwO/AF4eERtk5ooO+21cLe9ss66xz/w26y4H9omIrTPz+inikjR+zNv9zdvAgxeo1mHeHnH2wGuu+VzjP9XPitcDfwLObdrmf4FJoJfj+xo9Mle3lL+sWi5pnASq2H5M+bn4vS3bf7rl8aXVcptqv1soDel/at4oIrYAGj+jbjhNrMtaxrBPAksp40A3m2K/iS7WrWyzrvGa7DBNXJLGk3m7f3l7pszbI84eeM0lk5Rxks3uB25qScKTEbGS3n4B3aJato5FbAwpubJ1h+bxkU1uaHl8d7Vcr6nsHuBvI2J34PGUsY2PaFo/Xb1aX6PGMaGM3+yk0fO+QZt1jbJ2YzFvq5ZbtFknabyZt4t+5e2ZMm+POHvgNZeszMx2PcCTbcq61e2X1Ma4wtZEuk7N55tyfGJErAt8B/g85cKqn1J+qn063c+i0O416savq2W7m5Y0esWubbOu8ZpMO/ZS0tgxb3dnpnl7pszbI84eeI2K+4G1I2KdzLyvqXyrLvdvjBHcHPh9U/lvquXjaOnNiYiTgNsz8/Aacb4K+EvgqMw8ouV43cY6U1cCyykzzbRqlLWboWbzauk4Skm9ZN7uH/P2iLMHXqOikbwfnMe86jV5VZf7/6ZabtdS/pVq+fbmwoh4EvBWuj/RNDSS6s9bjvd0oHEn1L58sa5OkF8AnhsRi5ueexPKVGs/ax6j2aTxmvy2H3FJGlvm7f4xb4+4ufaGk2bqTMqsA5+LiH+l9OzsRffv8QuA91OmD/tBozAzvxYRZwNvjojtgPMpFxztSxnT+J6acV4A3AucHBGPo8zW8FRgbx76iXXjDvv2whHAi4FvRsQSytjRt1DGSb6mwz47AT/NzJv6GJek8WPe7h/z9oizB14jITMvAl5HuXDnA5R5ei8A/rHL/ZdS5kffuc3qVwP/AjwGWEKZTuzrwDMz8/dttp/qeZYBL6KMRz+YcgvwZ1NmRXh5tdnf1Dlmzee/rnq+71Beo/dTTka7ZOZ3WrePiK0pYz6/2q+YJI0n83Z/mLfHw8Tk5JpcZyKNjoh4N3Ak8KjMbJ2VYCxFxMGU12SHqvEvSXOGeXt15u3xYA+89JBTKFMt7j3oQOaC6tbh/wR8ypOApDnKvN3EvD0+bMBLlcy8AzgcOCAiNhp0PHPAayjjRo8cdCCS1I55ezXm7TFhA15a1anAzyjjHMdWRDwMOArYr+54UUmaZeZtzNvjxjHwkiRJ0hCZM9NIRsQewL9n5oJptvtz4ERgR+CPlG/exzXfslmSJEkaVXOiAR8RzwbOAiam2W5L4ELgCsqNHp5KmQbvAeBDdZ936dKlNvolDa3FixdPmTNHjTlb0jDrZc4eaAM+ItYD9qOM2boLWHeaXd5KiXmPzFwBnF8d45CIOLHlVsxdWbx48fQbjYhly5YBsGjRogFHMjvGrb5gncfFsmXLWLFixaDDGAhz9mizzqNv3OoL/cnZg76I9QXAIcC7gJO72H4X4KKq8d7wZWBT4Om9D0+SJEmaWwbdgP8xsH1mngR089Po44GrW8quaVonSZIkjbSBDqHJzN/V3GUjYHlL2fKmdbU1fsoZB3fffTcwPnUet/qCdR4XjTqPo3H8O1vn0TZudR63+kJ/cvage+DrmqBzT/3KmRzwjDPOmHk0kqRZZc6WpDkyC00NtwOt00wuaFpX21lnncVxxx23RkENi3G7cGTc6gvWeVyM80Ws5uzRZp1H37jVF0bzIta6rgIWtpQ1HucsxyJJkiTNumFrwF8E7BIR85vKXgrcAlw+mJAkSZKk2TOnh9BExA7AFpl5aVV0GvA2yvzvxwNPpkxDeXBm3jugMCVJkqRZM9d74A8HftB4kJnXU+aCnwd8AXgjcGhm1r4LqyRJkjSMavfAR8QEsBPwCGDtdttk5ufrHjcz3wu8t6VsL2CvlrLLqueXJEmSxk6tBnxEPAk4F9iWMqVjO5NA7Qa8JEmSpOnV7YE/AXg4Zdz55cA9PY9IkiRJUkd1G/DPAt6fmeMxCa8kSZI0x9S9iPV2ZnjDJEmSJElrrm4D/j+AvSNiTk8/KUmSJI2qug3xHwGvAH4REecCNwMrW7aZzMzjexGcJEmSpFXVbcB/tun/7+iwzSRgA16SJEnqg7oN+O37EoUkSZKkrtRqwGfmb5sfR8RGwL2Z+aeeRiVJkiSprZnciXVb4BjgxcDGVdltlBs8HZaZ1/Y0QkmSJEkPqnsn1kcDlwJbAt8AlgFrAwHsCewaEU/LzOt6HagkSZKk+j3wHwDmAztm5tLmFRHxVOBbwFHA3r0JT5IkSVKzuvPA7wqc1Np4B8jMnwAnA7v1IjBJkiRJq6vbgJ8P3DjF+puoxsVLkiRJ6r26DfgrgFdGxETriohYC3gV8MteBCZJkiRpdXXHwB8HfA64MCKWAFdV5QEcADwbeE3vwpMkSZLUrO488GdHxDaUaSTPaVo1AdwDHJSZn227syRJkqQ1Vnse+Mw8MSI+Azwf2I7SeP8NcGFm3tLb8CRJkiQ1q92AB8jMP1KG0kiSJEmaRVM24CPifOC4zPxO0+PpTGbm7j2ITZIkSVKL6XrgFwEbNT1+AjDZv3AkSZIkTWXKBnxmbt/y+DF9jUaSJEnSlGrNAx8Rn4yIHadYv3NEnNNpvSRJkqQ1M90Y+Iex6hCavYAfRcSv22y+FvASYJeeRSdJkiRpFdONgd8EuBJYUD2eBE6t/rUzAXy7N6FJkiRJajXdGPgbIuLVwDMojfMjgP8CftZm8weAm3F6SUmSJKlvpp0HPjO/BnwNICK2A07PzB/2OzBJkiRJq6t1I6fM3Hu6bSIiMjNnHpIkSZKkTmo14CNiHmUYzd8AG7LqLDbzKGPltwTW7lWAkiRJkh5SaxpJ4GjgMGBrYCUQlHHvE8BjKTPW7NfLACVJkiQ9pFYPPPAq4FuUHvhtgd8C+2bmzyPi+cA5wP11DhgRbwAOBB4JXA4ckJk/mGL7c4AXtVm1IDPvrPPckiRJ0rCp2wO/LfClzFyZmddSet93AsjMbwKfBN7Q7cEi4vXA6cBZwMuB24ALImL7KXZ7MnAi8KyWfytq1kWSJEkaOnV74O+iTBfZ8CvgSU2PlwKv7uZAETEBHAl8NDOPrMq+CSTwDuDtbfbZBHgU8PXMvLRm7JIkSdLQq9sDfxnwt1XjG+AKqh74ykK6H0LzWGA74KuNgsy8DzgP2K3DPo0vC+3moZckSZJGXt0e+CXA+cAVEbETcCbwpog4l9Ib/ybg610e6/HV8uqW8muAHSJi7cx8oGXdk4B7gKMj4iXA+pQG/9sy84aadZEkSZKGTt154C+IiBcBbwPuyMxLI+LdwOHAC4EfAft3ebiNquXylvLllF8G5gN3tKx7ErBetc3LKD3+RwPfioinZOY9deoDcP/997Ns2bK6uw2lu+++G8D6jjDrPB4adR5H5uzRZp1H37jVF/qTs+v2wK9yZ9bq8bERcQKwQWbeWuNQjWE4kx3Wr2xT9mHgs5n57erxxRGxDLiUMkPOZ2o8vyRJkjR0ajfg26l6vuv2ft9eLRcANzaVLwAeaDclZGZeCVzZUvbDiLiNMjtN7Qb8vHnzWLRoUd3dhlLj2671HV3WeTwsW7aMFSvGc+Itc/Zos86jb9zqC/3J2VM24CPibjr3kHcymZnzu9juqmq5kFXHwS+kjKdvF8/fA7/PzIubyiYow2r+UDNOSZIkaehM1wP/Oeo34Lt1FXAt8FLgGwARsQ6wO+XC1HbeDGwUEYszszHE5oWUi1kv7rCPJEmSNDKmbMBn5l79euLMnIyIY4FTIuJW4BJgX2Bz4ASAiNgB2KJpzvdjKOPvz4qIMygz2RwFfDEzv9+vWCVJkqS5YkZj4Ks7pb6AclOlT1Bu8LQwMy+pc5zMPC0i1gf2o9y86XJg18y8ptrkcOD1VBe8VrPg7AEcAXyZMo7+k9V2kiRJ0sir3YCPiGOAdwFrU4bXfBPYGPhiRHwBeE1m3tvt8TJzCWV++Xbr9gL2aik7Fzi3btySJEnSKKh1J9aIeAtwMGWIy1/z0FSQFwMnA68ADuxlgJIkSZIeUqsBTxmjfnZmHgj8slGYmbdk5n6UaRxf28P4JEmSJDWp24BfCHxrivXfo4yLlyRJktQHdRvwNwGPmWL9U4CbZxyNJEmSpCnVbcB/DnhrROzUVDYJEBGvA/YBvtSj2CRJkiS1qDsLzXuAHYHvAtdRGu8nRsTDgW0p00C+p6cRSpIkSXpQrR74zFwB7Ay8CfgZcCWwLrAM2B94Vmbe0esgJUmSJBW1euAj4v3A1zPzE5QbOEmSJEmaRXXHwL8DWNyPQCRJkiRNr24D/rfANv0IRJIkSdL06l7EegxwSkRsR5nz/WZgZetGmfn5HsQmSZIkqUXdBvyZ1fKV1b92JgEb8JIkSVIf1G3A79yXKCRJkiR1pW4Dfh/gi5n55X4EI0mSJGlqdS9ifQVexCpJkiQNTN0G/M9wGklJkiRpYOoOofkMcExEPBG4hPaz0Exm5vG9CE6SJEnSquo24E+qls+o/rUzCdiAlyRJkvqgbgN++75EIUmSJKkrtRrwmfnb5scRsRFwb2b+qadRSZIkSWqrbg88EbEt5Y6sLwY2rspuA84FDsvMa3saoSRJkqQH1WrAR8SjgUuBLYFvAMuAtYEA9gR2jYinZeZ1vQ5UkiRJUv0e+A8A84EdM3Np84qIeCrwLeAoYO/ehCdJkiSpWd154HcFTmptvANk5k+Ak4HdehGYJEmSpNXVbcDPB26cYv1NVOPiJUmSJPVe3Qb8FcArI2KidUVErAW8CvhlLwKTJEmStLq6Y+CPAz4HXBgRS4CrqvIADgCeDbymd+FJkiRJalZ3HvizI2IbyjSS5zStmgDuAQ7KzM/2MD5JkiRJTWrPAw98nDJ15B+ArSiN999V/z+pd6FJkiRJalVrDHxEPApYChwP/CIzj8vMDwLPpQyvuTQiNu99mJIkSZKg/kWsHwQ2BXZpnkoyM/8R+CvgkZS54iVJkiT1Qd0hNM8DPpSZ325dkZmXRMSJwJvrHDAi3gAcSGn8Xw4ckJk/mGL7PwdOBHYE/gicChyXmZN1nleSJEkaRnV74B8G3D/F+ruATbo9WES8HjgdOAt4OXAbcEFEbN9h+y2BC4FJypSVHwXeD7yz2+eUJEmShlndBvyPgDdExPzWFRHxMGBvyhj5aVVzyR8JfDQzj8zM84E9KBfHvqPDbm+l/GqwR2aen5lHU4bsHBIR69SsiyRJkjR06g6hORK4CPh5RHwauLoqXwjsCTwGeH6Xx3ossB3w1UZBZt4XEecBu3XYZxfgosxc0VT2ZeAw4OnA97t8bkmSJGko1Z0H/nsRsRtlFpojWlb/DHhhZl7c5eEeXy2vbim/BtghItbOzAfa7POdNts31tmA76ElS5awfPlyFixYwDvfObqjlIaxnsMY8yD5eo2WTn/PUfs7n3HGGdx1110sXLhwTtenl697pzrP5t921N5HGk0Tk5Mzu/azGo/+aMqc8Ndm5u9r7v9q4D+ArTPzhqbyfYCPARtn5h0t+9wDvCczj20qmwfcB+yXmbXmoV+6dOnkuz9+BRtssAGTkyuZmFiL9TdYv84huHvF3TPed9Y1/tYTE11tfssfbmHlypWstdZabLb5ZtNu381r0attutKhvq3Hr1vPbjQ/Rwmlt++RjjE31bnT69jv2Fqfo5vjrlFMXbyvm1+vNfm8z7aOr+PkJO982TYsXry4uw/ziGjkbKDt33PFihXTfpbnes5ujq+5Pt28bwdVt15+vjodq9NrATPPYZ3yTjfvozWx2t+p5rm5H2bjvPCgLuvbTUyz2qZYE33I2TO5kRMAmXkTcNMaPHejEp2+QazssE+d7ae17gablKtyq2iWr2jt9J/2CGuw79y27gYPXY/cXd26eS16tc2aWPX49etZ7zmAntenu5g7vY79jW3q555++37E1Px6rdnnfbaNbn6Zqea/Jaz691x3g3UfLB9cfllT67atT3fv28HUrZefr07H6vRasEbP1z7vdPc+WhNz8T04G+eFurqJaS60KQZjxg34Hri9Wi4AbmwqXwA8kJl3dthnQUvZgqZ1tW260XqrPL7zzruYnJxkYmKCDTdc7VpdAG644cYHv51vtdUj2m7T6TjdHL9uPN1u3xz3hhtuWOu4dWPq1TbNMQNt4wfaHueOO5YzObmStdeeV7uOU2mO+84775z2vVBX3b9TczzrPay8n9eZV/+jXfe91hpr3c9Cr2K67/4yMVYv69xcDqu+v3r13q4bU7MbbriRMvPu+GnN2Z1M9TfshZnk+E7rOn2OOr23+5Ffe5W/1lSvPs/Q+795v2JoPlc179Pt/nVi6tVx6sbWq/NUt88xyM95O3fcsbwn8TQbZAP+qmq5kFXHwS8EfjXFPgtbyhqPcyZBnPmeTtfLdrbq+LjXz+RpB+LAAw9sGls4HHE3v9ZArdd92bJlACxatGhW4uvVa7omx5yNOjebC5+F2a7zXHDggQcCfz7oMAZiJjl7ruv0Oer3e3sufH5bjePnedzqPG71hVLnFStWTL9hDYNuwF8LvBT4BkA1FeTuwHkd9rkIeFNEzM/Mu6qylwK3UG4CNSuG9aKWvffeGxiuD81cf637Ed9cr3OzYYp1lOy99949PxlocAb1OfLzKw2vgTXgM3MyIo4FTomIW4FLgH2BzYETACJiB2CLzLy02u004G3A+RFxPPBk4BDg4My8d7brIEmSJM22ujdy6qnMPA14F/Ba4AuUu7jumpmNqSEPB37QtP31lLng51XbvxE4NDM/NJtxS5IkSYMyyCE0AGTmEmBJh3V7AXu1lF0G7NT3wCRJkqQ5aMbzwI+CpUuXjm/l54Cbb76Z/fbbj+c85zm88Y1vHHQ4M3b99ddz2GGHcdRRR7HNNtt0vd8//MM/8MQnPpFDDz20Z7GcfvrpXHzxxZx88slstlnv5i/+8Y9/zFe+8hV+97vfsd566/G0pz2Nv/u7v3vw4mKAn//855x22mkcf/zxbLjhhj17bnU2jvPADzqGcWbOHp6c3ez444/n3nvvXS1uc/bs62XOHusGvAYrIuYDLwOubrrOYahExARwMfCTzNyv5r6TwEWZuUsP43kWsAPwpczsyVWOEfE64EzKdSr/SZm/cH/Kheg7Nj9PRJwH3JKZr+vFc0uaO8zZw5GzW47/QeBAOsRtzh5eAx9Co/FVzSR01qDjWEN7A08DXj7oQAAy8wc0XTeypqoT9oeBHwI7Z+Z9VflS4POUi8o/2LTLYcBPIuITmfndXsUhafDM2b3X65zdEBGbAKcDfzfNpubsITXQi1ilYVb15BwIfLG6M/Eo2h3YDDit0XgHyMyzgd9QLkCnqfynwKXAQbMYoyRNa0xydqNX/2rglcD7ptrWnD287IFXX1Q9t8cALwAeDdwBfA94X2ZeXm3zGODXwCcyc5+mfV8AvBv4P8CfgC8C5wLnAHtn5qea9n0n5SbJb6YM7fhf4AjgK8ChwD8BmwI/Bw6oejsaz/Mw4ADgFcDjgXWA31X7Ht7hbsDNdgeiOkZr/beu4tgd2IJyz4OzgOMz8+6WbV9FmQ51EXArcDZldqXlTdtsW22zW1XPBygJ+mOZeUrTdp8CXg88KjOvi4i9gDOAv6L0OL2KMlVrAh/OzE9NU8dnVssftln3I+CVLfdlgDLM5oSIWJSZy6Y5vqQ5wJw9MjkbymvzC+BdmfmjiDhimu3N2UPIBrz65fPAc4GTKYnnkcDbgf+uksR17XaKiH+gJM2rgaMo79E3URJ2O/tTEuOpwCRwMCUZXQhsTZnhaAElkX4lIh6bmXdU+36BcrL6GPARYH71PPsDjwD+YZo6vhS4H/hOSx22AZZSTkIfBa4AdgSOBJ5a7dfwTMrPuadSfu58KWVYyhbAq6vjbUJpQK9PuRfCb4CtgDcAJ0fEvZn50Wli/QzlRHM85Ze3/YEzIuL6zLxgiv0eWS3b/b1+RzkRP4Zysmi4sCrfA/BkIA0Hc/Zo5GyA/8zMM6fZppk5ewjZgFfPRcQWwAspwy4ObCr/KXAs8BTaNAir3pWTgP8HPK2RtCPio6zaQGy2GfC4zPx9te0KSsL8cyAaFwVVxz4UeDpwUUQ8mdLTcnxLjKdQeoRe1EVVdwauanPh0QcoyXrnzPxOVfZvEXE38JaIeFo1HSqUE9COmfmj6vk/TkmgfxsR61Y3KHs9sC2we2ae3xTr2ZQT7YsoJ52p3AI8MzPvr/a9hPKz6euAqU4GGwOTLT3sDY16z28pv5LSC7czq46PlzQHmbNHKmeTmfdMc+xW5uwh5Bh49cPt1b9XRcQbI2JLgMz8amY+ITPP6bDf8yjJ/aSmHhcy8w+Uk0Q732ucCCqN3oPzWpL0VdVy2+qY/0NpnL635XhbAX8EppxTKyLWBran9Do1l08ALwEuazoRNBwBPIny03DDlY0TQRXXA8CPgXUprwWZeSKld+lrLc+zLqUHq5v5vz7XOBFUllbLrabZb6oprxrrVjYXVnX4DfDYLuKSNHjm7NHJ2bWZs4eTPfDqucy8NyL2pozj+zfg9Ij4H0oy+1Rm/qrDrlEtr2yz7pcd9rmh5XEj4d3YUv5AtWz+0noPsGdE7EJJXDtQfkLtxmaUBuztLeWbUk4yq9UhM2+h9Ko0a40foDHecr2W8oMjYkdgYRXrBlV5N1/EV3k9MvP+iHgAWHua/e4EJiJi/dZxoE3P3/oaANwGPKGLuCQNmDl7pHL2TJmzh4w98OqLzPwvyhjKv6OcFDahjGn8ZUR0Ghu5brVs9/Nfp/lx7+tQPuUNDiJiU+B/KGMpt6LMcX4Q8BfAt6fat9I4ubQm03W6ef42x+koIp5J6TV6d1V0DuVCr0fS0vs9hW63a/XravnINuu2pcT/+zbr1qaLukmaG8zZI5OzZ8qcPWTsgVfPRcQCSlL9TWZ+nnJxFBHxV5SLZQ6mXIzUqtHL82fARS3r/qzHYb6F0nv0T5n5yeYV1WwEU8rMWyLiXsrsAM1uBu6izAKwioh4HHA08MkuLkJqdjSl5+YJzT1hEfEI+v8l/MfV8hk89JM2TWW/6DA+fnPg+n4GJqk3zNkjlbNnypw9ZObqG0nDbRGld+SwlvKllJ6a+1fbo/gG5We8N0VE46dGImJD4J97HGMjiTePbSQiXkJ14omI6b7g/hbYrrmgGkt4HvCMqhem2ZsoU4JNN9VZu1iXU8YoNmvM29vPL+LnUaaT2y8iGj1VRMQrKXVfbaaDarutWT1eSXOTOXt0cnZt5uzhNKfeRBoN1byzXwPeHBEbU25b/TDgNZSLd5Z02O/OiNgf+BRwWUScQRmzuA8PDeHo9mfO6ZwL7Ad8NiJOoyTov6RMQ/anKt6NWX38Y7MLgH0jYvPqoq2GgyhX83+rOvZVwLMpNz36dGZeUjPWcygn1q9HxOcpP1u/DPhrysl145rH61pmLo+IAynTpX03Is6kTBu5P/BTynjZVospr1+dHitJA2LOHp2cPUPm7CFkD7z65VWUOYGfCnyYcje45cCLqrt4tlXNXfsKyk+a7wPeBXyTMhsAtB9rWVtmXkhJ/HdWcR5D+Xn2LZSTBMDfTHOYr1TLnVuO/RvKPMGfp5wA/5WSIN9JObHV9b7q33bVsQ6ivA7Po9ww5QnVTUP6IjP/DdiT8pPwiZST2qeAv+kwfKbxenyhHUSGAAAbaElEQVS1XzFJ6jlz9ojk7BkwZw+hicnJXn05ltZMRKwHzM/MP7ZZdxBlPuLmeXoHKiLWosy0cHVmdjMH8ViIiGXArzPzhYOORVL/mLNHgzl7ONkDr7lkc+CWiPhYc2E1Pu/vKT0YPx1EYO1k5krg/cBuEdFulpaxU1309meUHjJJo82cPeTM2cPLHnjNKRFxHuVW2WcC36fc9e7VlBlP3pWZHxpgeKupbg7yfeB/MvONg45n0CLiIuAPmfl3g45FUv+Zs4ebOXt42YDXnFLNZLAfZcz19sC9lLl/T8rMLw0ytk4i4s8o0y0+IzOXTbf9qIqIF1Lmj35iywVikkaUOXt4mbOH25xpwEfEHsC/Z+aCabb7c8qFdDtSbp98KnBcZs6NikiSJEl9NCemkYyIZwNnUaafmmq7LSk3lbiCcsX8Uynj2R4A5tTPdJIkSVI/DLQBX13Bvh/l4om7eOi2zJ28lRLzHpm5Aji/OsYhEXFiZna6RXNbS5cutdde0tBavHjxlJ0eo8acLWmY9TJnD7oH/gXAIZR5YzejzLk6lV2Ai6rGe8OXKTdMeDrlwpRaFi9eXHeXobVsWRnqt2jRogFHMjvGrb5gncfFsmXLWLFixfQbjiBz9mizzqNv3OoL/cnZg55G8sfA9pl5Et3dre3xwNUtZdc0rZMkSZJG2kB74DPzdzV32YhyZ7hmy5vW1db4JjgO7r77bmB86jxu9QXrPC4adR5H4/h3ts6jbdzqPG71hf7k7EH3wNc1Qeee+pUzOeAZZ5wx82gkSbPKnC1Jgx8DX9ftQOs0kwua1tV21llncdxxx61RUMNi3MadjVt9wTqPi3EeA2/OHm3WefSNW31hNMfA13UVsLClrPE4ZzkWSZIkadYNWwP+ImCXiJjfVPZS4Bbg8sGEJEmSJM2eOT2EJiJ2ALbIzEurotOAt1Hmfz8eeDJlGsqDM/PeAYUpSZIkzZq53gN/OPCDxoPMvJ4yF/w84AvAG4FDM9O7sEqSJGks1O6Bj4gJYCfgEcDa7bbJzM/XPW5mvhd4b0vZXsBeLWWXVc8vSZIkjZ1aDfiIeBJwLrAtZUrHdiaB2g14SZIkSdOr2wN/AvBwyrjzy4F7eh6RJEmSpI7qNuCfBbw/M8djEl5JkiRpjql7EevtzPCGSZIkSZLWXN0G/H8Ae0fEnJ5+UpIkSRpVdRviPwJeAfwiIs4FbgZWtmwzmZnH9yI4SZIkSauq24D/bNP/39Fhm0nABrwkSZLUB3Ub8Nv3JQpJkiRJXanVgM/M3zY/joiNgHsz8089jUqSJElSWzO5E+u2wDHAi4GNq7LbKDd4Oiwzr+1phJIkSZIeVPdOrI8GLgW2BL4BLAPWBgLYE9g1Ip6Wmdf1OlBJkiRJ9XvgPwDMB3bMzKXNKyLiqcC3gKOAvXsTniRJkqRmdeeB3xU4qbXxDpCZPwFOBnbrRWCSJEmSVle3AT8fuHGK9TdRjYuXJEmS1Ht1G/BXAK+MiInWFRGxFvAq4Je9CEySJEnS6uqOgT8O+BxwYUQsAa6qygM4AHg28JrehSdJkiSpWd154M+OiG0o00ie07RqArgHOCgzP9t2Z0mSJElrrPY88Jl5YkR8Bng+sB2l8f4b4MLMvKW34UmSJElqVrsBD5CZf6QMpZEkSZI0i6ZswEfE+cBxmfmdpsfTmczM3XsQmyRJkqQW0/XALwI2anr8BGCyf+FIkiRJmsqUDfjM3L7l8WP6Go0kSZKkKdWaBz4iPhkRO06xfueIOKfTekmSJElrZrox8A9j1SE0ewE/iohft9l8LeAlwC49i06SJEnSKqYbA78JcCWwoHo8CZxa/WtnAvh2b0KTJEmS1Gq6MfA3RMSrgWdQGudHAP8F/KzN5g8AN+P0kpIkSVLfTDsPfGZ+DfgaQERsB5yemT/sd2CSJEmSVlfrRk6Zufd020REZGbOPCRJkiRJndRqwEfEPMowmr8BNmTVWWzmUcbKbwms3asAJUmSJD2k1jSSwNHAYcDWwEogKOPeJ4DHUmas2a+XAUqSJEl6SN0G/KuAbwHbA7tTGu77ZuYiYFdKz/v9PY1QkiRJ0oNqDaEBtgU+lJkrgWsj4mZgJ+DnmfnNiPgk8Abg9G4PGBFvAA4EHglcDhyQmT+YYvtzgBe1WbUgM+/sviqSJEnS8KnbA38XZbrIhl8BT2p6vBRY2O3BIuL1lMb+WcDLgduACyJi+yl2ezJwIvCsln8run1eSZIkaVjV7YG/DPjbiPhoZk4CV1B64BsW0uUQmoiYAI4EPpqZR1Zl3wQSeAfw9jb7bAI8Cvh6Zl5aM3ZJkiRp6NXtgV8C7AJcUTWmzwT+IiLOjYgPA/sDF3d5rMcC2wFfbRRk5n3AecBuHfZp9Pa3u5GUJEmSNPJqNeAz8wLK+PPfAndUveDvBnamNN5/Xi278fhqeXVL+TXADhHRbirKJwH3AEdHxC0RsSIizo6IrerUQ5IkSRpWdYfQrHJn1urxsRFxArBBZt5a41AbVcvlLeXLKV8s5gN3tKx7ErBetc3LKEN2jga+FRFPycx7ajw/APfffz/Lli2ru9tQuvvuuwGs7wizzuOhUedxZM4ebdZ59I1bfaE/Obt2A76dquFct/E8US0nO6xf2absw8BnM/Pb1eOLI2IZcCllisvP1IxBkiRJGipTNuAj4m46N7A7mczM+V1sd3u1XADc2FS+AHig3ZSQmXklcGVL2Q8j4jbK7DS1G/Dz5s1j0aJFdXcbSo1vu9Z3dFnn8bBs2TJWrBjPibfM2aPNOo++casv9CdnT9cD/znqN+C7dVW1XMiq4+AXUqanXE1E/D3w+8y8uKlsgjKs5g99ilOSJEmaM6ZswGfmXn187quAa4GXAt8AiIh1KHd4Pa/DPm8GNoqIxdXNpABeCKxP97PfSJIkSUNrRmPgqxstvYAyJ/snKDd4WpiZl3R7jMycjIhjgVMi4lbgEmBfYHPghOp5dgC2aJrz/RjKBbRnRcQZlJlsjgK+mJnfn0ldJEmSpGFSdx54IuIYyhCXU4ADgUcDzwT+OyI+HxHrdnuszDwNeBfwWuALwCbArpl5TbXJ4cAPmra/ANiDMof8l4FDgU9W+0uSJEkjr1YPfES8BTgY+BBwDvDdatXFwMnA2yg3WTq622Nm5hLKDaLardsL2Kul7Fzg3DpxS5IkSaOibg/8vsDZmXkg8MtGYWbekpn7UWaBsTdckiRJ6pO6DfiFwLemWP89yrh4SZIkSX1QtwF/E/CYKdY/Bbh5xtFIkiRJmlLdBvzngLdGxE5NZZMAEfE6YB/gSz2KTZIkSVKLutNIvgfYkXLx6nWUxvuJEfFwYFvg8mobSZIkSX1Qqwc+M1cAOwNvosw2cyWwLrAM2B94Vmbe0esgJUmSJBV1p5F8P/D1zPwE5QZOkiRJkmZR3THw7wAW9yMQSZIkSdOr24D/LbBNPwKRJEmSNL26F7EeA5wSEdtR5ny/GVjZulFmfr4HsUmSJElqUbcBf2a1fGX1r51JwAa8JEmS1Ad1G/A79yUKSZIkSV2p24DfB/hiZn65H8FIkiRJmlrdi1hfgRexSpIkSQNTtwH/M5xGUpIkSRqYukNoPgMcExFPBC6h/Sw0k5l5fC+CkyRJkrSqug34k6rlM6p/7UwCNuAlSZKkPqjbgN++L1FIkiRJ6kqtBnxm/rb5cURsBNybmX/qaVSSJEmS2qrbA09EbEu5I+uLgY2rstuAc4HDMvPankYoSZIk6UG1GvAR8WjgUmBL4BvAMmBtIIA9gV0j4mmZeV2vA5UkSZJUvwf+A8B8YMfMXNq8IiKeCnwLOArYuzfhSZIkSWpWdx74XYGTWhvvAJn5E+BkYLdeBCZJkiRpdXUb8POBG6dYfxPVuHhJkiRJvVe3AX8F8MqImGhdERFrAa8CftmLwCRJkiStru4Y+OOAzwEXRsQS4KqqPIADgGcDr+ldeJIkSZKa1Z0H/uyI2IYyjeQ5TasmgHuAgzLzsz2MT5IkSVKT2vPAAx+nTB35B2ArSuP9d9X/T+pdaJIkSZJa1RoDHxGPApYCxwO/yMzjMvODwHMpw2sujYjNex+mJEmSJKh/EesHgU2BXZqnkszMfwT+CngkZa54SZIkSX1QtwH/POBDmfnt1hWZeQlwIvCCXgQmSZIkaXV1x8A/DLh/ivV3AZvUOWBEvAE4kNJ7fzlwQGb+YIrt/5zyRWFH4I/AqcBxmTlZ53klSZKkYVS3B/5HwBsiYn7rioh4GLA3ZYx8VyLi9cDpwFnAy4HbgAsiYvsO228JXAhMUuac/yjwfuCd9aohSZIkDae6PfBHAhcBP4+ITwNXV+ULgT2BxwDP7+ZA1c2gjgQ+mplHVmXfBBJ4B/D2Nru9tYp5j8xcAZwfEesBh0TEiZl5X836SJIkSUOl7jzw34uI3Siz0BzRsvpnwAsz8+IuD/dYYDvgq03Hvy8izgN267DPLsBFVeO94cvAYcDTge93+dxDb8mSJSxfvpwFCxbwznf6A4QkSbPFc7AGrfY88NUFrE+rhrM8mjIn/LWZ+fuah3p8tby6pfwaYIeIWDszH2izz3fabN9YN6MGfPMHERiKD+WSJUu4/vrr2Xrrred0nBo9dT8vnU50/f7ceYJVHb5fhsdc+FvNxXPwXHldBh3DuJiYnBzMtZ8R8WrgP4CtM/OGpvJ9gI8BG2fmHS373AO8JzOPbSqbB9wH7JeZtW4ktXTp0sl3f/wKAFauXMlaa621yv832GADJidXMjGxFutvsH7bY9y94u5pt+lG83GAaY95yx9ueTDOzTbfrKt4Vty1gsnJSdZaq3exrslx6h6z0zadyntV35nE2s2+QK2/eTfPW7fOUx2zU6wrVqyo9Xlpfq82b9PNcbp5XWjksImJVYo7fUbq6vbv3c37s7k+nerW1fNNTvLOl23D4sWLJ9pvMJoaObtTzoOZv6ad3qfdHKdu/u5Wp89zP3LQmhyn25zVzWdhcnLywTp3im9NPtt1zyOddBND18fskMO6qUPZffWc2s3r0qvXolk3n6OZnJvXJI922r7Tvt3EUPuz3YecPZM7sfZKoxKdvkGs7LBPne2nte4GnSfNub/xjMDyFa0/Bjx4hC626SqSh16RLp63Oe5Vt5kinon1YKK8UL2Kdc2OU/eYnbbpUN6z+s4k1un3BWr9zbt63tp1nuqY7WNdd4N12x6p0+el+b3avE03x2l+3rqvdefPSF3d/r2nf38CXdStH5+v0bHuBpt09frWfU07vU+7O069/N21jp/n3uegNTlO9zlr+s8CEzxY507xrdlnu+Z5pNNRuoqhX5/l6XPzmuX/mcfd1edoRufmmefRTtt33nf6GOZCbh5kA/72arkAuLGpfAHwQGbe2WGfBS1lC5rW1bbpRuvV3ufOO+9icnKSiYkJNtxwtQl5enqcXm0DcN/9ZQbQdebN61kdZhLHbB2zub4zeT6gZ6/9bGmu8w033PhgT8iGG244dHXpVjfv67rlU+nmPdLvz8LKlTPqrxgJm2603hq9vrP9Pm/+HG611SNq7Vs3h9XNX90cp9/v61YzydvT6Xd91vQ83e9zczf6/bzNx1/vYaXd1fo3HuQ5aE0+p520q3MvDbIBf1W1XMiq4+AXAr+aYp+FLWWNxzmTIM58T6frZUfPsmXLAFi0aNGAI5kd41ZfWLXOq45FfP2AI+ufcf07r1ixYvoNR9Cw5ew1+RyO63sbrPMom4v17ff5sh85e9AN+GuBlwLfAIiIdYDdgfM67HMR8KaImJ+Zd1VlLwVuodwESlLFC4ikwfNzKM19w/g5HVgDPjMnI+JY4JSIuBW4BNgX2Bw4ASAidgC2yMxLq91OA95Gmf/9eODJwCHAwZl572zXQZIkSZptde/E2lOZeRrwLuC1wBeATYBdM7MxNeThwA+atr+eMhf8vGr7NwKHZuaHZjNuSZIkaVAGOYQGgMxcAizpsG4vYK+WssuAnfoemCRJkjQHDWwe+Llg6dKl41t5SUNvHOeBH3QMkjRTvczZY92AlyRJkobNQMfAS5IkSarHBrwkSZI0RGzAS5IkSUPEBrwkSZI0RGzAS5IkSUPEBrwkSZI0RGzAS5IkSUPEBrwkSZI0RGzAS5IkSUNk3qADGISIeANwIPBI4HLggMz8wWCj6o2IWBvYD3gD8Gjgt8BpwKmZORkRE8C7gTcBmwOXAG/LzCsHFHJPRcR6lL/pDzNzr6psJOscEc8DjgGeBNwEfAp4X2Y+MIp1rt7b7wTeCGwF/AI4JDO/Va0fmTpHxB7Av2fmgqayaetXvf+PBV4NzAcuAN6emb+fxfB7zpw9Gu/rdszZ5mxGpM6znbfHrgc+Il4PnA6cBbwcuA24ICK2H2hgvXM4JUGcBewBfB74V+Bd1fojgMOADwF/D2wMXBQRG89+qH3xHuDPWspGrs4RsRPwNWAZsDtwCnAQpZ4wgnWmvIePAT4JvBT4X+DrEfGUav1I1Dkink35/E60rOqmfqcDrwMOBvYGngycX51Ih5I5ezTe11MwZxcjV2fGJGfDYPL2xOTkZG+iHwLVN6FfA1/LzDdXZesACZybmW8fZHxrqvpj3wqcmJmHN5WfCrwS2AH4PXB0Zn6wWvdwSo/PezPzw7Mfde9USeG/gbuB8zJzr4hYwAjWOSL+G7g9M1/UVHYs8EzgxYxmnZcBP87M11WP16Z8nr8KHMKQ17nqhdkPOAq4C1g3Mzes1k37Po6IHYBfAf+QmZ+rtnkcJb+9IjO/NNt1WlPmbHN2td3Q19mcPXo5Gwabt8etB/6xwHaUNw8AmXkfcB6w26CC6qGNgE8DrX/wBLYAngtsyKr1vxX4LkNe/4iYR/mWfzzwu6ZVz2TE6hwRWwA7AR9tLs/MgzPzOYxgnSvrAXc0HmTmA8DtwKaMRp1fQDmpvQs4uWVdN/V7brU8t2mbqyg/Ww/La9DKnD387+u2zNnmbEajzgPL2+M2Bv7x1fLqlvJrgB0iYu3qDTaUqjfGvm1WvRi4jjJ+FMrPWM2uAV7Sx9Bmw0HAusAHgJc1lTf+5qNU57+g/Ex3V0ScAzyfkiRPA97HaNYZ4FTgiIj4L+AyYC/gicChjEadfwxsn5m3RcR7W9Z1U7/HAzdk5l1ttnk8w8mcXQzz+7oTc7Y5G4a/zgPL2+PWA79RtVzeUr6c8lrMn91w+i8i9gF2AY6j1P+ezLy3ZbPlPPTaDJ2IWERJCPu0qdso1nmLavlp4EpKD8BplHF272I06wzwEeB7wIWUcdD/ChyemV9lBOqcmb/LzNs6rO6mfhuxem5r3WbYmLOH/H3djjnbnM2I1HmQeXvceuAbFxd0Gvi/crYCmQ0RsSfl4ogvUC6YOYQRq3tErAV8HPhEh1kpJhixOgPrVMsLMrNxodu3I2JzygnhWEasztVY6AuAJwBvoVwItgvwnoi4jdH8Ozfrpn6j+BqYs0es7uZsc/aY5Gzoc94etx7426vlgpbyBcADmXnnLMfTNxFxAPAZyriqPTNzklL/9aqLwJot4KHXZti8jTL12uERMa8aVwkwUf1/FOvceJ9+vaX8m5TxdrcxenXeCfhL4J8z8yOZ+Z3MPAz4MKWn8i5Gr87Nunkf387qua11m2Fjzh6997U5+yHm7NGqc6u+5u1xa8BfVS0XtpQvpFwFPBIi4hhgCeVk8Iqmn2+uonzba51+bSHloqlh9DLKONFbgfuqf0+mTMnUeDxqdW6MB163pbyRJEaxzo+qlpe2lH8P2IDSgzFqdW7WzWf3KmCriFh/im2GjTl79N7X5uyHmLNHq86t+pq3x7EBfy1lPlLgwSnJdgcuGlRQvRQR+1F+dj0R2Csz729a/X3gT6xa/4cDf83w1v9NwNNb/v2K0ov1dOA/Gb06/5Iya8MrW8p3p0xZNYp1bjTWdmop3xG4nzKLx6jVuVk3n92LgLUpF0A2tnkc5aKxYX0NzNmj9742Zz/EnD1adW7V17w9VmPgq7vaHQucEhG3Uu6ItS/l7lgnDDS4HoiIrYEPAj+nJIQdI6J5k8so0xwdFRErKR+wQylXw398dqPtjcxc7RtqRNwN3JKZl1WPR63OKyPi3cCZEfERynjZXYDXA2/OzDtGsM5LI+I84LSI2JQynvI5lJksTszM60atzs0y887p6peZ/xsRZwMfi3KTkFspM3z8DPjyYCJfM+ZsczajUWdz9pjlbOh/3h6rBjxAZp5W/VSxH/AOyi2cd83MawYbWU/sSpl39S+AdhcHbUG5pe9K4F8oY+++D7w+M0dlzFk7I1fnzPx0RNxHqdvelF7Kf87MxjzDI1dnSu/V0ZQEuCmld/btwL9V60exzs26qd/elIbtBym/sF5IuSX3ME+1aM4e7fd1OyNXZ3P2WOZs6GPeHqs7sUqSJEnDbtzGwEuSJElDzQa8JEmSNERswEuSJElDxAa8JEmSNERswEuSJElDxAa8JEmSNERswEs1RMRvIuLrg45DkjQ9c7ZGlQ14SZIkaYjYgJckSZKGiA14SZIkaYjMG3QA0rCKiAlgX2Av4M8oX4ivAk7IzDNatt0HeCfwGGAZ8C/AR4HvZeZesxa0JI0pc7ZGiT3w0swdA5wIXAbsB7wHWB/4ZETs0tgoIvYHPgb8P8pJ4BfA+cBWsx2wJI0xc7ZGhj3w0gxExDrAW4FPZuabmsq/DCTwN8CFEbER8D7g68ALM3MSODUibqCcGCRJfWbO1qixB16agcy8D3gEsH+jrPp5dv3q4YbV8rnAAuDE6kTQcPxsxClJMmdr9NgDL83cPcArImIPYBHweB46CTS+HD+2Wl7dvGNm3hQRt81KlJIkMGdrhNgDL81A1XNzLvCfwLbAt4G3ANu1bNr4knxvm8P8qW8BSpIeZM7WqLEHXpqZ/wu8AHh3Zn6gURgRrRc5XVMtH0e5IKqx3UbAlv0OUpIEmLM1YuyBl2Zms2q5rKX8bdWy8eX4G8DdwD+3bPdm/PxJ0mwxZ2uk2AMvzcwlwHLg5IjYAbgLeCHwIspPrwsAMvO2iDgSODYizqf8hPsUYM/qOJOtB5Yk9Zw5WyPFb5PSDGTmjZTEfx1wJGXasQXArpSE/1cRsVa17QcpMx8EcALwVGD36lDtxllKknrInK1RMzE56ZdJqV8iYj3gYZl5e0v5ZsAfgKMz8/CBBCdJWoU5W8PCHnipv7YGbouI/VrKX1ktl85yPJKkzszZGgr2wEt9FhH/Dfwf4BTK3MJPpFwQ9RPg/2bmAwMMT5LUxJytYeBFrFL/7QEcDvw9pXfnBuBU4L2eCCRpzjFna86zB16SJEkaIo6BlyRJkoaIDXhJkiRpiNiAlyRJkoaIDXhJkiRpiNiAlyRJkoaIDXhJkiRpiPx/C0IPw3g6qkMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pm.autocorrplot(trace)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ok, so we have a reasonable model from the traces. But is it well specified? Does it describe our data well? Do do this, we go back to our old friend the posterior predictive distribution, which we now utilize in multiple ways.\n", "\n", "## Multiple replications of the posterior predictive" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us engage in tamping down our notation a bit. We Usually write, for the posterior predictive distribution,\n", "\n", "$$p(\\{y^\\*\\}) = \\int p(\\{y^\\*\\} \\vert \\theta) p(\\theta \\vert \\cal{D}) d\\theta$$\n", "\n", "To avoid confusion with observed data $\\cal{D} = \\{y\\}$, we define $\\{y_{r}\\}$ as the replicated data, the data we would see tomorrow if the experiment that produced $\\{y\\}$ today were replicated with the same model and same value of $\\theta$ that produced todays data. Since of course we only have a posterior inference for $\\theta$, one can think of $y_r$ as simply coming from the posterior predictive, with the caveat that if there are covariates $\\{x^{\\*}\\}$, then $\\{y_r\\}$ is calculated at those covariates only: in other words we are repredicting at the covariates which gave us the current data.\n", "\n", "Our usual way to sample from the posterior predictive has been to draw one $y$ for each $\\theta$. In this way we are sampling from the joint $(y_r, \\theta )$ distribution. To get us the posterior predictive distribution we have ignored the $\\theta$ samples so as to marginalize and carry out the above integral.\n", "\n", "But this is a place where we will diverge from this prescription. We'll, so-to-speak, sample an entire $\\{y_r\\}$ at each $\\theta$. The idea behind this is that the size of $\\{y_r\\}$ is the size of the dataset, in this case, 66. 66 samples are probably ok for simple expectations, but too less to characterize the posterior predictive. So we'll pick $M$ samples from our trace of $\\theta$, with replacement (perhaps even the whole trace), and get dataset-size (66) samplea for EACH $\\theta$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Informally using a test-statistic\n", "\n", "We might wish to compute a test statistic from the posterior predictive. Say for example, we wish to talk about the minimum value of the posterior predictive.\n", "\n", "The way to do this is to replicate the posterior predictive multiple times. We show that below:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 1000/1000 [00:00<00:00, 2620.39it/s]\n" ] }, { "data": { "text/plain": [ "(1000,)" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ja = pm.sample_ppc(trace, samples=1000, model=light_model)\n", "ja['obsv'].flatten().shape" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "10\n", "20\n", "30\n", "40\n", "50\n", "60\n" ] } ], "source": [ "samps = np.zeros((66, 1000))\n", "for i in range(66):\n", " if i%10 == 0:\n", " print(i)\n", " temp = pm.sample_ppc(trace, samples=1000, model=light_model, progressbar=False)\n", " samps[i,:] = temp['obsv'].flatten()\n" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(66, 1000)" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samps.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can kde the dataset against the kde of the posterior predictives" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets see the minimum value on our actual data" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "-44" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "light_speed.min()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "(1000,)" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samps.min(axis=0).shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And let us then plot the minimum values from our arrays on a histogram against the actual value." ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEECAYAAADK0VhyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAEz9JREFUeJzt3X2QXXV9x/H3mt2mKVkoNXR4EDoEyXcWCrSNjg7qOEOhRDSEEZwRsCCDorYIlYQ2oEI0AwElgIKUCnUQsZVCkaciKOvUIuBUtiMgs3yJQWOVh/oQIYQFssn2j3M2XC73JvfePbk3JO/XTOaQ38PJbzk793N/53ce+iYmJpAkbd9e1+sBSJJ6zzCQJBkGkiTDQJKEYSBJwjCQJAH9rTSKiGnA6cCHgb2AVcAVwJcycyIi5gIPNOi6PDMXlfuYDlwAHAvsANwFnJaZT0z5p5AkTUlLYQB8GlgMLAV+ALwDuBT4A+BzwEHAWuDQun61H/RXAkcCC4HngGXAHRExNzPXd/oDSJKmbrNhUM4KzgA+n5nnlcXDEbELsIgiDA4EfpyZP2iyj32AE4DjMvP6suxBIIEFwE3tDHpkZMQ75SSpA3Pnzu1rVN7KzGBH4Fpe/YGdwC4RsQNFGDy0iX0cUm5v39g5c0VEPALMa7DvzZo7d267XTjxM3fy22df5I92nM5Xz53Xdv9mRkdHARgaGqpsn6qex+m1w2O1ZYyMjDSt22wYZOZq4NQGVfOBX2Tm2og4AHgxIn4E7Af8HFiamV8t284BnsrMtXX7eLyskyT1UKtrBq8QER+iWB84LSJ2B2YB+wJnAaspFomviYiJzLyWYnaxpsGu1gB7djKGyW8O7Vg3Pr5x20n/ZsbGxjoek7rH4/Ta4bHqvrbDICKOp1gMvhG4HPh94HDg4cx8smx2dxkS51KcYuoDmp3n39DuGCRJ1WorDCLiDOAi4Fbg+MycAMaAbzdoficwLyJmAs8Agw3aDJZ1bevkXOJA/ypgPQP9/ZWei/T85muDx+m1w2O1ZWxqzaDlm84i4nxgOfA14JjMfKksnxMRHyvvI6g1gyIo1gIrgF0jYkZdm9kUC9GSpB5qKQwi4nSK9YAvAB/MzPGa6j0obkA7oqZ9H/Be4J5y9jAMTKNYdJ5ssy+wf1knSeqhVu4z2A24EHgY+AbwloiobXIf8H3gyojYGXgSOIXictO3AWTmyoi4AbgqInaiWGReRnE56s2V/TSSpI60smZwODAdOAC4v0H9LhQ3jp0PfBZ4PfA/wGGZWXuC6iTgEopgeR1wN8XjKLz7WJJ6rJX7DK4BrmlhXx/dzH7WUswYTmllYJKk7unoPgNJ6qb5C2+Z8j5uW76ggpFsu3yEtSTJMJAkGQaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiR8NpGkLuj82UKPVToONefMQJJkGEiSDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSbT4prOImAacDnwY2AtYBVwBfCkzJyKiDzgb+AgwC7gX+HhmPlqzj+nABcCxwA7AXcBpmflEdT+OJKkTrc4MPg2cD1wHHAn8G3ApcGZZfw7wKeAi4P3ATsBwROxUs48rgROAxcBJwEHAHWXQSJJ6aLMzg/LD+gzg85l5Xlk8HBG7AIsi4h+BRcCSzPxi2eceitnDycDFEbEPRRAcl5nXl20eBBJYANxU7Y8lSWpHKzODHYFrefUHdgK7AIcAM4FbN1Zkrga+B8wriw4pt7fXtFkBPFLTRpLUI5udGZQf7Kc2qJoP/AJ4Q/n3lXX1j1N86weYAzyVmWsbtJnT8mhrjI6Ott1n3fj4xm0n/ZsZGxvreEzqHo/T9s3jvmkdXU0UER8CDgU+RzFzeDEzX6prtqaso9yuabCr2jaSpB5p6WqiWhFxPMVi8I3A5cBZwEST5hvKbV8LbdoyNDTUdp+B/lXAegb6+zvq38zkN44q96nqeZx66bFeD8DjDoyMjDSta2tmEBFnAF+jOPd/fGZOAM8A0yNioK75YFlHuR1ssMvaNpKkHmk5DCLifGA5RRgcU3NaaAXFN/+967rMplhknmyza0TM2EQbSVKPtBQGEXE6xemgLwAfzMzxmur7gBeAo2ra7wy8Exgui4aBaRSLzpNt9gX2r2kjSeqRVu4z2A24EHgY+AbwloiobfIAcBmwNCI2UJwc/CTwLHA1QGaujIgbgKvKG9FWA8uAh4CbK/tpJEkdaWUB+XBgOnAAcH+D+l0oHkWxgeLms5kUs4UTM7N2PeAk4BKKYHkdcDfF4yjWdzx6SVIlWrnP4Brgmhb2tbj802w/a4FTyj+SpK2ITy2VJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkkQL70CWpG3B/IW3TKn/bcsXVDSSrZMzA0mSYSBJMgwkSRgGkiQMA0kSXk0kaTOmehWOXhucGUiSDANJkmEgScIwkCTRwQJyRBwJfD0zB2vK5gIPNGi+PDMXlW2mAxcAxwI7AHcBp2XmE50MXJJUnbbCICIOBq4D+uqqDgLWAofWldd+0F8JHAksBJ4DlgF3RMTczFzfzjgkSdVqKQzKb/WnA0spPvR/r67JgcCPM/MHTfrvA5wAHJeZ15dlDwIJLABu6mj0kqRKtLpm8C7gLOBM4LIG9QcCD22i/yHl9vbJgsxcATwCzGtxDJKkLaTV00Q/BPbOzN9FxJIG9QcAL0bEj4D9gJ8DSzPzq2X9HOCpzFxb1+/xsq5to6OjbfdZNz6+cdtJ/2bGxsY6HpO6x+OkqdjWf29aCoPM/GWzuojYHZgF7Esxe1hNsUh8TURMZOa1wI7Amgbd1wB7tjtoSVK1qngcxWrgcODhzHyyLLu7DIlzgWspFpwnmvTf0Mk/OjQ01Hafgf5VwHoG+vs76t/M5DeGKvep6nmcOvVYrwewVdgWfm9GRkaa1k05DDJzDPh2g6o7gXkRMRN4Bhhs0GawrJMk9dCUbzqLiDkR8bHyiqNaM4AxiquPVgC7RsSMujazKa4okiT1UBV3IO8BXAEcMVkQEX3Ae4F7MnMCGAamAfNr2uwL7F/WSZJ6qIo1g/8Cvg9cGRE7A08Cp1Bcbvo2gMxcGRE3AFdFxE4U6wzLKC5HvbmCMUiSpmDKM4Py7uEFwDeBz1LcQPbHwGGZWbtacRJwPXAhcDXwIHCEdx9LUu+1PTPIzCXAkrqy3wIf3Uy/tRQzhlPa/TclSVuWTy2VJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJKA/nY7RMSRwNczc7CmrA84G/gIMAu4F/h4Zj5a02Y6cAFwLLADcBdwWmY+MaWfQJI0ZW3NDCLiYOA6oK+u6hzgU8BFwPuBnYDhiNipps2VwAnAYuAk4CDgjoiY1tnQJUlVaWlmUH6rPx1YCqwFfq+mbhBYBCzJzC+WZfcAq4CTgYsjYh+KIDguM68v2zwIJLAAuKmqH0iS1L5WZwbvAs4CzgQuq6t7KzATuHWyIDNXA98D5pVFh5Tb22varAAeqWkjSeqRVtcMfgjsnZm/i4gldXVzyu3KuvLHKb71T7Z5KjPXNmgzhw6Mjo623Wfd+PjGbSf9mxkbG+t4TOoej5OmYlv/vWkpDDLzl5uo3hF4MTNfqitfU9ZNtlnToO8aYM9WxiBJ2nLavpqogT5gokndhjbatGVoaKjtPgP9q4D1DPT3d9S/mclvDFXuU9XzOHXqsV4PYKuwLfzejIyMNK2r4j6DZ4DpETFQVz5Y1k22GeTVattIknqkijBYQfHNf++68tkUVwtNttk1ImZsoo0kqUeqCIP7gBeAoyYLImJn4J3AcFk0DEwD5te02RfYv6aNJKlHprxmkJnPRcRlwNKI2EBxgvGTwLPA1WWblRFxA3BVeSPaamAZ8BBw81THIEmamioWkKF4FMUGipvPZlLMFk7MzNr1gJOAS4ALKWYkd1M8jmJ9RWOQJHWo7TDIzCXAkrqycYrHTCzeRL+1wCnlH0nSVsSnlkqSDANJkmEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRLQ3+sBSNpy5i+8pddD2GZU8f/ytuULKhjJluHMQJJkGEiSDANJEoaBJIkKF5Aj4vXArxtU/XtmHhMRfcDZwEeAWcC9wMcz89GqxiBJ6kyVVxMdVG7/ClhTU/6bcnsOsBj4B+BnwKeA4YjYLzOfqXAckqQ2VRkGBwJPZ+Z36isiYhBYBCzJzC+WZfcAq4CTgYsrHIckqU1VrhkcCDzUpO6twEzg1smCzFwNfA+YV+EYJEkdqHpm8EJE3Af8BcX6wReAi4A5ZZuVdX0eB7beuzAkaTtRSRhExDRgP2AtxemgVcC7gQuAGcA64MXMfKmu6xpgx07+zdHR0bb7rBsf37jtpH8zY2NjHY9J3eNxUq9tzb97Vc4M3gP8PDN/Uv79PyNiJsWC8XnARJN+GyocgySpA5WEQWauB77boOpO4KMUM4bpETGQmetq6geBjq4kGhoaarvPQP8qYD0D/f0d9W9mMu2r3Keqt30ep8d6PQDV6PXv3sjISNO6qk4T7U4xM/hmZv6qpmpGuV0N9AF788rfztlAVjEGaVvkg+bULVVdTTQd+CfgA3XlR1N8+N8EvAAcNVkRETsD7wSGKxqDJKlDVZ0m+mlE/CuwNCI2AKPA+yjC4KjMfC4iLqupfwz4JPAscHUVY5Akda7KBeSTgU8DfwfsRhEIR2fm5L0FZ1MsFi+iuOfgPuBE7z6WpN6rLAwyc4ziA//sJvXjFI+jWFzVvylJqoZPLZUkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkgT093oA0tZq/sJbej0EqWucGUiSDANJUg9OE0XEh4G/B94A/Ag4IzPv7/Y4JKnbqjj1eNvyBRWM5NW6OjOIiBOBK4HrgKOB3wF3RcTe3RyHJOmVuhYGEdEHfAb4cmZ+JjPvAI4Efg18olvjkCS9WjdnBm8E/gS4dbIgM9cB/wHM6+I4JEl1uhkGc8rtT+rKHwf2iYhpXRyLJKlGNxeQdyy3a+rK11CE0g7As63ubHR0tO0BrBsf37jtpH8zY2NjHY9J3eNx0rZgS/3+djMM+srtRJP6De3s7Pnnn297AAuP2m1K/TdnS+xT1Wv1OC057g1beCRS+7bU50w3w+CZcjsIPF1TPgisz8znWt3R3Llz+zbfSpLUqm6uGawot7PrymcDj3VxHJKkOt0Og/8FjposiIgB4N3AcBfHIUmq0zcx0ewUfvUi4m+Ay4FlwL3AqcDbgT/LzMe7NhBJ0it0NQwAImIhcDowi+JxFAt9HIUk9VbXw0CStPXxqaWSJMNAkmQYSJIwDCRJ+A7kykTEucCSzOyrK38HcBFwAPBLYFlmfqUHQ9yuRcTBwHnAnwPPA3cDZ2bm0zVtPFZbAV+A1RvODCoQEX8KnN2gfAi4E/gp8F7gduCfI+KY7o5w+1Yeh2GKhyIeCywC3kbxYqWBmjYeqx7zBVi948xgispHb38F+BWwR131YuBnwLGZOQHcGRGzgHOAG7s5zu3cqcCTwNHlOzSIiBXAfwOHAXfgseq5+hdglWXfAZLiBVin9XB42zxnBlP3CYqH7V3WoO5Q4Pbyw2XSzcABEbF7NwYnAB4Blk8GQSnL7eQ3To9V7/kCrB5yZjAFEfFGim8yhwNvqqvbAdidxi/zgeJlP09s6TEKMvOKBsXzy+2jHqutxmZfgJWZ67s8pu2GYdBAeR55n000eZriXObVwLWZ+f2IeFNdm029zKe2XlPQyrHKzNV1ffakWCh+APgusGtZ5bHqrUpfgKX2GAaN7QFs6nVCnwBeoJjWHtmkTaUv81FTrRyrSyf/UgbBMMWHy/szc6I8Vw0eq17zOPSQYdBAZv6Ml38xX6X8QHkEOAl4PiL6Kddfyv/ewMvfYAbruk/+/Rk0ZZs7VrXKq76+BQwAh2XmyrLKY7V1qOwFWGqfC8id+UuKX9AbgXXln+Vl3TrgnPIX90kav8wHXl7AVBdExFuAe4D1wDsy86HJOo/VVsMXYPWQYdCZ24A31/25uKx7M/Dl8r+Hgfnl5aeTjgJ+nJn/16WxbvfKa9S/BTwFHJyZKxo081j1ni/A6iFPE3UgM38D/Ka2LCLeXtY9UFN8EfBD4IaIuIrimvYPAO/r0lBVuJRicfJvgb0iYq+aulWZ+SQeq54r128uAC6PiNW8/AKsWcAlPR3cdsCZwRaUmQ9SXMI4G/gm8B7gpMz0JqYuKb9ZHgFMA/4FuL/uz/HgsdpalJcBnwn8NcVp2D8EDvdNiFueL7eRJDkzkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJwP8DIjGMbKO3+3gAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(samps.min(axis=0));\n", "plt.axvline(light_speed.min())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Wow, the real dataset is quite an outlier, leading us to conclude that for minima, at-least, our model is totally mis-specified, we should have probably chosen a distribution with fatter tails.\n", "\n", "We can informally ask: in what fraction of our simulations did the light-speed minimum exceed the minimum of the data. Here the answer is all." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(samps.min(axis=0) > light_speed.min())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visual inspection of posterior predictives\n", "\n", "We can visually inspect our posterior predictives:" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(66, 20)" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sampssmall=samps[:, np.random.choice(range(1000), size=20, replace=True)]\n", "sampssmall.shape" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 37.6802972 , 22.31299636, 39.16253202, 43.25152691,\n", " 20.76254594, 38.22581542, 18.44720786, 23.15562763,\n", " 44.38917284, 28.97797684, 30.46288311, 12.05989098,\n", " 27.21649293, 18.22662598, 14.5403759 , 23.17814384,\n", " 9.92038184, 25.4108982 , 39.60363576, 31.91840716,\n", " 17.03471901, 27.70200087, 16.07994995, 34.48808195,\n", " 15.17375972, 40.12504842, 32.07898314, 9.36790312,\n", " 22.07764229, 2.86027405, 33.27882549, 32.16458644,\n", " 33.10121071, 28.78839458, 34.27338805, 14.24132464,\n", " 16.3129266 , 17.04092026, 26.4489131 , 30.44223787,\n", " 24.69083941, 42.06834578, 6.20778662, 16.70614666,\n", " 31.0481992 , 22.40348868, 36.13231221, 41.48931877,\n", " 22.4192824 , 29.09050359, 26.12503031, 8.0536481 ,\n", " 45.7630253 , 49.3982478 , 28.12268516, 35.17145912,\n", " 31.07608769, 13.74024241, 30.88395389, 21.75186392,\n", " 16.92229432, 25.38598798, 2.48906575, 62.4687305 ,\n", " 6.41810951, 13.53916414])" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sampssmall[:,0]" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuYAAAIGCAYAAAAY3UrRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAHV9JREFUeJzt3V+orGe9H/DvOo2EcpIgoRdlKYhN6NNNjaEsb7ywICiNbbbWPy1eFIIXXgTEoge8a0V6iC0ES6AXQtE2GJYXh9Lg3pKdi9NgoLWlDIgUtk9POEqDFktr0iSkBGlXL2atuF2ZNevPvO/Mb+b9fGCzs2fNfudh7e96851nnvd5946OjgIAAGzWH2x6AAAAgGIOAAAlKOYAAFCAYg4AAAUo5gAAUMBdYxx0NpvZ6oW1OTg42NvE68o56yTnTIWsMwVn5XyUYn78gku//tg3buU3r72V+++7O09//ZGxhrEzbt++nSS5du3ahkdSy2w22+jry/mw5Hyx6jlPZP2yZH2x6lmX88uR88WW5dxSFgAAKEAxBwCAAkZbysKWunHj7K9dv76+ccC2WPQz42eFbXfW/wtkm11RNONmzAEAoADFHAAAClDMAQCgAMUcAAAKUMwBAKAAxRwAAApQzAEAoAD7mLNZ9k0HAEhixhwAAEpQzAEAoADFHAAACrDGHAAAko1f+2bGHAAAClDMAQCgAMUcAAAKsMac8S1brwXA9rjK+dw9KeDCzJgDAEABijkAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUoJgDAEAB9jFnGPYqBwBYiRlzAAAoQDEHAIACFHMAAChAMQcAgAIUcwAAKEAxBwCAAhRzAAAowD7mXJy9ygHquso5+vr14cdx2rJxreP1YYuYMQcAgAIUcwAAKEAxBwCAAqwxBwBge+3QNXBmzAEAoADFHAAACrCUhbou8tHU/v7444DLuuzHqraM46J26CN74J3MmAMAQAGKOQAAFKCYAwBAAYo5AAAUoJgDAEABijkAABSgmAMAQAH2Md9my/azXbYvsn1wAQDKUcwBAOA8Z01sDniTOMUcmKbLnmB90gTAyKwxBwCAAhRzAAAoQDEHAIACFHMAACjAxZ8Am7aGK/0BqE8x31V2kADYXus6h/t/BZtw1fuwTIClLAAAUIBiDgAABSjmAABQgDXmAFWdrMPc39/sOABYCzPmAABQgBlzAABqq7yD0IC7zJgxBwCAAhRzAAAowFIWYLdV/vgTAO5gxhwAAApQzAEAoABLWQAAGNw9L7ww/4+XXtrsQDZp0XLKJfemMGMOAAAFmDEHarrsRZuX3CsWAKoxYw4AAAUo5gAAUIBiDgAABSjmAABQgIs/gd3gDp8AbDkz5gAAUIBiDgAABSjmAABQgGIOAAAF7B0dHQ1+0NlsNvxB4QwHBwd7m3hdOWed5JypkHWm4Kycj1LMAQCAy7GUBQAAClDMAQCgAMUcAAAKUMwBAKAAxRwAAApQzAEAoADFHAAAClDMAQCgAMUcAAAKUMwBAKCAu4Y6UGvtRpJHF3zp3t77G8fP+UiSJ5M8lOSXSb7Ze//uUGPYVa21Lyb5WpL3JvlJkq/23n+82VFNk5yPS9brkPXxyHkdcj4eOb+aIWfMH07yVJIPn/r1ZpK01q4luZXk50k+k+Rmku+01j434Bh2TmvtsSTfTvJMks8meTXJ86219290YNMl5yOR9XJkfQRyXo6cj0DOr27v6Oho5YO01t6d5JUkn+i93zrjOU8n+VCSD/Tej44f+16Sh3vvH1x5EDuotbaX+cngud7748ePvStJT3Kz9/7lTY5vauR8PLJei6yPQ85rkfNxyPlqhpoxPwnnT5c852OZ/4Pc+U7g2SQPtdb2BxrHrnkwyfuS/ODkgd77b5P8MMkjmxrUhMn5eGS9Flkfh5zXIufjkPMVDDVj/qXM118dJvnU4eHh/SsfFC7o4OBgbx2vI+ds0rpynvx+1g8PD7+wrteFxDmdaTgr5+de/Hn88cMDS57y68zfdd6d5PUkn07yo4ODg6XHfewbt/Kb197K/ffdnae/7g3UeW7fvp0kuXbt2oZHUstsNhvkOHJeg5wvNlTOkytlPeflPJH1y5L1xZzTd4ucL7Ys5xfZleU9SW4v+fpXknwryfd77y+c94JQlJwzFZfK+mw2sx6UbeSczlY6t5j33n+R5CIfK/1s5dHAhsg5UyHrTIGcs60G2ce8tfb5JL/qvb84xPGYkBs33vnY9evrH8cFyDlXtijniayzXmflcJllGd2yXJ8m5wxi4J+DoXZleTzJU601dxJll8k5UyHrTIGcU85QYXwi8036n2mtfXygY0I1cs5UvJ31TQ8ERuScTjmDFPPe+/NJPpn53pXPDnFMqEbOmYpTWYed5JxORYOsMU+S3vvNzG9Vm9lstvrm6FCQnDMVJ1mXc3aZczrVWFcFAAAFKOYAAFDAYEtZAABgaxTc8lMxBwAWu8re58CVKeZc3BbdDAg24rIlZtnz/WwBTI415gAAUIBiDgAABSjmAABQgGIOAAAFKOYAAFCAYg4AAAUo5gAAUIBiDgAABbjBEKtx0yEqKXh7ZQC4KDPmAABQgGIOAAAFKOYAAFCANeYAAOyus64/KsiMOQAAFKCYAwBAAYo5AAAUYI059VxmLdj+/njjgEW2aK0iANvFjDkAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUYFcWANgldg6CrWXGHAAAClDMAQCgAEtZWGyMj0J9vEpFZ+Xy+vX1juO0O8flRloAk2DGHAAAClDMAQCgAMUcAAAKsMYcABjOVa8n2vR1HVCAGXMAAChAMQcAgAIUcwAAKMAacwAAtkv1e6MsG9+Se1Mo5lOyKCQutmEKqp/AASCWsgAAQAmKOQAAFKCYAwBAAYo5AAAUoJgDAEABdmUBAKCmie2qZcYcAAAKMGO+qy76DnOMd6ITe3cLADAEM+YAAFCAYg4AAAVYygIAm3TW8r/r19c7jk27cSPZ39/0KGCjzJgDAEABijkAABSgmAMAQAGKOQAAFKCYAwBAAXZlAVjEjbIAWDMz5gAAUIBiDgAABVjKAgDA+lS/qdYGlzKaMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIAC7MoCDGvIq+3d5AeACVHMAaAib0xhchRzAABWs+iN5IMPrn6MibHGHAAAClDMAQCgAMUcAAAKUMwBAKAAxRwAAApQzAEAoIC9o6OjwQ86m82GPyic4eDgYG8TryvnrJOcMxWyzhSclfNRijkAAHA5lrIAAEABijkAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUoJgDAEABijkAABSgmAMAQAGKOQAAFHDXUAdqrd1I8uiCL93be3/j+DkfSfJkkoeS/DLJN3vv3x1qDLuqtfbFJF9L8t4kP0ny1d77jzc7qmmS83HJeh2yPh45r0POxyPnVzPkjPnDSZ5K8uFTv95MktbatSS3kvw8yWeS3Ezyndba5wYcw85prT2W5NtJnkny2SSvJnm+tfb+jQ5suuR8JLJejqyPQM7LkfMRyPnV7R0dHa18kNbau5O8kuQTvfdbZzzn6SQfSvKB3vvR8WPfS/Jw7/2DKw9iB7XW9jI/GTzXe3/8+LF3JelJbvbev7zJ8U2NnI9H1muR9XHIeS1yPg45X81QM+Yn4fzpkud8LPN/kDvfCTyb5KHW2v5A49g1DyZ5X5IfnDzQe/9tkh8meWRTg5owOR+PrNci6+OQ81rkfBxyvoKhZsy/lPn6q8Mknzo8PLx/5YPCBR0cHOyt43XknE1aV86T38/64eHhF9b1upA4pzMNZ+X83Is/jz9+eGDJU36d+bvOu5O8nuTTSX50cHCw9LiPfeNWfvPaW7n/vrvz9Ne9gTrP7du3kyTXrl3b8Ehqmc1mgxxHzmuQ88WGynlypaznvJwnsn5Zsr6Yc/pukfPFluX8IruyvCfJ7SVf/0qSbyX5fu/9hfNeEIqSc6biUlmfzWbWg7KNnNPZSucW8977L5Jc5GOln608GtgQOWcqZJ0pkHO21SD7mLfWPp/kV733F4c4Hmt048bZX7t+fX3j2AJyzpUs+hkr/rMl6ztq2fl+KMWzfSc5ZyVX/Xk652dkqF1ZHk/yVGvNnUTZZXLOVMg6UyDnlDNUGJ/IfJP+Z1prHx/omFCNnDMVb2d90wOBETmnU84gxbz3/nyST2a+d+WzQxwTqpFzpuJU1mEnOadT0SBrzJOk934z81vVZjabrb45OhQk50zFSdblnF3mnE411lUBAEABijkAABQw2FIWAIClzttibn9/PeOAohRzAACmqdj9XBRzgBNbeDMgAHaHNeYAAFCAYg4AAAUo5gAAUIBiDgAABbj4k+EVu8IZAGAbmDEHAIACFHMAAChAMQcAgAKsMQdYxk2HAFgTM+YAAFCAYg4AAAUo5gAAUIBiDgAABSjmAABQgF1ZAACobwJ3FjdjDgAABZgxB6Zp2czLmH8XAM5gxhwAAApQzAEAoABLWdgOZy0d2N9f7zgAAEZixhwAAApQzAEAoABLWQAA2F1btJOWGXMAAChAMQcAgAIsZQF2yxZ9ZPl7Fo17R24xDcDFKOacbVsLDsDUVDlfVxkHbClLWQAAoADFHAAACrCUBQCA7bYjy6jMmAMAQAGKOQAAFKCYAwBAAYo5AAAUoJgDAEABijkAABSgmAMAQAH2MQcAgNM2sDe6GXMAAChAMQcAgAIsZWG9duSWuQAAQzNjDgAABZgxB1g3nxwBsIAZcwAAKEAxBwCAAhRzAABYh3OWMirmAABQgGIOAAAFKOYAAFCAYg4AAAUo5gAAUIAbDAFUdXL1/v7+ZscBwFqYMQcAgALMmAMAcDnn7Med69fHOe6OU8wrWRLGe15+ef4fL730zi8uC//EAw6wFZyrgVjKAgAAJSjmAABQgGIOAAAFKOYAAFCAYg4AAAXYlQWoz44VAEyAGXMAACjAjPkuMJsIsDlj3WgFmBwz5gAAUIBiDgAABSjmAABQgGIOAAAFKOYAAFCAYg4AAAXsHR0dDX7Q2Ww2/EHhDAcHB3ubeF05Z53knKmQdabgrJyPUswBAIDLsZQFAAAKUMwBAKAAxRwAAApQzAEAoADFHAAAClDMAQCgAMUcAAAKUMwBAKAAxRwAAApQzAEAoIC7hjpQa+1GkkcXfOne3vsbx8/5SJInkzyU5JdJvtl7/+5QY9hVrbUvJvlakvcm+UmSr/bef7zZUU2TnI9L1uuQ9fHIeR1yPh45v5ohZ8wfTvJUkg+f+vVmkrTWriW5leTnST6T5GaS77TWPjfgGHZOa+2xJN9O8kySzyZ5NcnzrbX3b3Rg0yXnI5H1cmR9BHJejpyPQM6vbu/o6Gjlg7TW3p3klSSf6L3fOuM5Tyf5UJIP9N6Pjh/7XpKHe+8fXHkQO6i1tpf5yeC53vvjx4+9K0lPcrP3/uVNjm9q5Hw8sl6LrI9DzmuR83HI+WqGmjE/CedPlzznY5n/g9z5TuDZJA+11vYHGseueTDJ+5L84OSB3vtvk/wwySObGtSEyfl4ZL0WWR+HnNci5+OQ8xUMNWP+pczXXx0m+dTh4eH9Kx8ULujg4GBvHa8j52zSunKe/H7WDw8Pv7Cu14XEOZ1pOCvn5178efzxwwNLnvLrzN913p3k9SSfTvKjg4ODpcd97Bu38pvX3sr9992dp7/uDdR5bt++nSS5du3ahkdSy2w2G+Q4cl6DnC82VM6TK2U95+U8kfXLkvXFnNN3i5wvtiznF9mV5T1Jbi/5+leSfCvJ93vvL5z3glCUnDMVl8r6bDazHpRt5JzOVjq3mPfef5HkIh8r/Wzl0cCGyDlTIetMgZyzrQbZx7y19vkkv+q9vzjE8dgSN26887Hr19c/jjWRc8616GfixBb9bMj6BF30fL4s4xf5+4XIOaNY8f8DQ+3K8niSp1pr7iTKLpNzpkLWmQI5p5yhwvhE5pv0P9Na+/hAx4Rq5JypeDvrmx4IjMg5nXIGKea99+eTfDLzvSufHeKYUI2cMxWnsg47yTmdigZZY54kvfebmd+qNrPZbPXN0aEgOWcqTrIu5+wy53Sqsa4KAAAKUMwBAKCAwZayALDEjmylCLCVzjoHFzv/mjEHAIACFHMAACjAUhYA4J0uc5dPYBBmzAEAoADFHAAACrCUBeAyfLwPwEgUcwAApumqky0jbbNoKQsAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUYFcWAGB4F93tYqTdLWAbmTEHAIACFHMAAChAMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIACFHMAAChAMQcAgALc+RMAtt1F77KZuNMmFGbGHAAAClDMAQCgAEtZAE67zLIAABiIGXMAAChAMQcAgAIsZdllZ30cP+YV+eteArC/v97XAwAYiRlzAAAoQDEHAIACFHMAAChAMQcAgAIUcwAAKEAxBwCAAmyXyO9sYntFAIAh7MBdm82YAwBAAYo5AAAUYCkLME078JEnALvFjDkAABSgmAMAQAGWsgBAVYuWXNkpC3aWYj5Fl11bay0uAMBqTvrU/v6ZT7GUBQAACjBjDuyubfm057xxLpldAWB3mDEHAIACFHMAAChAMQcAgAIUcwAAKMDFnwAA1HLWRfFV9vEfaXMBM+YAAFCAGXNgu23LlogwlFUzX+1n5s7x2BqUiTNjDgAABSjmAABQgGIOAAAFKOYAAFCAiz8BADjfsguHr7KN4VUuRK528fLAzJgDAEABijkAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUYLvELXLPCy8kL730zi9cZYsiAIChLNjG8J6XX84bH/3oBgazvRRzYFhD73MLABNhKQsAABSgmAMAQAGKOQAAFKCYAwBAAYo5AAAUoJgDAEABe0dHR4MfdDabDX9QOMPBwcHeJl5XzlknOWcqZJ0pOCvnoxRzAADgcixlAQCAAhRzAAAoQDEHAIACFHMAAChAMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIACFHMAACjgrqEO1Fq7keTRBV+6t/f+xvFzPpLkySQPJfllkm/23r871Bh2VWvti0m+luS9SX6S5Ku99x9vdlTTJOfjkvU6ZH08cl6HnI9Hzq9myBnzh5M8leTDp369mSSttWtJbiX5eZLPJLmZ5Duttc8NOIad01p7LMm3kzyT5LNJXk3yfGvt/Rsd2HTJ+UhkvRxZH4GclyPnI5Dzq9s7Ojpa+SCttXcneSXJJ3rvt854ztNJPpTkA733o+PHvpfk4d77B1cexA5qre1lfjJ4rvf++PFj70rSk9zsvX95k+ObGjkfj6zXIuvjkPNa5Hwccr6aoWbMT8L50yXP+Vjm/yB3vhN4NslDrbX9gcaxax5M8r4kPzh5oPf+2yQ/TPLIpgY1YXI+HlmvRdbHIee1yPk45HwFQ82Yfynz9VeHST51eHh4/8oHhQs6ODjYW8fryDmbtK6cJ7+f9cPDwy+s63UhcU5nGs7K+bkXfx5//PDAkqf8OvN3nXcneT3Jp5P86ODgYOlxH/vGrfzmtbdy/3135+mvewN1ntu3bydJrl27tuGR1DKbzQY5jpzXIOeLDZXz5EpZz3k5T2T9smR9Mef03SLniy3L+UV2ZXlPkttLvv6VJN9K8v3e+wvnvSAUJedMxaWyPpvNrAdlGzmns5XOLea9918kucjHSj9beTSwIXLOVMg6UyDnbKtB9jFvrX0+ya967y8OcTwm4MaNdz52/fr6x3EJcs5Ci7K8TPGcJ7I+eZfN9GlbkPFEzidhWZaX5fSqf28AQ+3K8niSp1pr7iTKLpNzpkLWmQI5p5yhwvhE5pv0P9Na+/hAx4Rq5JypeDvrmx4IjMg5nXIGKea99+eTfDLzvSufHeKYUI2cMxWnsg47yTmdigZZY54kvfebmd+qNrPZbPXN0aEgOWcqTrIu5+wy53Sqsa4KAAAKUMwBAKAAxRwAAAoYbI05AADstJH3OFfMWc1FbkSxJTebAGAAW3gDOajCUhYAAChAMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIACbJcITNdltnW7yNagAGyHoud0M+YAAFCAYg4AAAUo5gAAUIBiDgAABSjmAABQgGIOAAAFKOYAAFCAfcwB7lR0b1sAFtixc7YZcwAAKMCMOYtt4h3oZe7CCMDqdmy2EbadGXMAAChAMQcAgAIUcwAAKEAxBwCAAlz8CbBOZ11s50JngN12cv7f3z/zKWbMAQCgAMUcAAAKUMwBAKAAa8wBYJdUvGmQayvgQsyYAwBAAYo5AAAUoJgDAEAB1pgDVLBoDa71twCTYsYcAAAKUMwBAKAAxRwAAApQzAEAoAAXf1LzZhQAABNjxhwAAApQzAEAoABLWQAAqGtbltwOME4z5gAAUIBiDgAABSjmAABQgGIOAAAFuPiT2k5fSHH9+mbGAcDwTp/j9/c3Mw4owow5AAAUoJgDAEABlrIAVHXyMb+P9wEmwYw5AAAUoJgDAEABijkAABSgmAMAQAGKOQAAFGBXFsZ3+gYSQx7LbhXAFCw6j7rhGuwcM+YAAFCAGXNgvcac+Rvy0xkAhrPs/OzTn7eZMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIACFHMAACjAdokAMLZTW8Xd8/LLeeOjH93QYICqFHNg845Lyz0vvzz/80svzX8/a29b+5UDbMYY+5E7p7/NUhYAAChAMQcAgAIUcwAAKEAxBwCAAhRzAAAoQDEHAIACFHMAAChg7+joaPCDzmaz4Q8KZzg4ONjbxOvKOesk50yFrDMFZ+V8lGIOAABcjqUsAABQgGIOAAAFKOYAAFCAYg4AAAUo5gAAUIBiDgAABSjmAABQgGIOAAAFKOYAAFCAYg4AAAXcNdSBWms3kjy64Ev39t7fOH7OR5I8meShJL9M8s3e+3eHGsOuaq19McnXkrw3yU+SfLX3/uPNjmqa5Hxcsl6HrI9HzuuQ8/HI+dUMOWP+cJKnknz41K83k6S1di3JrSQ/T/KZJDeTfKe19rkBx7BzWmuPJfl2kmeSfDbJq0meb629f6MDmy45H4mslyPrI5DzcuR8BHJ+dXtHR0crH6S19u4kryT5RO/91hnPeTrJh5J8oPd+dPzY95I83Hv/4MqD2EGttb3MTwbP9d4fP37sXUl6kpu99y9vcnxTI+fjkfVaZH0ccl6LnI9Dzlcz1Iz5STh/uuQ5H8v8H+TOdwLPJnmotbY/0Dh2zYNJ3pfkBycP9N5/m+SHSR7Z1KAmTM7HI+u1yPo45LwWOR+HnK9gyGL+VpI/bq39r9bam621P2mt/eUkaa39YZL9JC+d+nt/fvz7Xx1oHLvm5Puy6Pv2QGvtL6x5PFMn5+OR9VpkfRxyXoucj0POV3DuxZ/HHz88sOQpv8483HcneT3Jp5P8lSR/nOTftdb+RpL7jp/7+qm/e/Ln+8Iiy75vf5DkD5O8ttYR7Sg53zhZXxNZ3yg5XxM53yg5X8FFdmV5T5LbS77+lSTfSvL93vsLx4+92Fq7neQ/Jvn7Sf70+PGzFrT/vwuMY4r2jn/3fRufnG+WrK+PrG+OnK+PnG+OnK/g3GLee/9FfvdNXuZnp/7ef2qtvZr5Fc//9vjhe0/9nZM//+8LHH+KTr4v92b+7j53/Pn/nmzlxOrkfONkfU1kfaPkfE3kfKPkfAWDrDFvrX2+tfY3Tz22l/lHRP/z+B/hv2f+MdGdTv7chxjHDvqz498Xfd/+65rHMnlyPipZL0TWRyPnhcj5aOR8BUNd/Pl4kqdaa3ce728n+YtJXjz+858muX5q0f/fTfJfeu//Y6Bx7Jo/S/Jy5t+nJG+vm/s7+d1HbKyPnI9H1muR9XHIeS1yPg45X8FQd/58IslzSZ5prf2rzK/I/SdJ/k3v/T8cP+fJJP85yZ+01v5lko8n+QdJ/t5AY9g5vfej1to/TfIvWmuvJPn3Sb6U5C8l+ecbHdw0yflIZL0cWR+BnJcj5yOQ89UMcoOhJGmtPZrkHyf565mvLzpM8o967//njuf8rST/LMlfS/LfkjzRe//Xgwxgh7XW/ijJP8w81D9J8kdua7sZcj4uWa9D1scj53XI+Xjk/GoGK+YAAMDVDbXGHAAAWIFiDgAABSjmAABQgGIOAAAFKOYAAFCAYg4AAAUo5gAAUIBiDgAABfx/j2VKv0RfEs8AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "with sns.plotting_context('poster'):\n", " fig, axes = plt.subplots(nrows=5, ncols=4)\n", "\n", " for ax, s in zip(axes.ravel(), range(20)):\n", " sdata = sampssmall[:,s]\n", " ax.hist(sdata, bins=15, histtype='stepfilled', color='r', alpha=.3, ec='none')\n", " ax.set_yticks([]);\n", " ax.set_xlim([-50, 40])\n", " ax.axvline(light_speed.min())\n", " #ax.set_xticks([]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And compare their shape against our actual distribution:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAECCAYAAADw0Rw8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAEpFJREFUeJzt3X+MZWV9x/H3CLjdugsh7jYFkQZUvh1ToHY1GNSYCBTELlDBBIopGEBMC2xdlsoPgdUN+APW8kukFglFbI2lWMAqVdfUImgr01jADN9FUayKVOkW+XH5udM/zhm5XmZn7o8zc2eeeb+Syew8z7nnPPudO5955rnnnjMyMTGBJKlcLxr2ACRJs8ugl6TCGfSSVDiDXpIKZ9BLUuEMekkq3PbDHkCnsbExz/eUpD6sWrVqZKr2eRf0AKtWrZrT442PjwMwOjo6p8ddKKzPzKzR9KzPzAat0djY2Db7XLqRpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCzct3xkrS6tNvanR/t2w8vNH9LSTO6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSpcV9ejj4jtgDXAScDuwAPAlcDHM3MiIlYBd07x0I2Zua6pwUqSetftjUfOBc4ENgDfAt4EXAL8JvBRYF/gceDAjsf9tJlhSpL6NWPQ17P5tcBFmXlB3bwpIlYC66iCfh/gnsz81qyNVJLUl27W6HcErgNu7GhPYGVEvIQq6O9qeGySpAbMOKPPzC3AKVN0rQZ+nJmPR8TewFMR8R3g1cCPgA2Z+beNjlaS1LO+bg4eESdSrcefFhG7AiuAVwFnAVuAY4BrI2IiM6/rdf/j4+P9DKtvrVZrKMddKKzPzKzR9OZDfeb792Y2a9Rz0EfEscBVwA3AFcBvAAcDd2fmg/VmX61/AZxPtewjSRqSnoI+ItYCFwM3A8dm5gTQAr48xea3AodExLLMfKyX44yOjvay+cAmf4PO9XEXCuszM2s0vf7qs7nRMcz3782gz6GxsbFt9nUd9BFxIdXSzHXACZn5bN2+F3AAcE1mPtX2kKVUvwQe72PMkqSGdPXO2IhYQxXylwLHT4Z87WVUb546tG37EeDtwG31rF+SNCTdnEe/C/AR4G7gs8B+EdG+yR3AN4CrImJn4EHg3VSnXL6h6QFLknrTzdLNwcASYG/gm1P0rwQOBy4EPgi8FPhP4KDM3PaikSRpTnRzHv21wLVd7Os9gw5GktQ8r14pSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkq3PbdbBQR2wFrgJOA3YEHgCuBj2fmRESMAGcDJwMrgNuBUzPz3lkZtSSpa93O6M8FLgSuBw4DPgdcApxR958HvB+4GDga2AnYFBE7NTpaSVLPZpzR17P5tcBFmXlB3bwpIlYC6yLiE8A6YH1mXlY/5jaqWf8JwMdmZeSSpK50M6PfEbgOuLGjPYGVwFuAZcDNv+rI3AJ8HTikmWFKkvo144y+Du1TpuhaDfwY2K3++vsd/fcDhw80OknSwLp6MbZTRJwIHAicRjXjfyozn+7Y7NG6r2fj4+P9PKxvrVZrKMddKKzPzKzR9OZDfeb792Y2a9Tz6ZURcSxwFXADcAUwAkxsY/Ot/Q9NktSEnmb0EbGW6syam4Fj61MrHwGWRMQOmflM2+bLgUf6GdTo6Gg/D+vb5G/QuT7uQmF9ZmaNptdffTY3Oob5/r0Z9Dk0Nja2zb6uZ/QRcSGwEfg0cFTbUs19VLP6PToesifVC7aSpCHqKugjYg1wFnApcHxmPtvWfQfwJHBE2/Y7A28GNjU3VElSP7o5j34X4CPA3cBngf0ion2TO4HLgQ0RsZXq761zgF8CVzc9YElSb7pZoz8YWALsDXxziv6VVJc/2Er1xqllVLP84zKzrzV6SVJzujmP/lrg2i72dWb9IUmaR7x6pSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhevrMsWStNCsPv2mRvd3y8aFc7sNZ/SSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpML1fOORiDgM+ExmLm9rWwXcOcXmGzNz3QDjkyQNqKegj4j9geuBkY6ufYHHgQM72n/a/9AkSU3oKugjYgmwBthAFegv7thkH+CezPxWs8OTJA2q2zX6twJnAWcAl0/Rvw9wV1ODkiQ1p9ug/zawR2ZeBkxM0b838PKI+E5EPB0R34uI4xobpSSpb10t3WTmT7bVFxG7AiuAV1HN+rcAxwDXRsREZl7X66DGx8d7fchAWq3WUI67UFifmVmj6ZVYn6b/L7NZo57PupnCFuBg4O7MfLBu+2r9C+B8oOeglyQ1Z+Cgz8wW8OUpum4FDomIZZn5WC/7HB0dHXRYPZn8DTrXx10orM/MrNH0+qvP5tkZTEOa/l4P+hwaGxvbZt/AQR8RewEHANdk5lNtXUuBFtVZOpKkIWninbEvA64EDp1siIgR4O3AbZk51Yu3kqQ50sQa/b8B3wCuioidgQeBd1OdcvmGBvYvSRrAwDP6zHwOOBz4PPBB4Ebgt4CDMnPbi0aSpDnR84w+M9cD6zva/hd4TzNDkiQ1yatXSlLhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCrd9rw+IiMOAz2Tm8ra2EeBs4GRgBXA7cGpm3tvUQCVJ/elpRh8R+wPXAyMdXecB7wcuBo4GdgI2RcROTQxSktS/rmb0EbEEWANsAB4HXtzWtxxYB6zPzMvqttuAB4ATgI81PGZJUg+6ndG/FTgLOAO4vKPv9cAy4ObJhszcAnwdOKSBMUqSBtBt0H8b2KOesU909O1Vf/5+R/v9bX2SpCHpaukmM38yTfeOwFOZ+XRH+6N1X8/Gx8f7eVjfWq3WUI67UFifmVmj6ZVYn6b/L7NZoyZOrxzhhbP8SVsb2L8kaQA9n145hUeAJRGxQ2Y+09a+vO7r2ejoaAPD6t7kb9C5Pu5CYX1mZo2m1199Ns/OYBrS9Pd60OfQ2NjYNvuamNHfRzWr36OjfU8gG9i/JGkATQT9HcCTwBGTDRGxM/BmYFMD+5ckDWDgpZvMfCwiLgc2RMRWqr+3zgF+CVw96P4lSYNpYo0eqssfbKV649Qyqln+cZnZ1xq9JKk5PQd9Zq4H1ne0PQucWX9IkuaRpmb0kha51aff1MVW8/tMmlJ5mWJJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDgvUyxJfejussy9+eiJezW+T3BGL0nFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSpcY2+YioiXAr+YousfM/Oopo4jSepNk++M3bf+/IfAo23tDzd4DElSj5oM+n2AhzLzKw3uU5I0oCbX6PcB7mpwf5KkBjQ9o38yIu4A/oBqvf5S4OLMnGjwOJKkHjQS9BGxHfBq4HFgHfAA8Dbgw8BS4IO97G98fLyJYXWt1WoN5bgLhfWZmTVSE1qt1qw8h5qc0f8R8KPM/F799b9GxDLgfRHx0cx8ssFjSZK61EjQZ+ZzwNem6LoVeA/wSuCebvc3OjraxLC6NvkbdK6Pu1BYn5lZI4DNwx7Agrd06dK+n0NjY2Pb7Gtq6WZXqhn95zPz521dS+vPU51fL0maA02ddbME+GvgnR3tRwKbM/NnDR1HktSjppZufhARfw9siIitwDjwDqqgP6KJY0iS+tPki7EnAOcCfwHsQhX2R2bmzQ0eQ5LUo8aCPjNbwNn1hyRpnvDqlZJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBWuyRuPSFogVp9+07CHoDnkjF6SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVrqjTKwc/ZWzzC1pu2Xj4gPvUfNfsqYbVc8jnjeYTZ/SSVLhGZ/QRcRLwl8BuwHeAtZn5zSaPIUnqTWMz+og4DrgKuB44Evg/4F8iYo+mjiFJ6l0jQR8RI8AHgE9m5gcy84vAYcAvgPc2cQxJUn+amtG/Evgd4ObJhsx8Bvhn4JCGjiFJ6kNTQb9X/fl7He33A6+IiO0aOo4kqUdNvRi7Y/350Y72R6l+mbwE+GW3OxsfH29oWIObT2MZllarBViLXlgr9aPVas3Kc6epoB+pP09so39rLzt74okn+hrE+j/Zra/HTaffsZSo1FosxufNbPyfNbiJiYlZee40FfSP1J+XAw+1tS8HnsvMx7rd0apVq0Zm3kqS1K2m1ujvqz/v2dG+J1O93VSSNGeaDPr/Bo6YbIiIHYC3AZsaOoYkqQ8jExPbWlbvTUT8GXAF8CHgduAU4I3A72fm/Y0cRJLUs8aCHiAiTgfWACuoLoFwupdAkKThajToJUnzj1evlKTCGfSSVDiDXpIKZ9BLUuGKupXgICLifGB9Zo50tL8JuBjYG/gJ8KHMvGYIQxyKiNgfuAB4DfAE8FXgjMx8qG2bxV4jb7hTqy9guAY4CdgdeAC4Evh4Zk7UlzQ/GziZ6uy824FTM/PeIQ15aCJiCdXz5d8z8/i6bVbq44weiIjfoypuZ/socCvwA+DtwBeAT0XEUXM7wuGo//+bqC5OdwywDngD1Q1ldmjbZjHXyBvu/LpzgQup6nEY8DngEuCMuv884P1UE4OjgZ2ATRGx09wPdejOB363o21W6rPoZ/T1DOQa4OfAyzq6zwR+CByTmRPArRGxguqbccNcjnNITgEeBI6s7y9ARNwH/AdwEPBFFnGNOm+4U7d9BUiqG+6cNsThzbn6Z2ktcFFmXlA3b4qIlcC6iPgE1WRhfWZeVj/mNqpZ/wnAx4Yw7KGIiNdQPT9+0da2nFmqjzP66gdyOXD5FH0HAl+oA2zSPwF7R8SuczG4IfsusHEy5GtZf56csS7mGnnDnV+3I3AdcGNHewIrgbcAy/j1em0Bvs4iqldEbE81ubyIaqlz0uuZpfos6hl9RLySakZ2MPDajr6XALsy9c1UoLrZyk9ne4zDlJlXTtG8uv58rzWa+YY7mfncHI9paOpQOmWKrtXAj6lewwD4fkf//cDhszi0+eZ9wIupLhfzx23tk8+nxutTZNDX68evmGaTh6jWUq8GrsvMb0TEazu2me5mKu39C1I3Nap/cNsf83KqtcM7ga8Bv113FVmjLjR6w50SRcSJVH/1nUZVr6cy8+mOzR6l/OcK8KvXtM4BDsjMpyOivXvW6lNk0FOttU93m5b3Ak9S/el92Da2afRmKvNQNzW6ZPKLOuQ3UQXY0W1nUEC5NZrJYv//TysijqV6ofoGqgsensUirlVEvIhqcvmpbZyVNcIs1afIoM/MH/L8D+EL1KH1XeBdwBP1mtmL6r7tqYo6ORNb3vHwya8fYQGbqUbt6rOSvgTsAByUmZN/WhZdoy40dsOd0kTEWqq//m4Gjq0nBo8ASyJih47XfZZT/nMF4FSqU07fVufMpJH661mrz2J9MfYAquLdADxTf2ys+54Bzqt/SB9k6pupwPMvShYtIvYDbgOeA96UmXdN9lkjb7gzlYi4kOrn6dPAUW1LEfdRTS46Tz3dk/KfK1Ctx+8GbOH53NkX+NO2r2elPos16G8BXtfxMXnq0uuAT9b/3gSsrk8bm3QEcE9m/s8cjXVo6nPBvwT8DNg/M++bYrPFXCNvuNMhItZQLdFcChyfmc+2dd9BtWTaXq+dgTezOOp1Mi/Mnc1U7z15HfBZZqk+RS7dzCQzHwYebm+LiDfWfXe2NV8MfBv4h4j4G6pzx98JvGOOhjpsl1C9CPTnwO4RsXtb3wOZ+SCLuEb1csSHgSsiYgvP33BnBfBXQx3cEETELsBHgLupQmu/jhcb76Q6jXlDRGylCrlzqJYAr57b0c69zHzBrDwiWsDDk7kTEbNSn0UZ9N3KzP+KiNVUT97PAz8C3pWZRb8RCH41Mz0U2A74uyk2OQO4eDHXCKpTUCNiKdXb/t9L9Zb2gxfpXdUOBpZQXQpjqhcbV1K9A30r1RuDllHN8o/LzMWwRt+NWamPNx6RpMIt1jV6SVo0DHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4f4f3Udz+pLsPC4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(light_speed, bins=15);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All the posterior predictive histograms look different from the above histogram of actual data. This definitely looks like a mis-specified model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Discrepancy p-values\n", "\n", "As Gelman says:\n", "\n", ">A test quantity, or discrepancy measure, T(\\{y\\},θ), is a scalar\n", "summary of parameters and data that is used as a standard when comparing data to\n", "predictive simulations. Test quantities play the role in Bayesian model checking that test\n", "statistics play in classical testing. We use the notation T(\\{y\\}) for a test statistic, which is a\n", "test quantity that depends only on data; in the Bayesian context, we can generalize test\n", "statistics to allow dependence on the model parameters under their posterior distribution.\n", "This can be useful in directly summarizing discrepancies between model and data. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Classical p-values. \n", "\n", "The classical p-value for the test statistic $T(\\{y\\})$ is given by\n", "\n", "$$p_C = P(T(\\{y_r\\}) \\ge T(\\{y\\}) \\vert \\theta)$$\n", "\n", " where the probability is taken over the distribution of $\\{y_r\\}$ with $\\theta$ fixed. In other words, we perform the bootstrap and calculate the value of the test statistic in each replicate. Then we see in what fraction of the replicates is the test-statistic greater than that from the data set. \n", " \n", "Remember that in frequentist statistics the point value of $\\theta$ is fixed.\n", "\n", "### Posterior predictive p-values. \n", "\n", "We are bayesians now, so we dont just deal in point estimates, As with everything else, we simply compute averages.\n", "\n", "But these averages are slightly different. Upto now we have been computing averages over the posterior distribution. Now our average will be over the joint distribution of the replicant posterior predictive and posterior.\n", "\n", "Quoting Gelman:\n", ">The Bayesian p-value is defined as the probability that the replicated data could be more extreme than the observed data, as measured by the test quantity:\n", "\n", "$$p_B = Pr(T(\\{y_{r}\\},\\theta) \\ge T(\\{y\\},\\theta) \\vert \\{y\\}),$$\n", "\n", ">where the probability is taken over the posterior distribution of $\\theta$ and the posterior predictive\n", "distribution of $\\{y_r\\}$ (that is, the joint distribution, $p(\\theta,\\{y_r\\} \\vert \\{y\\}))$. Thus:\n", "\n", "$$p_B = \\int d\\theta\\,d\\{y_r\\} \\, I(T(\\{y_{r}\\},\\theta) \\ge T(\\{y\\},\\theta)) \\, p(\\{y_r\\} \\vert \\theta) p(\\theta \\vert \\{y\\})$$\n", "\n", ">where I is the indicator function. In this formula, we have used the property of the predictive distribution that $p(\\{y_r\\} \\vert \\theta, \\{y\\}) = p(\\{y_r\\} \\vert \\theta)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Well, these integrals may seem complex, but sampling comes to our rescue. We know how to sample from posteriors and posterior predictives, and our technique indeed directly gives us their joint which we then \"maginalize-by-ignoring\". So we just draw our samples as always, and using the usual Monte-Carlo idea, its the fraction of the samples where the indicator function is 1 that gives us our p-value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The p-values correspond to tail-probability, the probabulity that the statistic is more extreme in the posterior predictive distribution than in the data. If the value of this statistic, also called the discrepancy is close to (0) 1, then you are saying that the posterior-predictive is always (less) more extreme. This is what happened with the minima. you could think of the \"data-arrived\" statistic as a sort of null value, with calues close to 0 or 1 as some sort of rejection criterion. But dont just go all nonsensical at 0.05 :-)\n", "\n", "Gelman:\n", ">A model is suspect if a discrepancy is of practical importance and its observed value has a tail-area probability near 0 or 1, indicating that the observed pattern would be unlikely to be seen in replications of the data if the model were true. An extreme p-value implies that the model cannot be expected to capture this aspect of the data. A p-value is a posterior prob- ability and can therefore be interpreted directly—although not as Pr(model is true \\vert data). Major failures of the model, typically corresponding to extreme tail-area probabilities (less than 0.01 or more than 0.99), can be addressed by expanding the model appropriately. Lesser failures might also suggest model improvements or might be ignored in the short term if the failure appears not to affect the main inferences. In some cases, even extreme p-values may be ignored if the misfit of the model is substantively small compared to varia- tion within the model.\n", "\n", ">Finding an extreme p-value and thus ‘rejecting’ a model is never the end of an analysis; the departures of the test quantity in question from its posterior predictive distribution will often suggest improvements of the model or places to check the data, as in the speed of light example. Moreover, even when the current model seems appropriate for drawing inferences (in that no unusual deviations between the model and the data are found), the next scientific step will often be a more rigorous experiment incorporating additional factors, thereby providing better data. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Simulated Sample Variance\n", "\n", "As Gelman says:\n", "\n", ">The sample variance does not make a good test statistic because it is a sufficient statistic of the model and thus, in the absence of an informative prior distribution, the posterior distribution will automatically be centered near the observed value. We are not at all surprised to find an estimated p-value close to 1/2 ." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is one way to carry this out, by hand." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [], "source": [ "indices=np.random.choice(range(len(trace)), size=200, replace=True)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mus = trace['mu'][indices]\n", "sigmas = trace['sigma'][indices]" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ppc2=np.empty((66,200))\n", "for i in range(66):\n", " ppc2[i,:] = np.random.normal(loc=mus, scale=sigmas)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(66, 200)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ppc2.shape" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(200,)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ppvars2=np.var(ppc2, ddof=1, axis=0)\n", "ppvars2.shape" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAECCAYAAADw0Rw8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAADwBJREFUeJzt3X+s3fVdx/HnHS3NYn+IQjIUN9s53qlmzqR/gNOEuKCAppTgluDIxiYg0QCNtDB+lmIz3BxlG2yDaKP7wZI5cQ7QZdM1igjTjLtNUMsbpAm6OTVmXVvgUii9/vH93vVwuL0959zv7e199/lIbg79fD7nfD/99NtXP3y+n/P9jk1OTiJJqus1890BSdLcMuglqTiDXpKKM+glqTiDXpKKM+glqbhF892BfuPj4+73lKQRrFmzZmy68qMu6AHWrFkz310oYceOHQCsXr36iB3zolu+zPf27ONHli/hUzeffcSOezSYj/E+1jnmB42Pjx+yzqUbSSrOoJek4gx6SSrOoJek4gx6SSrOoJek4gx6SSrOoJek4gx6SSpuoG/GRsTxwCbgXcCJwD8BGzPzG239GHA9cFlb/zBwRWY+MRed1kFrN9w3QKsnpy19YOu6bjsj6ag06Iz+w8CVwAeA84Dngb+NiDe09ZuAG4HbgAuAFcD2iFjRbXclScM6bNC3YX0psDkz78rMvwHeASwG3hURy4CNbf0dmXk/cBawDLh47rouSRrEIDP654DTgD/pKXsJmASWAKcDS4H7pyozcxfwIHBs3dVKko5Ch12jz8z9wDcBIuI1wE8Cm2mC/h7gzLbp031v3Qm4CCxJ82zY2xTfRBPyAJsyMyPifGBfZr7Y13YvsHyUTk3delRzay7G+aX9+3/weqz9OU5MTACev0eSYz6YYYP+L4C/A34J2NTuxpmgmd1P58DoXZMkdWGooM/Mx9r/fLC9CHs18D5gSUQszsyXepovA3aP0ikfIjCM6bdODmIuxnnxomeAl1m8aNEx9+foQzCOPMf8oJkePHLYoI+I1wHnAPdm5t6eqm/SXIzdBYwBK3ll6qwCcoT+SpI6NMiumx8G/hh4e1/5rwD/C3wReIFmfz0AEXECcAawvZtuSpJGNciumyci4s+Bre2a/E7gfJpvyf5mZu6JiDuBLRFxgGZWfwOwB9g2d12XJA1i0DX6dwM3A9cBJwP/BrwjM+9t66+nufC6kWZP/SPARZk50hq9JKk7AwV9Zj5Pc9H1fYeo3w9c2/5Iko4i3r1Skooz6CWpOINekooz6CWpOINekooz6CWpOINekooz6CWpOINekooz6CWpOINekooz6CWpOINekoob9pmx0g+s3XDfIeu+t2ffjPWz8cDWdXPyuVJVzuglqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKWzRIo4g4DlgPXAq8HngG+ATw8cycjIgx4HrgMuBE4GHgisx8Yk56LUka2KAz+puAW4F7gHOBzwMfAa5u6zcBNwK3ARcAK4DtEbGi095KkoZ22Bl9O5u/CvhQZr6/Ld4eEScBGyPiLmAjsDkz72jf8xDNrP9i4PY56bkkaSCDzOiXA58GvtBXnsBJwNuApcD9P6jI3AU8CJzdTTclSaM67Iy+De3Lp6laC3wbOKX99dN99TuBdbPqnSRp1ga6GNsvIi4BzgSupJnx78vMF/ua7W3rhrZjx45R3qYhLdRxPlr7PTExARy9/avIMR/M0EEfERcCdwP3Ah8DrgMmD9H8wOhdk6Z3zbYnR37vH1xyaoc9kRaGoYI+Iq6i2VlzP3Bhu7VyN7AkIhZn5ks9zZcBu0fp1OrVq0d52zFq9NCb/TiPfuz5Mpfn1tSs0vP3yHHMDxofHz9k3cBfmIqIW4GtwGeAt/cs1TwFjAEr+96yiuaCrSRpHg0U9BGxnmaJ5qPAezJzf0/1I8ALwHk97U8AzgC2d9dVSdIoBtlHfzLwQeBx4HPAaRHR2+RR4E5gS0QcoPn/+RuAPcC2rjssSRrOIGv0ZwFLgDcDX5um/iSa2x8coPni1FKaWf5FmTnSGr0kqTuD7KP/JPDJAT7r2vZHknQU8e6VklScQS9JxRn0klScQS9JxRn0klScQS9JxY1090ppoVq74b5Zvf+Brd55WwuPM3pJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKs6gl6TiDHpJKm7RfHdAsHbDffPdBUmFOaOXpOIMekkqzqCXpOIMekkqzqCXpOIMekkqzqCXpOIMekkqzqCXpOIMekkqzqCXpOIMekkqzqCXpOKGvntlRJwLfDYzl/WUjQHXA5cBJwIPA1dk5hNddVSSNJqhZvQR8VbgHmCsr2oTcCNwG3ABsALYHhEruuikJGl0A83oI2IJsB7YAjwHHN9TtwzYCGzOzDvasoeAZ4CLgds77rMkaQiDzujPAa4Drgbu7Ks7HVgK3D9VkJm7gAeBszvooyRpFgYN+q8DK9sZ+2Rf3ant69N95Tt76iRJ82SgpZvM/M4M1cuBfZn5Yl/53rZuaDt27BjlbRqS4zy8mcZsYmLisG3ULcd8MF08M3aMV8/ypxzo4PM1R67Z9uR8d0HSEdBF0O8GlkTE4sx8qad8WVs3tNWrV3fQrYXEwF0oZjo3p2aVx975O38c84PGx8cPWdfFF6aeopnVr+wrXwVkB58vSZqFLoL+EeAF4Lypgog4ATgD2N7B50uSZmHWSzeZ+WxE3AlsiYgDNOsQNwB7gG2z/XxJ0ux0sUYPze0PDtB8cWopzSz/oswcaY1ektSdoYM+MzcDm/vK9gPXtj8L1toN94383ge2ruuwJzpaDXaOdH9x3fNLs+HdKyWpOINekooz6CWpOINekooz6CWpOINekorrah/9MW82WzMlaS45o5ek4gx6SSrOoJek4gx6SSrOoJek4gx6SSrO7ZXSAuCdVTUbzuglqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKM+glqTiDXpKKWzTfHZA0t9ZuuG/ejv3A1nXzdmwd5Ixekooz6CWpOINekooz6CWpOINekoortetmPncXSHq12fyddMdOd5zRS1JxBr0kFWfQS1JxBr0kFWfQS1JxBr0kFVdqe6UkzVbFm8B1GvQRcSlwDXAK8C3gqsz8WpfHkCQNp7Olm4i4CLgbuAf4deD7wFciYmVXx5AkDa+ToI+IMeAW4A8z85bM/BJwLvB/wO92cQxJ0mi6mtH/FPAG4P6pgsx8Cfgr4OyOjiFJGkFXQX9q+/rvfeU7gTdGxHEdHUeSNKSuLsYub1/39pXvpfnH5IeAPYN+2I4dOzrqlqSFapAcmJiYGLjtQjBXv4+ugn6sfZ08RP2BYT7s+eefH6kTm995ykjvk3T0GSYHRs2M6cxnjnT5++jVVdDvbl+XAf/TU74MeDkznx30g9asWTN2+FaSpEF1tUb/VPu6qq98FfBkR8eQJI2gy6D/T+C8qYKIWAz8GrC9o2NIkkYwNjl5qGX14UTE7wAfA34feBi4HPhF4Ocyc2cnB5EkDa2zoAeIiA3AeuBEmlsgbPAWCJI0vzoNeknS0cfbFEtScQa9JBVn0EtScQa9JBXnE6YWsIg4F/hsZi7rKRsDrgcuo9n99DBwRWY+0dNmCfAB4Ddo7kP0FeDKzPyvI9j9BekQY74GeHSa5lszc2PbxjEfUHsTxPXApcDrgWeATwAfz8xJz/HhOaNfoCLirTQPeem/ZcQm4EbgNuACYAWwPSJW9LS5G3g3cC3wXuAtwJe8y+jMZhjztwDPAT/f93NHTxvHfHA3AbfSjPW5wOeBjwBXt/We40NyRr/AtDOV9cAWmnA5vqduGbAR2JyZd7RlD9HMiC4Gbo+IN9L8BXhnZv5p2+afgQTWAV84cr+bhWGmMW/9LPAvmfmPh3i/Yz6gNoivAj6Ume9vi7dHxEnAxoi4C8/xoTmjX3jOAa6jmd3c2Vd3OrCUVz4AZhfwIAcfAPO29vUve9o8BfwrPiTmUGYac2iC/rEZ3u+YD2458GleHcYJnEQzlp7jQ3JGv/B8HViZmd+PiM19dVMPgHm6r3wnzUxmqs1/Z+Zz07Q5FU1npjEHeDOwLyK+Bfw08B/Alsz8VFvvmA+oDe3Lp6laC3wbmLqHsOf4EAz6BSYzvzND9XJgX2a+2Fe+l4MPh1nOqx8QM9XmJ2bfw3pmGvOI+DGaC4Jvopn176K5APjJiJjMzE/jmM9KRFwCnAlcief4SAz6WsY4/MNfBmmjwe0CzgIez8zvtmVfbf8BuJlmGcIxH1FEXEhzYfVempsmXofn+NBco69lN7CkvUV0r2UcfDjM7vbX/XrbaECZOZGZf90T8lO+DKyKiKU45iOJiKuAz9CstV+YmZN4jo/EoK/lKZrZzMq+8lU0F7Om2rwuIl47QxsNKCJOjYjfbnfm9HotMEGzS8cxH1JE3ApspQn6t/cs1XiOj8Cgr+UR4AVe+QCYE4AzOPgAmO3AcTQXt6bavAn4GXxIzCh+nObLPL86VdB+oed84KF2FuqYDyEi1tMs0XwUeE9m7u+p9hwfgWv0hWTmsxFxJ7AlIg7QPMbxBmAPsK1t83RE/BnwR+0XTHbRPCzmMeCL89PzBe3vgX8A7m4D57vAb9FsufwFcMyHEREnAx8EHgc+B5wWEb1NHqXZ4uo5PgSDvp7raS44baTZb/wIcFFm9q5Nvhf4MM1fqNcAX6X5evjLR7ivC15mvhwR62i+yfl7wI8C3wB+OTPHe5o65oM5C1hCs2V1uocWnYTn+NB88IgkFecavSQVZ9BLUnEGvSQVZ9BLUnEGvSQVZ9BLUnEGvSQVZ9BLUnEGvSQV9/8QmgHYQ6Y5pwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(ppvars2, bins=20);\n", "plt.axvline(np.var(light_speed, ddof=1));" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.59499999999999997" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(ppvars2>=np.var(light_speed, ddof=1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A measure of symmetry\n", "\n", "We can construct an outlier-resistant model-adequacy check by seeing if the model is adequate but for extreme tails. Here is a test quantity sensitive to asymmetry in the center of the distribution:\n", "\n", "$$T(\\{y\\},\\theta)= \\vert y(61) − \\theta \\vert − \\vert y(6) − \\theta \\vert.$$\n", "\n", "For a 66 point dataset this roughly reflects the middle 80% of the mass. It should be distributed about 0 if the predictive is symmetric" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tee_ppc=[]\n", "tee_data=[]\n", "data_sort=np.sort(light_speed)\n", "for i in range(200):\n", " sortarray = np.sort(ppc2[:,i])\n", " tee_data.append(np.abs(data_sort[60] - mus[i]) - np.abs(data_sort[5] - mus[i]))\n", " tee_ppc.append(np.abs(sortarray[60] - mus[i]) - np.abs(sortarray[5] - mus[i]))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAGECAYAAAB9FYQ+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecVNXZx79TtrGNsoWuwMJhAUGpAkYTu0JAUzUaG9aY/sZXjVGJiknUJJo3sWFNTGISjRVrUIN0AWUpy2WXusvC7C6wvU55/7g7w+zslHtn7tQ938/HD85tc+buzPnd5zlPMblcLiQSiUQiSRTM8R6ARCKRSCTeSGGSSCQSSUIhhUkikUgkCYUUJolEIpEkFFKYJBKJRJJQWOM9gFRg8+bNMrRRIpFIwmDGjBkm321SmAxixowZ8R5CUlBeXg5AaWlpnEeSHMj7pQ95v/QR6/v17tp9PP5qmef10u+M9HucFCaJRCKRRJ03P93D8te3e15fNO9kwO73WLnGJJFIJJKo8u+PK3qJ0qIvjeWWr00NeLy0mCQSiUQSNf7xH4WX3t3lef31r5Rw9YJJmEx9lpY8SGGSSCQSieG4XC7+9r7Cyx8qnm3fPm8CV1wwMagogRQmiUQikRiMy+XixRU7efXjSs+2Ky+cyLfPE5rOl8IkkUgkEsNwuVw88+Z23ly117PtmgWT+PrZ4zVfQwqTRCKRSAzB6XTx1GtlvLN2v2fb9YunsPjMcbquI4VJIpFIJBHjdLr40ytb+WDDAc+2W74+lYvnjdF9LSlMEolEIokIh9PFH/7xOR9tqgLAZILvf/NUzp9zUljXk8IkkUgkkrBxOJz87u9bWPX5IQDMJvjRZdM5e+aosK8phUkikUgkYdFtd/LIXzextuwwAGazif/5znTOPM1/qSGtSGGSSCQSiW667Q5+8+dNbNhxBACL2cRt353J/KnDI762FCaJRCKR6KKz28GvXtjI5l21AFgtZu68ehazJw815PpSmCQSiUSimY4uO8ue28gXFXUApFvN/Pza2cyYWGzYe0hhkkgkEokm2jvt3PfserbvOQpAepqFe66bw7QJhYa+jxQmiUQikYSktb2bXz6znvL9xwDITLdw7/WnM2VcgeHvJYVJIpFIJEFpaevi3uXr2H2wAYABmVaWXj+X0jGDo/J+UpgkEolEEpCm1i7ufmotew81ApCdlcZ9N85lwuhBUXtPKUwSiUQi8UtDcyd3P7WW/YebAMgdkM79N81l3MiBUX1fKUwSiUQi6cOxpg5+8eQaqmwtAOTnpPPAzfM5eVhe1N9bCpNEIpFIelHf0M5dT6yhpr4VgEG5GTxw8zxGD42+KIEUJolEIpF4UXusjbueXMORo20ADMnPZNkt8xlRmBOzMUhhkkgkEgkAR4628vMn1lB3vB2AokFZLLtlPkOHZMd0HEklTEKIRcBfFUXJ9dpmAn4O3AQUAGuAHyiKsivEtb4EPAKcAhwCfqUoynPRGrtEIpEkMofqWrjriTUcbewAYOiQASy7eT5FgwfEfCzmmL9jmAgh5gEvASafXfcAv0AVmcuAfGClECI/yLVKgfeAfcDXgLeBZ4UQ34jC0CUSiSShOXikiTv/tNojSiMKs/n1rWfERZQgCSwmIUQG8CPgfqAVSPfalwv8DFiqKMoferZ9ChwAlgC/C3DZO4D9wOWKoriA94QQBagi90p0PolEIpEkHoePdfLcy2tobOkCYFRxLg/cPI/BeZlxG1MyWEwXAXcCtwH/57PvdCAHeNO9QVGU48B/gQuDXPNc4O0eUXLzOnCKECLymu0SicQw7A4nW3bZ+GD9AbbssmF3OOM9pJThUH0HT62o8ojSycPyePCW+XEVJUgCiwn4DBijKEqDEGKpz74JPf/u8dm+F1js72JCiGxgOFDp5xz3NWv0DrK8vFzvKf2S9nZ1UVXeL2305/tld7hYsaGOippW6hu7cbrU7qiF+emUjBjAwjmFWMy9Pfv9+X7p5WBtO8+8V01Hl/p8PmJIBlefU8jh6r0cjvPYEl6YFEU5FGR3HtCpKEqXz/bmnn2BznEf43uO936JRBInHE4Xz71fTWVNe6/tThfYGrrU/453suTCkX3ESRKa/bZ2nn3vEJ3dqiiNKszk+gtHkJVhifPIVBJemEJgAlwB9gWy993fYr3nBaW0tDSc0/od7idZeb+00V/v11OvlbHHR5R82VPTzprddm66dKpnW3+9X3rYtqee595fT2e3OtWdVJTJQz86mwGZaTEfy+bNm/1uT4Y1pmA0AhlCCN87mtuzzx9NXsf4nuO+pkQiiRN2h5OtFXUBnxzduICyinq55qSDrbvrWLp8PR1dDgDGDs3i+otGxkWUgpHswlSBagGN8dk+FlD8naAoSgtwuOcY33MIdJ5EIokNZRV11NS1aDr2UF0zZZV1UR5RarB5l437nl1PV7cqSqeOL+S6C0eQkZZ4MpB4I9LHWqADuMS9QQgxCDgLWBnkvJXAV4UQ3g7VS4DtiqLURmOgEolEG/UNHWg1ghxOPLk3ksBs3HGEB57bSJddvbEzJhZx95I5pFsTUwKSeo1JUZQWIcT/AfcLIZzAbuAuVHfdM+7jhBCTgAxFUT7v2fQIarTfv4QQy4HzgCuBb8Zy/BKJpC8FAzOxmNEkThazWstNEpg1ZTU8/JdNOJyqc3TO5KHcftVM0qyJEejgj8SUS338HPg9aqLt31DXiM5VFMV7rehx4DX3C0VRtgJfRXXfvQYsBK5VFEUm10okcWbq+EKGaywYOqIwl6klhVEeUfKy6vNqHvISpXlTh3H7VbMSWpQgySwmRVGWAkt9ttlRKzncEeS8L/vZ9j7wvqEDlEgkEWO1mJk2vpBqW0vQAAgTMHV8AVZLKjxfG89Hmw7y2Muf06NJnHnaCH56+XQsSXC/En+EEomk37Fk0RSmji/sUxjTjQmYNqGQJYumxHJYScMHGw7wqJconT1zFD/9zoykECVIMotJIpH0D6wWM0tvOJ1n39xOWUU9h+qacTjVNaURhblMHV/AkkVTpLXkhxVr9vHkv8s8r8+fcxK3fmMa5iRKRJbCJJFI/GJ3OCmrqKO+oYOCgZlMHV8YUyGwWszcdOlUdRyVdRxt7GBIfiZTS2I7jmTijVV7eOaN7Z7XF887mZsunZpUogRSmCQSiQ/ddifPvbWdrT35RPG2VKwWM9NFcczeL1l59aMKXlix0/N68ZnjWLJoMiZTcokSSGGSSCRe2B1OfvnMesp8Ki84nHDQ1kyVrZkqWwtLbzhdWi0JxMsfKvz1vRO9Ub9x9niuurg0KUUJZPCDRCLxQl3TCVwOSC0DVMezb24PcIQklrhcLl56t7yXKF1+vkhqUQJpMUkkkh7CqVEnrab44XK5eOHtnfz7kxMdfK68aCLfPlfEcVTGIL9VEokEkDXqoo2RDQ9dLhfPvLG9lyhdu3BySogSSItJIpH0IGvURQejg0mcThdPvlbGu2v3e7bdcMkUFn1pXBRGHx+kMEkkEkDWqIsGRgeTOJwu/vSvL/hw40HPtu99YxoXzT3Z+MHHEenKk0gkgKxRFw2MDCZxOJw89vIWjyiZTPDDb52acqIEUpgkEkkP7hp1oWK5ZI06bRjZ8NDucPLbv23h483VAJhN8JPLp3PenJOMG3ACIb9ZEonEg6xRZxxGBZN025089JdNfPrFIQDMZhM/u2ImX5kxyrCxJhpyjUkikXiQNeqMw4hgkm67g1+/uImNO48AYLWY+N/vzmTuKcONHGrCIYVJIpH0QtaoM4ZIg0k6ux08+PxGtvQ01bZazNx5zSxmTxoajeEmFFKYJBKJX2SNushwB5NU2UK783yDSTo67dz/3AbKKusBSLeauevaOUyfWBS18SYS8vFHIpFIokC4wSRtHd0sfWa9R5Qy0i3cc/3p/UaUQAqTRCKRRA29wSSt7d3c+/Q6duw9CkBWhoVf3jCXaeP7V2i+dOVJJJKQxLs3U7KiJ5ikpa2Le55eR0VVAwADMq388oa5TDx5cJw/ReyRwiSRSAKSaL2ZkhEtwSSNLZ3c89Q69tY0ApCTlcZ9N81l/KhB8Rx63JDCJJFI/CJ7MxlLoGCS480d3P3kWg4caQYgd0A6D9w8j7Ej8mM9xIRBfpskEolfZG+m6HOsqYOfP77GI0oDczL41ffm92tRAmkxSSQSP8jeTNGnvqGdu55YQ019KwCD8zJ44Ob5jCrOjfPI4o/8Jkkkkj7I3kzRxXasjTv+tNojSgX5mfzqe2dIUeoh6S0mIcSXgY+DHHKyoigH/Jz3FrDQz/G5iqJo+0VKJCmK7M0UPQ7Xt3LXk2uoO94OQNGgLJbdMp+hQ7LjPLLEIemFCdgCzPXZlgm8AmwGqgKcNw14DHjZZ3uboaOTSJKQgoGZmE3gDOXLQ/Zm0kN1bTN3PbGWY02qkA8bks0Dt8yjaNCAOI8ssUh6YVIUpQlY771NCPEoqvv7SkVR+jz3CSEGAqOA9xRFWe+7XyLp70waO4Q0q4XObkfIY2VvJm0cPNLEXU+upaG5E4ARhTksu2UeQ/Kz4jyyxCPphckXIcQk4PvArYqiBHJ8T+35tyw2o5JIkosXV+zUJEogezNpYV9NI3c/tZbGli4ARhXnsuzmeQzKk5amP1JOmIBlwG5geZBjpgKdwANCiMVAFrAC+IGiKEfCedPy8vJwTut3tLerfnV5v7QRj/vlcLrYuL1a07FpFhOnl1gS5u+ZiN+v6voOnnm3mrZO1XkzbHAG155byJFD+zhyKL5jS8T7BSkWlSeEGAssAn7rz4XnxVQgA2gGLgW+h7pO9ZEQIiPqA5VIEpjKQ63UN3ZrOtbhdLHviFyWDcTB2naefueEKI0oyOCmi0eSk5WKNoFxpNrduR44DrwU4rjfAX9XFMUdzbdKCFGOulb1LeAvet+4tLRU7yn9EveTmbxf2ojH/apqPIDTVaPpWKcLsvOLKC1NjBbfifT92rnvKM++v56OLlWUxOhBLL1xLjlZaXEe2Qnifb82b97sd3tKWUzAJcDriqJ0BjtIUZRdXqLk3rYBaECN1pNI+i3uBndakBF5/tlWWc+9T6+jvdMOwKQxg7nvpsQSpUQmZYRJCDEaKAX+reHYy4QQZ/psM6G69+qjM0KJJDlwN7jTgozI68sXu2tZ+sx6OrrU4JGpJQUsvWEuAzKlKGklZYQJmN3zr5bw71uAx4QQ3p//YtQgiFVGD0wiSSbCbXAngU3lNu57dgNdPRGNp04o5O4lc8jKSLVVk+iSSndrClCvKMox3x1CiHFAoVfO0oPAu8BLQojngQnA/cCriqKsjdWAJZJEZcmiKVTZWgIWcfVtcCeB9dsP85s/f4bdod6xmaXF3Hn1LNLTLHEeWfKRSo86RahrRP64G1jnfqEoyvuo0XslwOvAXcBzwHejPEaJJClwN7hbcMYYRhfnetacLGYYXZzLgjPGcO/1st2FmzVba/j1iydEac7kofz8GilK4ZIyFpOiKN8Lsu8a4BqfbW8Db0d3VBJJ8qKlwZ0RJHt33E+2VPP7v2/B2VO/af604fzsihlJ9RkSjZQRJolEEh0CNbiLlFTojrvys4M89o/PcfX4O788fSQ/vuw0LAk+7kRHCpNEIok5qdAd9/31+/nTK1s9onTOrFH84FunYTGHChuRhCIx/+ISiSSlSfbuuCtW7+WP/zohShecfhI/lKJkGNJikkgkMcXucLJ1d/J2x339v3t6CebC+WO48dJTMJmkKBlF4vy1JRJJXLE7nGzZZeOD9QfYssuGXWunQB1025386sWNVNUmZ3fcf63c3UuULjlrnBSlKCAtJomknxOrIAT3utLWCu1CkyjdcV0uFy9/uJu/vb/Ls+2b54znuxeVSlGKAlKYJJIkJ5Jw61gGIbjXlfSQCLX4XC4Xf3m3nH+trPBs+875gsvOF1KUooQUJokkSTHC0tEahLD89W3MmTw07Fwju8PJ1iDvE4h41+JzuVw8//ZOXvuk0rPtqotL+eY5E+I2pv6AFCaJJAkxwtLRKhYu4IMNB3h//f6w3XxlPeKph3jX4nO5XCx/YztvfbrXs23JoslcclZJXMbTn5DBDxJJEmJEuLUesbA7XLhjIdzit2L1PpYuXx80SMIdUPHfLdXojaWIZy0+p9PF46+W9RKlmy49RYpSjJAWk0SSZOixdDZsP8LVCyaRmd73p17f0KFbLHyv7xa/my6d2mufPzejHuZMLuaOq2fHxVpyOF388Z9f8J/PDnq23fqNaVw49+SYj6W/Ii0miSTJ0GPp1DW0873frOSp18r6WDZ6GgIGwgWsLavhs52HPdd3uxlXrN5HlU2/KI0qyomfKDmcPPr3LR5RMpngR98+VYpSjJEWk0SSZOi1dOoaOjwi4b3m5G4IWGXTt/bjy7GmTh54biMji9R1J6fTFdTNGAx3O414iJLd4eS3f93M6q1qW3mzCX5y+XS+PGNUzMfS35EWk0SSZIRj6fhbc9LaEFALTteJdaeVn1VFJErxWFfqtjt56C+bPKJkMZu47bszpSjFCWkxSSRJRriWjr8SP6EaAurFBXT2dG/VSrwrind1O/jVi5+xqdwGgNVi4varZnH6lGExHYfkBFKYJJIkw23pVNtadIuJu8SPu42FuyGgGuVXz6G6ZhxO1Y1lNps8je+ixTmzRnHmaSMM7/GklY4uOw8+v5HPd6uJv2lWMz+/ZjYzS41v8yHRjhQmiSQJCdfS8VfiJ1BDwI07bLyzZp8hlpQ/LGY487QRUen1pIWOTjv3P7eBssp6ANKtZu66bg7TRVFcxiM5gRQmiSQJ8bZ0Nmw/Ql1Du6bzgpX48W0IOLWkkOpa49x8vsSzqkNbRzf3PbuBHXuPApCRbuGeJXPiWmVCcgIZ/CCRJCluS+fx28+mYKC2enJ6xMAtfgvOGMPo4lxDgiTcxLOqQ0t7N/c8vc4jSlkZVn55w1wpSgmEtJgkkiQnM93K6VOGsWJ1cLdbOGLg7eb7fLeNP/5zK8eaOkOel5FmCRgEEY3oO3ch221KA/kDrIyf4L+HU3NbF/c8tZbK6kYAsjOtLL1xLhNPGmzYWCSRI4VJIkkBQq05RSoGVouZWaXDmDe1TpMAnjt7NCYTvQIqohF956/ChNkEH37R3Od9Gls6ufupteyraQIgJyuN+2+aR8mogRGPQ2IsUpgkkhQgUHSd0WKgVQCvX6y+l29AhZHRd4EK2bpzqrwL2Ta3dfGLJ9dy8EgzAHnZ6Txw8zzGDM83ZCwSY5HCJJGkCIGi64wUA70C6BtQYSRaC9n+6V9fsOvAcap7uuYOzM3ggZvncdLQvKiMSxI5UpgkkhQjmmLgvn60BTAUegrZfrKl2pOPNTgvk2W3zGNkUW7UxygJn5QQJiHEEKDez65XFUX5RoBzpgCPAXOAY8CfgIcURYluRqFEkiJEWwCDobdlB0DBwCyW3TKP4QU50RyaxABSQpiAaT3/ng80e20/6u9gIUQR8B9gO/AtYDqwDHAAj0RvmBKJxAj0FrLNy07n17eeQfHgAdEblMQwUkWYpgI2RVE+1Hj8raiffZGiKG3AO0KIDOBOIcRjiqJ0R2ugEokkctyFbLWK0/WLJ0tRSiJSJcF2KlCm4/hzgZU9ouTmdWAwMMvIgUkkEm24u91+sP4AW3bZgnbGdRey1cLwgmy+dOpIo4YZdfTch1QllSymDiHEWlS3XD3q+tEjAdaMJgCf+Gzb67Vvrd4BlJeX6z2lX9LerpbOkfdLG/G6Xw6ni8pDrTS22ckfYKVkRDYWs5G1H05gd7hYsaGOippW6hu7cbrUXKTC/HRKRgxg4ZxCv+89usBKlS309ccUp1GxW4nCyI0l3PsQCYn6e0x6YRJCWIBJQCvwM+AAsAD4NZAF3OfntDx6r0Xh9VrGkEr6LbGeHB1OF8+9X01lTe9af04X2Bq61P+Od7LkwpF93nfhnEJsxzv7nOvN+OFZLJyT+KWGIrkPqUjSC1MPC4GDiqJU9rz+RAiRA9wuhHhIUZQOn+NNEDDSNCy7ubS0NJzT+h3uJzN5v7QRy/tldzhZunw9ZRUNfRJWbQ1d1DZ00dKV1qsLbqQ89VoZe4IIC8CemnbW7LZz06VT++x7eOJEHnlpE2u3HcblNegRhTmcJgrj0t8pHCK9D+ES79/j5s2b/W5PemFSFMUBfORn13vAzUAJavSdN42AbyJDrtc+iaTfoTVh9dk3txsyOerJRfJtcOhGOXCcLUqtR5QG51pZMLuAr10wKykECYy5D6lG0guTEGI4qsX0mqIodV67snr+9ZffVAGM9dnmfp34zmiJxGAimRzdBVTrGzooGJjJ1PHBE23dx28ur+VQrbZcpIO2Zj5Xapk1aahnW1llHfc9u4HOLrVY7OSxQ/j2GYPITDcn1cStJyfLt9FjqpL0wgRkAE8B2cDvvbZ/HditKMoRP+esBG4SQmQritLas+0S1LynL6I5WIkkEQlncjxlXGGfAqrBavP5K7iqh+ff2sFpogirxcwWpZZlz22gy65eZGpJAXdfN4d9eyv0XTQB0JOT5a/RYyqS9MKkKMo+IcTfgfuFEE6gHPgmqjBdAiCEGAcUKoqyvue0x4EfoOYvPYyaoHsncIeiKF2x/gwSSbzROzkeOdrKi2/vZG9PpW7vfb4FVN3FXP0VXNVDVW0Lz765nemiiAdf+MwTRn3ahEJ+fu1sMtOTczrTk5MVrNFjKpE89m5wlgB/AH4MvAnMBL6uKMqbPfvvBta5D1YU5TBqLpMVeAW4EbhLURRZ9UHSL3FPjlp5/s0dfUTJG+/1KAi9fqWV9dsO8+ALGz2iNLO0mF9cNydpRQn05WTFs+tvLEnev6YXiqK0Az/v+c/f/muAa3y2bQLmR3tsEkky4J4cq2za3Hkd3aEf793rUR1ddk3rV1qo93JjzT1lGLddOZM0a/I9X/uuy50yroBqW4vhjR6TlZQQJokkHPQu2qcyVouZaeMLQ06OejlU18ybq/ZoXr/SyhnThvM/V8xIur+Xv3U2ixmGF+YwOD8z4PpRNLr+JjJSmCT9jkCTg9HdVZONUE0Aw8HhhJq6Vt2BDsGYWlLAz66YgSXJ/kaB1tkcTqiytWBCdalmpVupqe/f30spTJJ+RbDJwd+ifX8iWBPAwflZ1B9v1y1YqjWQravgajCyM63cc/3pSSdKoC1P7GhDBxfPH8P1l0yJS5+rREEKk6RfEc0k0lRwDQZqAmg72s7jr27Vfb0RhbksOnMcn2yp1rx+FYwvzxhJRpol4utESji5W1rzxLZV1nta0/dXpDBJ+g1GZdj7TkqlY4bw53d2ppRr0LcJ4JZdNt1Wj3uxPjPdasj61dSSIVy/+JQIrhA54bqBZRKtPqQwSfoNkU4OgSYlq8VCZ7ej1/mp5hrUG7Xnu1hvxPrVqOK8uN7DSNzAMolWH8n7S5FIdBLJ5OCelFas3keV7UTVAoeTPqLkjW8+T7LijtrTUtc6JyuNBWeM4d7rT0zQ7vWrBWeMYXRxridnymwCq0VbtextlfVx7U2kxw3si548sf6SRBsMaTFJ+g2RZNhHkiAayDWYbGtSWqyescPz+M0PvuQ34dXf+tWxpg7+/v4uTe8fTxdXpG5gPRZnf0miDYYUJkm/IdzJQeukFAzvSTVZw9WDRe3pGbv3+tUH6w8khYsrUjew1jyx/pREGwwpTJJ+Q7iTg55JKRDuSTXZw9UDRe2FG9I8OD8jaHM0b7S4uNydd6saDxhqhRqxRhTK4uxvSbTBkMIk6VeEMznomZQC4Z5UY93zKFr4Ru2Fg9PpYm3ZYc2WaDAXl9sK3bi9uqfzbo2hVqgeN7AJ2H+4iS27bL2E0SiLsz8ghUnSr9AzObjXgA4cbsJsUju5hsuIwlwmjRnCM69v17ROsbWiLq4L/dHG4XTxf//8nJWfVWk6PpiLKxZWqB43sAt4c9VeVqze2+c7ZbTFmapIYZL0O0JNDt12J0+9VhZ23yBf3JPqzr1HqdLYGK/K1kJZZZ2n22Uq4XA4+f3fP+e/n1cDamTeiKJcqm3NYbm4tFqhv35xI7MnDQvLxRdOLcFgwmiExZnKSGGS9Fv8TQ5G9A3yxntS/XDjAV3n1h5v56R8AwYRIUZGD9odTh7562bWbK0BwGw28dPLpzN/2vCwXFx6ouU27LCxYYctLNdZt92J0+kiPa1vzlooksU9m0hIYZJIvIgkLDwzzUKX3YHT5X9SbWrR14OyqaUT4ihMRkcPdtsd/ObPm9iwQ20qbTGbuO3KmcyfNhzAY8V+vtvGF7vrATh1fAGnieKA7xNOYIpeF58RDyuhqolIeiOFSSLpIZywcO+J+uoFk9i572jAdYO87Axd48nLyQDadZ3jj3AsHk3rNkeaWXzWWOobOmlq7SQvJ53iQQP8Xr+r28GvXvyMTeU2QE2qvf2qWZw+ZZjnGH9C6G+dxptIAlO0WjJGNTmUpYa0I4VJIulBz9O3CVh05limTyzqJUDBJp3iwVmaQ6NNQNGgLHCGL0yRWDxa1m22VtaztbK+z75RxTlMG1/ouX5Hl51lz2/ki911AKRZzfz8mtnMLD1xr8INYNATLRfoc4Sqi2hUk0NZakg70qaUSHrQ8/TtAk4alsf0IG4mX6aOL2REUbamY0cW5USU/R+shNJBWzMrVu9j6fL1fiP/Ip2Mq2wtnus3t3Vx3zMbPKKUnmbhniVzeokShF/uR09b8kC4LRl/GJHD5iZWpYbsDidbdtn4YP0BtuyyJWV0p7SYJJIeIilZpAWrxcypE4qort0X8thpEyILH44kX8qIydgd8n7rwx9xvKkTgMx0C/dcfzqnjCvodWwk5X6M6LwbzJIxIofNTbRLDSVrRRF/JMcoJZIYoOfpO9xJZsmiKUGLoZqAUyPM/g9novfGyMnYLUpZGVZ+eePcPqIE4ZX78WbJoilM1VhgNhADc/yv/+kpvhqMaJcaisRCTkSkMEmiQjK6E7RW0I5kkglUZdtihtHFuX2qcodDuBO9+2924EhTRJO8L5npFu6/aS6Txgzxuz/Scj/e97R4YDrmcAZv8i/jRrgKY1FqKJLK54mIdOVJDCWUO2H+BCuWsGYL2XWFAAAgAElEQVSO2BCLembRzv7XO9HXHmszNKHYl0VnjqW1vZsP1vuvX2eEC9V9T+dPsFJZ08r+egsrN2mrKgHQ0Ow/lD8SV2Gs3GhGNcBMJKQwSQxDS2TVrr1ZLLlwZNzGGIpY1jOLVva/nonebIJ31+1n36EmQyLP/PHRpipe/agi4H2cOr6QYQU5VGuoijE4Lyug5QVqbpQYmcPoUYP5eHOVpjJSZlPw9UKtTQ5HFeVwSkkBM0uLaWjpjFmpoVTsjiuFSWIYWtwJlTXtvL2hjimTYzkyfSR7PTM9dd0GZKZFVZRAteDc+Av/BmjvtGu8Vjv/8+iqkA8IagSktnswsij4emGwh5XB+VkML8hm8VljOW2C9ghNI0nF7rgpIUxCCAvwI+AGYDRwAHgc+JOiKH5/c0KIt4CFfnblKopiTHxoP0JPiHHlobbkcCckaT0zve6naIpSsPf0XvPQOlm60Fa1wej+R4n8sBLtaNJ4kNgzg3buBh4EXgIWAf8EHgVuC3LONOAxYK7Pf21RHWmKosedUNfYFTBvRGIMoSLVTMDQIVm0tndrup7ZBIvPHMs9S+YwtaRvZF04uIAvdtfyxe7asM4NtZiv5R7oXS90P6ycN/skXTls0SQW0aSxJuktph5r6afAw4qiLOvZvFIIUQj8DHjIzzkDgVHAe4qirI/ZYFMYPe4Epys53AmJiNbyQsHcT1kZaYCLI0e1V5VwutSE4lmThnKaKOLZN7ezaaeNI8f6PscVDsykvqFDkyVWXduqeQy+hFrMD3e9MNla3qdid9ykFyYgD/gz8G+f7QpQKITIVhTF99vvzigsi/bg+gt6F9yTwZ2QSISTPOnrfqo93s47a/axr6YprDG4c32sFjMXzxvjqRAOkDsgja99pYSxI/KxHW3n8Ve3hv9hdRBqMV+PCy6ZE1RTrTtu0guToijHge/72fVVoNqPKIEqTJ3AA0KIxUAWsAL4gaIoR8IZR3l5eTinpQzpThdD8tKobQjtGhqSZyXdfpTy8mMxGFly097ejsPp4n8f+w+VNb0tHHcgwUFbM7v2HmHJhSMDhuJnAV/sqA1blADeX1tOjuk4R4518vQ71bR0qO0fivLTuXHBSPIGOMB5jM6W2C3ROpywvXwvWU71u9Tert4jf7/HLGBkLuBso2J37++ew+ni2feqI7rH8eayLw0kJ72bykNt1DV24XSpD4GF+emUjBjAwjkDqdit9Don2P2KJ0kvTP4QQlwPnAv8MMAhU4EMoBm4FBgLPAB8JIQ4TVGUzpgMNIWwmE2MH5FNbUNDyGPHDs1M2B93IvL+5oY+E6Yv7mjHxXOL/O53OF1U1ITvNgPYuKuJ2mNd2Bq6aOtUTeOhg9K54aKR5A6w4nC6qDzUSl1D7H4+ZhPkZUc+jb29vi7iexxvLGYTi+cWqX+HmlaaWu3kZVspGZ6ddL+3lBMmIcQVwJPAK8AfAxz2O+DviqJ83PN6lRCiHFgPfAv4i973LS0tDWO0qcX4CYKW5YH71piAkuFZXDJ/mLxfGtm+Yyf7arVN9FX1DsZPEH7dTVt22TjaVBHRWFwu2Gc7sTY4Znge9980jwGZaR4X2KHaloha0OtlSH4mGTkFtJvUdhtui0DP98vucHLwrZrQBxL8Hut5v2ivYWlNx3BbSvH6PW7evNnv9pQSJiHET4FHgDeBKwKFiiuKsgvY5bNtgxCiATVaT7cwSbQtNkez8kOyLVprofJQK/WN2iLngq23GFn/zs2AzDQy0i2GdvzVS11DB4+/Uub5jo0qsLBwjr6os1glqCbzGlasSRlhEkI8CNyJGgixRFGUgBl7QojLgBpFUVZ5bTOhuvf6NpiRaCbUYnM0fNmp/INvbLNrtkAcTrUd+5Zdtj7iHGnfIn/s2HuU2/6wigOHmw0TpcKBmRxr0i+iJ9aCwHa8k4cnTtT8N49Fgmq4/ab6KykhTEKIH6GK0mPATwJZSl7cAuQJIWYoiuL+Sl6Muj66KvBpEq3EKjk11X/w+QOsmE1oFqd/fKhwvGdi9+2um5WRRovGvCWtVNeG327Cl9HFufz2x2d6ugAPzE1nc3kd2ypPWN9aGi1W1rR72nkEsqK9tx9v7tB8j8NNUI2kDUl/JOmFSQgxDPgNsA14GZgjhPA+ZBNwElDolbP0IPAu8JIQ4nlgAnA/8KqiKGtjNXZJ5KT6D75kRDYF+dqiHSFw+Z+DR5qJRo0Hu8O4a04eN4Sde4/2EpHTJhTzuWLji4p6nE4X67cf7vUZA7F1dx1PvLqVbXvqe1nRwwtysFhM2B1ODte3erabzSacGj5LOAmqqVhkNdokvTABF6C64E4B1vnZX4haGeJq1AcuFEV5XwixCLgHeB1oBJ7rOU6SJKTyD979RL+topGCvHTNwuQPF1DmpwV6orFqSxUfrN+Pw6lG2w3ITAOgvbNbs7Xkpqq2hSqforAOJ322ubdruXK4CaqpWGQ12iS9MCmK8gLwQojDrun5z/u8t4G3ozEmSWxIlh+8nqAMf+tlZhNkpFno7HbEeOSxpbXjxOdzuujjdoxHcIWbSBJUU7HIarRJemGS9F8S/QevNygj0HqZ04VHlDLTLHTZHThdJ6pb1x9vj9ukrWf9K1mwWkw4nS7PPY40iCYVi6xGGylMkqQlkX/w4QRlhFovA1WgZk8uZs6UYQzJz4xp+R9/FAzMpPZ4aj3hu1wurrhwIoPyMg2pIK6nDUkiFlmNRxqGFCZJ0pLIP3i9QRl61ssO17fxlRmjsFrMbNll0yzOetZotJCRZqZ40ICUEyaHEwblZXLe7JMMuV6yFlmNZxqGIVcVQuQbcR2JRA/uH3yodN1Y/+DDCcoIZ70M9LU8GFmUwzSDWlYA5OdksH1v6tU7jIZ1HY0WHNHEbfGvWL2PKluL58HHbfGvWL2PpcvXYzc6a7sH3b9UIcSNQog9QogxXpt/L4SoEkJ828CxSSQhScQffDgiE+56mR5xnjahkKU3zmX2ZGMCQLrsDk0WWIY1+nXaLGY1D2repHwK8yNzBA3Oy8J2VE1UNmridVdFWXDGGEYX5+J+RnKPe8EZY7j3+sTJtdNj8UcDXX9BIcS1qHXoVgHelRVeQe1v9DchRJeiKK8ZN0SJJDDh9tyJJuGITCTrZXpaHlgtZuZMGsbGHTZtAwxCY3OXpuM67dGNjijIz+Smr53CzNKhVOxWeGNdLfWNDWG7Lesb1HU7o79DidwF15tESMPQ+2jxU+A1RVG+7r1RUZR3gHeEEG8AdwFSmCQxI9F+8OGIzNSS8NfLAomz2QQDczMYP2ogP7typudeFAzMxGRSi7JGQqIE49U3dvDYy1/w5RkjmT/BysI5hbR0pYVdv899TrSqh8SqKkq4JEIaht67PBZ4L8j+d4CJ4Q9HIgmfRGl7HU6r60jXy9zi/MiPzmRGaTGD8jJwueBYUyebym38z6OreOq1MrrtDnbsOxaxKCUaLe3dvL16H8++Vw3AL66bzWCD1omi7bZKNBIhDUOvxWQDZgLLA+yfAqTeaqhEooNwo7Ai7UJqdzhZ9vzGgCHqB23NfPr5IRpbtbngYo13AVezCdKtZjq69a3xuHsmDdpt55iGCfOUcUM4XN9KfYhjk7F6SLgkQhqGXmH6O3C7EGIbsNzdUE8IkYZa8ucm4FFjhyiRJB/hiEwwl9zIotBrHVryoLxFadiQARw52pYwLrlvnScoGpTlccXajrXx+Ctluq9TcaiV9LpuTZ+r4uBxzeLXX8oFJUIahl5hug+YBfwBeEQIUd2zfQRqvbqPUOvPSSQxJ5H6MYUblOG7Xra9fC952VYuPOs0du49ykefVfn9bFoXrL0pGJjF9InFvap3x6uSg8UMRYOyek36enK0vKlr6Aa01RbUY5H5uq0S6ftmJImQd6VLmHospPOFEAtR20SMBiyogvQO8IaGlhMSiaEkaj+mSIIy3Otlad1HWbGhjg8e/a/ns5mAQXkZlIwayG1XziQz3aprwdrNtj1HaW7r6t1qIieD597aTnVtZG3Y9eLvyVvPk7s30ZqA3G6rRP2+GUmkbuVICSvgXxZAlSQKydCPSUsUlr+nb4Dn3q+msqa917Eu1KCGjTtsXHnPe5w7ezQnDc0Lqwng/sPNPPDsBpbeONdzf7YotRyq3RczF1+wgA4tT+7+rgfGC9TgvEwO17fywls72Xe4qde+RPq+GUG80zB0C5MQwgJcBSwATkbNZ6oEXlcU5RVDRyeRhCDZ+zEFe/o2m2H/4fag53d2O1ixZh9jh+eFXXJoa2V9r/uzZNEUDh5pjkmrjFBP3uGMpXBgGunp6YZbfXUNHTz5721Bj0n075se4pmGoTfBdgjwH2AacBzYh7q2tAC4XAjxMbDAHRQhkUSTREgE1EKwLqrBrD097K1pwmwy4QozDtz3/qSnG3ufCgZmkpVhjYnra/yIbAYNGhRTq8+beH/fjCYeeVd6LaaHgUnAdcCf3W3Je6yo64A/oXaC/V8jBymR+CMREgGDEWotwulyhZ0E6g9nBMlJh+qa2aLU8rlSy9bddX4b6oXL7MnF3Hn1bADNT95uMX/140rN1pIJKBmexcI5hUycODFmVp8/+ksEX7TQK0xfBR7tac7nQVEUB7BcCDEZuAIpTJIYkAiJgIEIZQ0dtDWTkWZJmFBthxNeeGsH1bX61nO0cPqUYQC9rcYAouRPzLVgtZi44PSTOUNYsZhNWC1mRhbnxE2YZMO/yNArTFbgSJD9e4Dc8IcjkWgnERIBA6G1t1IiYaSV5MZsgg3bD/PaJ5VB3Xh2h5PPFRvPvbWT6jDGYXe4mFFaiIWGntdOtsWxnbxs+BcZ4STYfk8I8WdFUY567xBCZKG68/5h1OAkkmAkQiKgP8LJKYo3VosJu8P4EadbLWzcYQsYMXngSDOjinPYVlmvOyzcl+ff2sn3FgzDYjaFFT5vJInY8C+Z0CtMa1ADHRQhxPPALqALtYbeNUAx8JoQwtuV51IU5WEDxiqR9CIREgG9ca+LbN5VS3WEk2yscURBlAA6gliFLmBbZb1hlk2VrYW3N9SxeG6RLjevLzlZViaNHcLmcltY10i0hn/JiF5h+ovX//9PgGOW+rx2oQZNSCSGE+9EQAh/XSQRMKE2EIyGGy8jzRJzd2XloTYcTpcuN68vP7rsNGaWDuWHv/1YtxWXaA3/khW9wjTG53Ueah5TmzHDkUj0Ee9EwEBBDkYydFAaDS3OoNaH3jYW3vdnuihk2fMbw5rEszMtDM7Loqa+9/rR0IIBbCqPvOeTXuoau6isaWXh2RPDqhoB0NzWrTu5N9UqP8QbvSWJDgghxqHWw1sADOrZdQS1B9N9iqLUGjtEiSQ48UwE1BLkEIzMHqsikLVXMjyL6y4cScn4CTzy0iYqqho43tTZ6/g0q5lf3ng6v1y+QZOFMjgvg+9/81ROE0WewINwJ/HJ4wq48+rZve576clDeOC5DTjjYDk6XdDUag+7aoR30IIWa3zMiDwumjeGokFZCdfwL5nRm2A7DfgEyEatjVeJWiuvBLWy+KVCiHmKohwweJwSSUhinQgYaZCDCTh71ijMZlNAa2/+BDX8OTPdyi+uO53a423c8cfV1DWoFSHystNZdst8jjW2023X5jZrbOnEYjF5JtFwJ3GA7Mx0yirqeiUNL12+Pm5h2mYT5GWr01ooYfGHd9BCvK3x/kw4CbZtwGxFUSq8dwghSlFF6zfAZYaMTgdCiBtQ86dGAl8AP1UUZV2Q46cAjwFzUHtI/Ql4SBahlWglksgv91rEDZec4pnQ/Vl75eXlnnPqG9q5+8m1HlEalJvBAzfPY/TQPHYfOK65Kri/HBv3JL61ok7X5/h4cxWrPq86kTTsdOm+hpEU5qdTMjwb6C0sn2yupqU9eMVxf0ELidYdub+gV5hOB+73FSUARVHKhRCPAT8zZGQ6EEJcDTyJ2pbjM+AHwPtCiGmKouzzc3wRamml7cC3gOnAMsABPBKrcUuSm3AivwI9bYey9mqPtXHXk2s4clRdzh2Sn8myW+YzoqdTbqQ5Xe5JfPnr2/hgwwFdoePeScNmU6gevNFlSF5ar9duYbl6wST+9/8+ZV9Nk9/zQgUtJHo79FRDrzA1AMF6RruAmKY7CyFMwC+BpxVF+WXPtg8BBfgJ8EM/p92K+tkXKYrSBrwjhMgA7hRCPKYoirZmLpJ+jR4xMJvgq18ay/SJRbqfto82dfHwq6upO65aSkWDslh2y3yGDsn2HGNETpfVYuaWr0/DZDKxYk2f5zlNRFIWyQjKD7by6L8PMGu3vZfwZ6Zb+d2Pz5JuuSRBrzA9BDwohPivoigfee8QQpwC/Bh40KjBaaQEOAl4071BUZRuIcQK4MIA55wLrOwRJTevA79AbYS4NkpjlaQQesRgZFEu1yycrHviq2vs4ukV1TS22QEYOmQAy26eT9HgAb2OMzKn6/rFU6iu1bc2Ew5TS4ZgwkRZZb1h7+MCbA1drFi9j517j3Le6SfR2tZNXnYGxYOzPBaRdMslNnqFSaBWFf9QCPE5UM6JBNsv9fz/BUKIC7zOcSmKssCIwQZgQs+/lT7b9wLjhBCWnlp+vud84ud49z7dwuS9FiAJTHu7+tSfKvdrdIGVKg1R0aMKLFTsVnRd23a8k6dWVNHSoZpkBflpXHd+MUdtBzjq5z3nT7Cya29Wn/5N3pQMz2L+BGvA++9wuqg81Mq4IujuzKa+qYv6xm7Du9qagFklGZQMzyYnw05FdSu1jcY5KlyoFdef8mlTUZSfxviR2SycU8jIXBM429i16yiVh1ppbLOTP8BKyYhsLOb4uiRjRaL+HvUK00LACRwEhgBneO2r6vm31OecaNv2eT3/+vYJaAbMqBGEvo7lvADHe19PIgnJwjmF2I53BhWD8T0Vr/Vw+FgnT79TTWuPKBUPTOeGi0eSNyDwT9ZiNrHkwpG8vaGOykNt1DV24XSpbsTC/HRKRgxg4ZzCPpOuw+lCqWrh0+0N1Dd10tTqxIV6XkFeGhNHZZOZbmZLpb5WHMEoGqgGKVjMJhbPLeK1NTZqGxsNu34gahu7qW1swHa8k6vPG8F7n9VTUdPqEd9Q9yoYblHvjwJnNHrzmHwTbBOBUA0r/a0ABOupFlb2RWmprx5L/OF+Mkul+/XwxImGrl3sqW7gmb+to7VDNfSHDkrn4R+dzcDcDE3nT5mMpigyT8WKAG0unC51Iq9r7OakocbWZp41ZQRTJk8C1LFWv1Vj6PVDUVnTzmNvVHO0oaPXROB0qa7A2oYuWrrSNHWiTeZW6/H+PW7evNnv9rBaqycY7sesXMDbwZELOBRF8bcA0EjfKui5XvskEs0YGVK8++Bx7nl6Ha09oc0jhmRw/UUjNYuS95iCRZHpqVjhAvYfMc5aGjs8r1f0W7wKrtY3BI7T0tqJNlR7k1RptR5rUkGY3KHrY+m9zjQW2B3knLE+29yv9S0ESCQ9RBpSXL7vGPcuX0d7pxroMGH0QK44awhZGRajhugh0ooV4ZKRZubyCyb02hZJwdVooqUTbaj7mEqt1mNJKkh4Ber61iXuDUKINNSSSSsDnLMSOFcIke217RLgKGpyrkQSU7btqeeep9d6RKn05MHcf9M8w0TJ7nCyZZeND9Yf4LOdh/lid21c2nJ0djv59Yub+NFvP+Gp18qwO5wUDMwkUZdi3J1o/aG18oe3wEm0kfQWk6IoLiHEr4E/CiGOo7bm+D5QAPweoKe+X6GiKOt7TnscNQn3HSHEw8A04E7gDkVRumL9GST9m62767jvuQ109dS5mzJuCPcsOZ2sjMh/nv7WP8wmDI+y04Ovm+uOq2eSZo19JXItBOtEq8cFKVut6yMVLCYURXkcuA34LvAKMBC4QFEUdwj43cA6r+MPo+YyWXuOvxG4S1EUWfVBElM277Jx37PrPaJ06vhC7r3eGFFyr3+sWL2PKtuJdhzxFCVv3G6uO/+0OiFFCYJ3otXjgpSt1vWR9BaTG0VRfgv8NsC+a1AbGXpv2wTMj/rAJJIAbNxxhF+9+JnHxTNjYhE/v2Y26WnGuO/itY6kBxeE1Uo9VgTrRBtpGShJYFLCYpJIko01ZTU8+MJGjyjNmTyUu641TpSSqb17NFq6h6JgYCahlrVCVclwV/7Qgmy1rg8pTBJJjFn1eTUP/WUTjh6f2rypw7j9qlmkWY2LvotXCHaiM6ooh4VnjOGJ289h6vjCgOKkpROtuwxUOALnHYyyZZdNBkb4kDKuPIkkGfho00Eee/lzzzrPmaeN4KeXT8fibn1RUUd9QweD8tIB2Lm7gfwBVsZPCByy7I9YhmAHa3ZoNLlZabR2qFUagmXJ+2PxmWN71Ss0oteSlmaC3gKXzMm4sUQKk0SiEW/hKBiY6WmOp5UPNhzgj//6wtMC/eyZo/jht0/D6XTxzGtlbK2o41BtS5/gBLMJPvyiWdfENTA3Xc9HCxt3s0OTycTGHUeob2hXyxmZwWwyaXLTWS3ajgNobu/GhNqFt2BgFpVVDZqCOSxmmD6xyPBeS3qaCcpkXO1IYZJIQmDEU+6KNft48t9lntfnzzmJW78xDafLFbICg9Olb+KyO5y8sWpvwP1Gcsr4Alwu+GznYep6KimYgCF5mQzItHLgSHB3ogkYWZTDgcPNmq0fF3CsqZNjTZ1kpGkLMw+2xuObGN3RZefVjyqoqWtheGEOi88aR2Z64KlSq8DJZFztSGGS9HuCWUJGPOW+sWoPz7yx3fP64nknc9OlUzGbTSx/bZvmyDmtE9ezb25nW5Rbm+dkpXHGtOF8Vm6jrKL3e7nAI1I5WWkBO8e63Vy3XzWTG5b9J2SHWX9oESUtrT4A2jrs3P7HVVTXtvSy4F7+UGFkUQ4P//DMkAIVKE8pnGTc/mw1SWGS9Fu0WEKRPuW++lEFL6zY6Xm9+MxxLFk0GZPJFFbkXKiJKxbReGNH5LHslvl8/+GPQ+bmtLR3c/KwXJxOArq5nn1ze1ii5CbYGpeWIAZQraQlD3zgdxx2h4v9h5u59r4PeP6e84OKUyBkMq4+pDBJ+iVaLKGDR5o53tQR9lPuyx8q/PW9XZ7X3zh7PFddXIqpp/14uJFzwSauSKPx3NbFiMIctu85GlBMlr++TXPCqNMJv/3xmezcd7SPm8stpJHQZXcwe3Ixh+vbqK5txunS72q97Q+rQopjS3s3t/1hFf/3s7N1j1Em4+pDCpOkX6LJEtLhDvMWC5fLxV/f28U//nOihvBl5wm+c4HwiBKEHzkXbOLSe02TCVwBJvJAayZ2h5ONO49ofo9Ddc3s3Hc0oJAeijDB1umCOVOG8ZUZo3j7o800tdqZUjpWcxBDR5ddc5JvdW0LHV123VaTTMbVhxQmSb8jGu4ut1i4XC5eeHsn//7kRKH7Ky+ayLfPFX3O0TNZeWMxw/GmDj5Yf6DPmpiea5pNcMWFExmUl+l3sT7QmklZRR1Hg7SM8CWYkNqOtUdcIsk9kVstZsRINeG1VIcb7I3/7tEcFWh3uHjy1a1MGlOgKzLTnYxbZQstgDIZVwqTpB8SjeRTi1kNYX7mje28+emJiLhrF07ma18p8XuOnsnKG5PJxF/f2+XXZaXnmiOLcvnaV8brXmSvbwjt3vQlkAWweZd2yysQkU7ker8LKzdVs3JTtS53oTsZt9rWEvTeaQ3USHX696eX9EuikXw6vCCH9duP9BKlGy6ZElCUQHvlAF/sDpfHynCvia1YvY+ly9Xi+eFWI9CK3jYVVouJSWOG9NludzipqWvV/f6+TBmnXnvLLhsblQaUqhZdlRS0lhXyxffeh3pP94NDJNUm+gtSmCT9Dre7Swua518TvLfugOfl974xjUVfGhfytFCTlVa8owOjPQFOHV/IiCLtk7nd4eK2P6zqM3GXVdRRUx+55brq82q+e++7/PKZ9bzyaS3Pf1DTq99TKBafNQ6rJfy/gPe9D4Y7GXfBGWMYXZzr+Q5azDC6OJcFZ4zh3utlci1IV56kH6LP3ZXD4LxMyirrA7pgBuVmeK5lMsEPvnkq5805SdNYfCsHuKPKvDGbwGwOXR3BHR0IxpTbCTbmaeMLdbkg9x9uZunT61h641zP+xpluba023u91puQnJluZWRRDvsPh98+3l9kZqD8uEirTfQHpDBJ+h16/P1uy8LfJD+8IAeH00VNveqOMpvgx5dP5yszRukej+9kNTA3HVwmynfvo6nNzodbjmm6lnd0YDQnwCWLprBjz1H2HW7SfM7Wyvpe+V7hBn9oRU8lhV/degZX3vOep7BuOLjv/SnjCjVVCunPeUqhkMIk6ZfoKb7pTzhys9J49ZNKdu0/DqgWzc++M4MvnTYi7DH5m6xyTMfZqGirBwd9I+CiNQFaLWYumn8yj79SFvpgL7ytinCDP/Sg1ZL563u7IhIlUO997fF2WQ/PAKQwSfoleopvep9zyrhClr+xjY83VdHRdaIcTk6mle1765k7dZjhE07+AGtC5sAUDxqgu027t0Wn1XKNlFCWzPDCHI43RZ7QajHDpp1HZD08A5DCJOm36PX32x1O7n16Hdv29E28bWrr5p21+9mw4whP3nFOWGVrAlEyIjshc2AmjR1CmlVbEVU3vhad23KNtPpDqPcMZskYZbENL8ihpq5V1sMzAHlXJP0et7vrvNkneZ7k/fHUa2V+Rcmbo40d3PKblYY2frOYTVEPAXejp4Hdiyt26hIl6GvRuS3XqSUFYY9Zy3uGsmQixQQMK8zWHGXotuIk/pEWk0SigebWLj7eVKXp2PqGDp55Yzs3f804V43ehnR60dvaI9wad/4sOqvFzNe/UsKOvfVRCYTQasmEi/vezywtZuMOm6ZzZD284EiLSSIJQWt7N7f/8VM6u7XPmht3HDHUanJbFhfPH0PhwCyP9WREDoy7oO2K1fuosrV4xCFYAmk41TOCWa84jSMAACAASURBVHTuQAij0WvJhMJqMXmSi33vffGgAZrz42Q9vOBIi0kiCUJLWxf3PL2OKp2FRusb2/1WAA+3C67bolHXwtQusWon10ymjBsSUV5SOK09wslBCmbRRSMQIhxLJtT1Ljj9ZGZPLva7Hinr4RmHFCaJJACNLZ3c89Q69tY06j7X5ertqomkC67D6b/Lrbsh37tr93OorjWsEORwG9jpzUGaPbmYO6+eHXR8odyVoOY+ZWVYe93DrIw0ANo6unG61HyykUUn7mtZRV3E+VJukbt+ceC/kxH18MJ9cEk1pDBJJH443tzB3U+u5cARtRpA7oA0LGYTDS1dms73dtVE2gX37fV1lFU0RCUEOdwGdnqsg1HFOSFFCbSH8AN9oijd27aX7yUv28rCs2eEZcnkZKUxKDeDmnp9Dw9uwl0LjOTBJRVJCWESQswDlgGnAW3Af4DbFEUJaL8LIb4OvOJn1w8URfljVAYqSQqONXVw1xNrPD16BuZk8MDN83hn7T7eWbtf0zW8XTWRdMF1OF1U1EQvBDncBnZ6rIPhBdl89FmVJgvAHcLf0WXnzVV7qKlrZXhhNovOHNcrBN9f0vB0UUyW85jnOt7X1DrWL88YqVpZYVbLCCc/LtIHl1Qk6YVJCFEKrAQ+BC4HBgH3A+8LIWYpihKoLeU0oBL4rs/2fdEaqyR8YuXiqG9o564n1njKDA3Oy+CBm+czqjiXGy45hQ07joSMpvJ21YTrKnNTeaiV+kZtbcfDackdSQM7La639DQLn+20sWGHTZMFEMhy+O+WQwEnde/vRbrThcVP6XO9lT4iqZahNz8ukgeXVCXphQn4PnAY+LpbhIQQFcBG4DzgnQDnTQU2K4qyPiajlIRFLF0ctmNt3PXEGmzH2gAoyM9k2S3zPdFiVouZJ+84h1t+s5L6AI3yfF014brK3DS22cMqR6RVyCNZsA9mHVgtauKtd55TKAtAj+XgcuH3e1GQl07JiAGMnyD6WE3RLGzrDy0CF+mDS6qSCsK0A9jpYxkpPf+OCXLeVOCZqI1KEjGxdHEcrm/lrifXUHe8HYCiQVksu2U+Q4dk9zouM93K8p+fxzNvbGfjjiPUN7YHbE0O4bvK3OQPsGou+2MxQ35OOk+9VqZZyCNdsPdnHazffjhoFFwgC0Cr5bD89W0cqmv1+72wNXRha+iiZfn6Pt+LRKzsHemDS6picrmiWaUqPgghrgBeAs5VFGWln/25QCPwKqpLbwxQDtyhKEogCysgmzdvdg0YMCCyQfcT2tvViT8rKyvksW+srWXNzoaQx82fPJDFc4vCHlNtQxdPv1NFU5v6dD8kL40bLx7JoJy0oOc5nC4qa1pparWTl22lZHh2HzeSUtXC8x/UaBIWswmuvWC4pz04QEtrG0+sOEJdkz3ImSpF+WnkDbBSebg94DElw7NYcuHIXuN0OF08+141lTWBzxs/PIvrfM7zh8Pp4vf/3k9tQ2j3Y/HAdH78tZOwmE26zstKN9PeFVrtI/1exIKNSgOvfFqr+fhvfqmIWWKgYe+v5/cYDdra2pgxY0afL1VCW0xCiDQgWLc1m6Iox33OGQU8AmwCPgpw3imoD4FjgJ8CduB7wFtCiHMVRfk40rFLIsO96K+FykNtOAKsLYTCdryTp96ppqVdFaXCfFWU8rODixKopYK8RcQfJSOyKchP0zThFuanUzK8t4VmMZsYOyyTuqbQT9VmiymoKAFU1rTz9oa6XhO2xWxiyYUjeXtDHZWH2qhr7PKEXRfmq66xhXMKNd1fPWtidY1dVNa0Ikbm6DpPiyipYwn/exEr9FjEZhPkZSf0lG0Yif4pR6BaMoH4CfCo+0WPKK1ErWhxmaIogf7cO4EFwGpFUZp6zv0Q2Ar8AtAtTKWlpXpP6ZeUl6t/zlD3a8suG0ebKjRds76piy7rEN0ujn01jTzz8lqPKI0qzmXZzfMYlGdsRv7s3XZWrN4X0lU2a8oIpkye1Gt7eXk5l8zPpMPZEHThfur4Ao41dgChw9mr6h191mAApkwmYjdXVeMBnK4aTcc6XZCdX0Rp6Um6ztNKuN+LWDJ+gpMPvmjS2LQyt1cYvBFo/T1Gi82bN/vdntDCpCjKfjR2txZCTAHeBdKA8xRF2RPkug34BEUoiuLoESffKD1JHIh0bSYUldUN3PPUWprb1Kf0k4fl8cDN88jPydA71JBEWufOYjaFXLifLgpZ9vxGTeMJtlYRaURauFF+0WgamAz16IxIyk1FElqYtCKEmAO8h7pudLaiKEEftYUQpwEzFEXxDX7IAoKXj5bEhEjCmEOhHDjGvU+vo7VDXbcZNzKf+26cR152erjDDYoREWGhFu4/WH8gqkKulXCj/KLRNDBZ6tFFu0BvMpL0wiSEGINqKR0BzlEURYs/4FRguRBis6Ion/dcJwu4uOdakjgTrbpjO/cdZeny9bR3qqIkRg9i6Y1zyckKvaYUCUZFhAWyaKIp5HoI1wLQUyvPZFJLPoUiWerRxSOUPdFJemFCXWPKA24FRgshRnvtO6AoymEhRB4wCdijKEod8C/gTuBfQoi7gHbgNiAHeCCmo5f4JRoujm2V9dz37HpP59lJYwZz7/WnMyAzuqLkTbRanUci5EYnL4drAWhJ2AVtohQN11c0k7wTMZQ9niS1MPVE7V0MWIC/+TnkNtQIvemoAQ3XAi8oitIihDgHeAj4A6ogrQbOVBRFW9MdSdQx0sXxxe5a7n9uI109CZ9TSwr4xXVzyMpI6p+ABz0Wx7ACNbUhWsnL4VoAwc7LykijpV1b1B6E5/oKJDyxTPKO1oNLspGSeUyxZvPmza4ZM2bEexhJgd4oILvDGbGLY1O5jQdf2Ei3XfVznTqhkLuunW1o+/NICTQp6rlfdoeTpcv7JiT7YjbBiMIc2rvsHG3oCBLpVxhx8nK4FoD3eQNz03n+zZ2aWo9YzDB7Yj7/e82ZmscdTHimjBvCodoWyirro3qf4kUiROUlXR6TRBKpi2P99sP85s+fYXeo08rM0mLuvHoW6WmWaA9dE6GexudPsGrOwwlkcfjidBFykjeqPlu4FoD3eVt22TQ3+nO5YNLobM0iEaq6yEFbc/D3o//VsYsFUpgkSUE4E9yarTU8/NImHD3Zi3MmD+X2q2aSZk0MUdJScmnXXrVSg1a8hfxXL26MqEFeotRn05M64HRBU2voKhluQpVB0kKi3KdUQt5FSUryyZZqHvISpfnThnPH1bMSRpRAW204d6WGcDhcr61yRjDcOU/xxB1xqAU91RG0FlDVQiLcp1RCCpMk5Vj52UF+97fNOHtE6azTRnLbFcZmzEeKnkmx8lAbdp2Zp3qKgwYjEZJU3RGHWvBX1ikQRt0jSIz7lEokzi9VIjGA99fv57F/fO4JKT5n1ih+8p3pWBJIlEDfpFjX2KX7aVyP+ysYiZCk6o44DLXSZgJKRgzQvCZn1D2CxLhPqYRcY5KkDCtW7+XJ17Z5Xl9w+kl87+vTMCdgEU+96ya1x9vZssumOYfGqBI/kSSpGpn3ozV1YOEc7ZW3jSyDlCzJvMmCFCZJSvD6f/fw7JvbPa8Xzh/DjZeegsmUeKIE+ifFf36ocKypQ3O4vBElfoIlqQYTnWjk/WjNjarYrYS+WA9GlUHqD3XsYtVB2o0UJknS86+Vu/nzOyeK0F9y1jiu++rkhBUl0D8p1nl1zNXSKFFPwq0/AiUvhxKdqxdM4oHnNkaluaPR1REivUeQ+nXsYplc7I0UJknS4nK5ePnD3fzt/V2ebd88Zzzfvag0oUUJjJkUQ+XQaCnxUzAwk6wMq6ZJR0t4+7pthznW6D9pV8uYtWBkdQQtLsKp4wsYWZTLtsr+Vcculh2kfZHCJElKXC4Xf3m3nH+tPFFI/jvnCy47XyS8KLnRWhsuGMFyaLS6vwBNFoiW8HYtkWmJlPejp3xSf6tjp7XVfTSSi6UwSZIOl8vF82/v5LVPKj3brrq4lG+eMyGOo9JPsElxcF5mL/ddMEL1V9Li/gplgRiZ8xNqzN7vGWhdw8g1D633qD/VsdP6947WQ4YUJklS4XK5WP7Gdt76dK9n25JFk7nkrJI4jip8Ak2KtmNtPP5KmaZraMmhiXRSNTLnB4KPOVTtOkxqpfhISzj54nuP7A6nrkjIVELP31vLQ4ZepDBJkgan08UT/y7jvXX7PdtuuvQUFp4xNm5jMgrfSXHLLltC9FdyY2TODwQeczi16yIp4eSPeC34JxLR7iAdCilMkqTA4XTxx39+wX8+O+jZdus3pnHh3JPjN6goEq1GieFidOvzQGOOpHaddwmnKZPDG1c8F/wTiXg3nkzdOytJGRwOJ4/+fYtHlEwm+NG3T01ZUYITUXuhiFUOjZ6yQKEINGaj1rHCKeHkRs+Cf6rhdl1+sP4ADqeTYQXaSjtF48FIWkyShMbucPLbv25m9dYaQC3S+ZPLp/PlGaPiPLLos2TRFHbtPUJlTbvf/bHMoXELpRHJqIHGbNQ6lruEk941j3gv+McLu8PFU6+V9XFdZmWE7uwcrQcjKUyShKXb7uThlzaxbtthACxmEz+7cgZnTBsR55HFBqvFzJILR/L2hjqq6h1xz6FZsmgKO/YcZd/hJt3nahmzUetYTld4ax7xXvCPBw6ni+fer2ZPTXsf12WojsHRfDCSwiRJSLq6Hfzqxc/YVK72E7JaTPzvd2cx95RhcR5ZbLGYTSyeW8T4/2/vzuOjKs8Fjv+yJ0BYJAFEBEHCA4hBFlnVqpUWRaGW69JWSxVU6KptbeuGIKDWemv1tgqIYK96rXWtgvsuhEVRCSi8hNWwJ0gCISQhmbl/nJkQhslkZpKZc2bm+X4+fJI5y/Dk5GSe857zvu/TR2wfQ5OakswDvz6X6+55O6Qy5/l5OUy8oHeTMbfUc6zkpPCeedj9wN8Oi1eUNNoib6hNVhpHqo/qzA8qcVXV1HLvolV8sdGaUTstNZnbJp3N2f272ByZfaIxhiaYsUGZ6amcP6Qbi5duDfp9yw5WB5VIW2ruutx26WE987D7gX+01da5KNoVXM2uDm0z+O1lgyg7VBOVCyNNTMpRqqprmbVwJYWbSgFIT03mjuuHM1g62RxZ/Aq1e/Tk8QP4est+tuwK7pZesLe9WmKaJrBKX4Tzoem0npCRVlhUQml5cC3fXSUVpCQnM2ZYjwhHZYn9J3cqblRWHWXGghX1SSkjPYW7bxihSSmCvN2jlyzdSvHeivrWgrd79JKlW5nx+IrjermlpiQzdmTPoP+PUG57TR4/gPwgai/5kwTkdc3i0uHhJYxQ6j7Fw2zipWVVuIK8Aoj2rcvYPrIqblQcOcr0+cv5ast+ALIyUph5w8iYvyp1unC7R3c+KSvocueh3PbyTtM07pyedO+cHfT/kZGWwiWje3L92G5hz/wATSfGeJpNPKd9JsEeqmjfutRbecp2hyprmD6vgE07ygFonZnKjBtH0rfHSTZHFt+a0z06kre9fKdpeumDTawpKg24T/XROpKSaFZS8v7fwU7qGuvy83LJaZfGvrKmb+dF+9alJiZlq/KKau6aV8BWz/OKNllpzLppFL1PDb4SqQpPc7pHB/s8qDm3vVJTksnvncuC/wQ3mLWwqJTRfbq0SHJqybpPTpWakkzeKa3ZV1YWcDs7bl3GRWISkdeAS/2syjbG+P3LE5EM4H7gR0Br4C3g18aYXRELVB3nwKEq7pxbwDd7rPnP2rZOZ/bUUfTs2s7myFpGtKt+hirU7tG+5d0njetP8d4K1hSVNLpfR8924Qo1eW7alY10a5kZKhJhNvFLh+ey90D1CeOYvOy6dRkXiQkYCDwM/MtneWWAfeYC44HfARXAfcDrIjLEGFMXkShVvf3lR7hzbgE79lkfOu2zM5g9dRQ9urS1ObLmi5VJQEPpHp2E//LuZ5zekR37DrK/vNrvfvvLqpi9cFXYc8uFmjwPHq4N+f9IZCnJSUwe241lG2sddesy5hOTiLQHTgXeNMasCHKf04GfAj82xjznWbYGMMAE4KUIhauAsoqjPPToMnaXWmMoTmqbyZxpo+jWKdvmyJovliYBDeU5kRv/5d39zfbtu19zismFmjx3f1uNKa4gr098TBcUDSnJSY67dRkPvznv2R5c8RrLhZ6vi70LjDFFwFfA2BaKS/nx7aGjPLa4uD4p5bTP4r5fjI6LpASxNQlosN2jm6th54lQhTJ5rBtY+lU5i97exW/++0PmvVwY9mSuich763LMsB4Mls62JvaYbzFhJaZqYLaITACygCXAr4wxexrZpw+wxxjjO+x5i2ddyNavXx/ObgmltLyGeUuKKa+07pR2aJPKlO93obykmPLGH1PEjDqXm1XrdgTVy+3TdTuDKmp35Ig1XUykzq/RfVLZsCUrqGlpmmPHvkMsfn91WM9/uuekUrw3+O1d7mOtuQ1b9jC5mV3I41mkz69wOToxiUgacHqATfZiJaYM4BBwOdALmA28LyKDjDH+bn639Wzv6xDWbUHVwvaV1TDv9WIOeZJSx7Zp3HRJN9q3aXoG41ixaefhoEfSl5TXsGnX4RZ7UB8u7zOGxStL2LSzkpLyGlxua765rPRkDle3TIvD5Q7/+Y/3AX04ydNbn2nCSB2kHUscnZiAU4BAqfwW4K/As8aYDzzLPhaR9cAK4ErgKT/7JUGjF7Zh/SX269cvnN0SwvbdB1nwXEF9UurULp0HfnM+Hdtl2RxZyyou347LHVynTpcbWrfrRL9+gad48V7JRvr8GnCGpx6P2cd/Pt7MrpIKSstabqR/SjIM6NeLfmH2cvtL374njC0KVnFpHXl9RJ85+RGt86sxq1ev9rvc0YnJGLMNgroFvsFnv5UiUobVW89fYioH/D3UyPasUy1k665y7pxbwMHDNQB07pDOjRd3i7ukBPExCeirH29hbVFps4v1+WruAE3fsUWrN+xj8SdbgppSJ15KVCSSmL+EEJGrReQ8n2VJWLf3GhsuXgR0ERHfT8deWD3zVAsoKj7A7Y8uq09KPbu25aZLupHdytHXQ2EL5UG9EycBbU5Z80BacoCm9wF9j85tHTvPmwpOoI4pMZ+YgGnAwyLS8Ge5BKsTxMeN7PMekAJc5l0gInnAGZ51qpk2bP+WO+cW1Nft6X1qe+ZMG02brPhMShDbk4C2VFlzX5EaoOltnQbDqa3TRFcYYGB2PHxK3Au8ATwtIouwetXNAl40xhQAiEhboD+w2RhTYozZLCLPA4+LSDvgANYA20LgFTt+iHjy1Zb9zFywnCPV1jMl6dGBmTeMpHVW/HR0aMzk8QMo3lvRaMvDqZOAhlvW3JtkT8ltw7rN+6M2QDPRSlTEo9KyKjo28pEQ84nJGPOWiIwHpmMllXJgIXBXg80GAx8A1wFPepZdBzwE/Bmr5fgu1pREOutDMxRuKuGeJ1ZSXWMdxv49T+LuKSNolRn/SQmcMQloOFMhhVrWPCkJTu10/M8TyQGa/n6mSM/VpyIrp30m7kbqFMZ8YgIwxiymwWBZP+s/xKcThWcM042ef6oFfG72MWfhSmpqrU+4/N453HX9cDIz4uI0C5pdk4A2ZyqkUGdYuGZsX354Qd5x7xeJueUC/UwDTu9Ifu8cCjf576zh1NapsuTn5bLmyx1+1yXWJ4aKmE+/3sO9T35a/0BzUJ9cbr9uGJnpiXuKRXMS0OZOhRTKrbFTO2efkJQiIZif6czeOVwyuidrNx1rnSYnQbdOzpqXUJ0o0O8lcT81VItZvnY3Dzz1KbV11sfH0H6duW3S2aSnpdgcWeIIZSokf3PWRaOMRaiC+ZnWbiqle5dsHv7d+RRuKmHd+i20bZ3KpRcO0YQUwzQxqWZZumYnDz69mjpP392RZ57MrdcMJS1VPxSipTkF/xpyUseNUH8mgMHSmSzXt0Dgq3HlfPrbU2H7cHUxf3nqs/qkdM7ArvzhWk1K0RZOwT9/GitrnpIM3TtnM+6cntw9JTqzorfUz6Rik7aYVFjeXbWdR/79JW7PJe35Q7px81WDSNEr1ajb++2RkGoWBRps6pTqraHWYdIBtPFFE5MK2ZvLt/GPF9bUv77o7O788sqzdAbnKPP2WFu5bnfQ+wQ72NTu6q3xML2TCp8mJhWSxUu3MO/ltfWvLx55GlN/mE+yJqWoaqzHWlNiZbCpDqBNbHrfRQXt5Q83HZeULju3F9MmalKyQzjz2sXSYNNYnt5JNZ/+NlVQ/v3uRha+9lX968vP780NEwaQlKRJKdrCmdcuFgebTh4/gPwAySkWfyYVHL2VpwJyu908+7bh2bePTbp+5UV9uGZsX01KNgl1Xrvc9pkMH3ByzA02dcL0TsoemphUo9xuN0+9sZ7n3yuqX/aTsX25eozYGJUKdV67K8cIY0ecFrF4IskpvQRVdGliUn653W4WvvYVr3y0uX7ZpHH9+a8L82yMSkHoPdY6dYj9oox29xJU0aWXHOoELpeb+S+vPS4pTR4/QJOSQ8R6QUKlmqKJSR3H5XLz6ItrWLxsa/2yqZefyQ++c7qNUamGtMeaind6xqp6dS43j/z7C95asR2wau788oqBjDunl82RKV/aY03FM33GpACoq3Px0LNf8NEXVn2U5CT49VWD+O7Z3W2OTPmjPdZUPNPEpKitc/HgM6tZtmYXAMnJSdzyo8GcP7ibzZGpQLTHmopXmpgS3NHaOv78v5+x8qs9AKQkJ3HrNUMZPbCrzZGpYGmPNRVvNDElsJqjddz3z0/5bP1eAFJTkvjjT89mxICTbY5MKZXINDElqKqaWuYsWsWXG606Nmmpydz+s2EM7adX3kope2liSkBHqmuZ9cRK1m62Kn+mp6Vw1/XDOKtPJ5sjU0opTUwJp7LqKDMeX8H6bVYJ6sz0FKZPGcGZp+fYHJlSSlk0MSWQiiNHmTF/OeabAwBkZaQy44YR9O/Z0ebIlFLqGE1MCeLg4Rqmzy9g845yAFpnpjLzxpFIj5NsjkwppY4X84lJRLYBPRpZPcMYM7OR/SYCL/hZ9StjzN9bJjpnKK+o5s65BWzbfRCA7FZp3HPTKHp3a29zZEopdaKYT0zA5UCGz7LfAhcD/wqw30BgE3Ctz/KtfraNWQcOVnHH3AKK9x4CoG3rdGZPHUXPru1sjkwppfyL+cRkjPmi4WsRGYqVrG40xhj/ewGQD6w2xqyIZHx22l9+hDseW8bOksMAtM/OYPbUUfTo0tbmyJRSqnHxOG/JI8Aq4MkmtssHCiMejU32Hajktn8cS0ontc3kvp+P1qSklHK8mG8xNSQiE4CRwChjjDvAdtnAacAgEdkI9ATWA38yxrwejVgjac/+w9zx2DL2HTgCQG6HLOZMHc3JOa1tjkwppZqW5HY3+vltOxFJAwIVAtprjDnQYPsPgRRjzLlNvO8oYBmwGpgB1AI/B8YBFxljPgglztWrV7tbtWoVyi4RU1Jew/zXd1B+uBaAk7LTuOmSbnTITrM5MsuRI1ayzMqK/aqq0aDHKzR6vEJj9/GqrKxkyJAhJ1RvcXqL6RSslkxjbgH+BiAiAnwHuCKI9/0aKwktNcYc9Oz/DrAGuBMIKTE5xd4D1cx/YweHKusAyGmbxo3jutG+tTOSklJKBcPRickYsw2aLNTpNQGoABYH8b5lwOs+y+o8ycm3l15Q+vXrF85uLWb77oM88a+C+qTUrVMb5kwbzUltM22Ny9f69dZ1ht3HK1bo8QpNOMerts5FYVEJpWVV5LTPJD8vccqG2H1+rV692u9yRyemEI0F3jDGVDW1oYgMAoYYYxb4rMoCSiMRXCRt3lHGXfOWc6iyBoAeXbKZNXUUHbKdlZSUcpKjtS4WvraONUUl7Cqp0EKLDhIXR11EkoChQLBdv88CHvckKO97ZAGXAB+1fISRs/GbA9wxt6A+KfXq2o4500ZrUlIqgNo6FzMXrGDJ0q0U77WSEkCdC77Ze4glS7cy4/EV1HpXqKiKi8SENfNDNuB33JKItBWRESKS61n0PFAEPC8iV4nIeOBtoA0wOxoBt4QN277lrnkFHD5yFIC8U9szZ9oo2rXxHW+slGrIKklfQmNdv9xAYVEJT7y6LpphKY94SUzeeg1ljawfDCzH6vCAMaYC+C7wKda4p2eBSuA8Y0xxZENtGes2lzJ9fgGVVVbvu749OjDrplG0aZVuc2RKOVttnYs1AZKSl5WcSrXVZIO4eMZkjFlFgE4SxpgPfdd7EtCPIhtZZKzZWMKsRSuprrE6OpzRqyPTJw+nVab2vlOqKYWeZ0rB2FlyiMJNJVq6PsriIjElks837GPOopXU1FpXcfm9c7jr+uFkZuivUqlglJZVEWwjqM4F+8ub7E+lWph+msWQVV/v4b4nP62/tTC4bydu/9kwMtJSbI5MqdiR0z6TlGSCSk4pydCxnXYkirZ4ecYU95av3cV9T66qT0rD+nfhzus0KSkVqvy8XLrmtglq21Nys8nvndv0hqpFaWKKAZ98sZP7//czauusx7UjzzyZP006m7RUTUpKhSo1JZmBeblNjtxPAvLzcnQskw30iDvc+58V8+Azn+FyWUnpvLNO4Q/XDiUtVX91SoVr8vgB5AdITknAwD65TB4/IJphKQ/9dHOwd1Zu52//+hxPTuKCId347U+G6BWcUs2UmpLMjBtGMO6cnnTvnI33TyolGbp3zmbcOT25e8oI/VuziXZ+cKg3Crby6IvHykWNGdadX1xxFinJwU4dqJQKJDUlmZsuz7fmyttUwv7yKjq2yyS/d+LMledUmpgc6NVPNvP4K8dGnF886jSmXp5PsiYlpVpcakqyjlNyGE1MDvPSB0UsWvx1/evx5/ZiyoQBJCVpUlJKJQZNTA7y3DuGp9/cUP964gW9mTSuvyYlpVRC0cTkAG63m2fe2sBz72ysX3bVmD785Pt9NSkppRKOJiabud1u270XxQAAC/tJREFU/rnka178YFP9sp+M7cvVY8TGqJRSyj6amGzkdrtZ8Oo6Xv14S/2yn43rz8QL82yMSiml7KWJySYul5t5LxfyesG2+mVTJgxgwnmn2xeUUko5gCYmG7hcbv7xwhreXrm9ftm0iflcMqqnjVEppZQzaGKKsjqXm0ee+4L3P7PqESYlwS+vOIvvDe9hc2RKKeUMmpiiqK7OxV+f/ZyPv9gJQHIS/ObqwVw49FSbI1NKKefQxBQlR2tdPPjMZxQU7gYgOTmJ3/14MOcN6mZzZEop5SyamKLgaG0d9//zM1Z9vQeAlOQkbr12KKPzu9ocmVJKOY8mpgirPlrHvU+u4vMN+wBrXq7bJp3NsDO62ByZUko5kyamCKqqqWXOwlV8WVQCQFpqMndcN4whfXXCSKVaQm2di8KiEkrLqshpn0m6y60z8McBTUwRcqS6lnueWMG6zfsBSE9LYfr1wxnYR8s0K9VcR2tdLHxtHWuKSthVUkGdy6qllNM2nd6ntCKvj2jpihimiSkCDh85yswFK1i/7VsAMtNTmD5lBGeenmNzZErFvto6FzMXrKCwqAR3g+V1LthbVsPeshoqHl/BjBu00F+s0t9aC6uorGH6/IL6pNQqM5V7bhylSUmpFvLEq+tOSEq+CotKeOLVdQG2UE4WMy0mEckG1gG/M8a84LPuXOBB4ExgJ3CfMWZhE+/XAXgIuAwrQb8I/NYYczDcGA8eruGueQVs2VkOQOusNO65cSR9uncI9y2VUg3U1rlY00RSAnADhUWl1Na5tNUUg2LiN+ZJSv8BuvtZ1w94E9gK/BBYDDwhIv/VxNu+CJwPTAVuBsYD/xdujGWHqrnjsWX1SSm7VRpzpo7SpKRUCyr0PFMKxs6SQxRuKolwRCoSHN9iEpHvAHOBxrqy/QnYBvzIGOMG3hSRHGA68IK/HUTkAuACYIQxZqVn2Q7gXREZbIz5PNQ4b39sKcV7rT+Ydm3SmT11NKed3DbUt1FKBVBaVkWdK7ht61ywv7wqsgGpiIiFFtMrwFpgbCPrLwIWe5JSw33OFJHGRrBeBOzzJiWPD4CDAf6fgLxJqUN2BvdO06SkVCTktM8k2DtzKcnQsV1mZANSERELielcY8yVwD7fFSLSGugKbPJZ5S1w1KeR9+zju48xxoXV8mpsnyZ1bJfJfb84h+5dNCkpFQn5ebl0zW0T1Lan5GaT31uHZ8Qi227liUgaEKj40F5jzAFjTKCuNd4McMhn+SGf9f72893Hu19YWaV9m1SmfL8LB0uLOVgazjskhiNHjgCwfv16myOJDXq8TtQ9J5XivU1vd2pOCkUbTeQDimFOPb/sfMZ0ChDoaNwC/K2J9/AO8W6sk05jd6OTAqwL8g728W4e3wWopbKyNpzdE05lZaXdIcQUPV7HjBnYhjEDg2s16XELjtOOk22JyRizjWOJJVzert3ZPsu9r8sb2a8cONnP8mwg5EusIUOG6BwoSinVQmLhGVOjjDEVwG6gl88q7+vGkkyR7z4ikgycFmAfpZRSURDTicnjPeAyEUlpsOwHwDpjzAkdJhrsc7KIDGuw7AKs50vvRSZMpZRSwXD8OKYgPAh8CjwvIo8DY4BrgCu8G4hILlZHi689Mzu8D6wEXhKRW4E0z/ssMcasjnL8SimlGoj5FpMxZg3WtEK9gJeBS4HrfKYtGgcsBwZ79nFjzfSwDJgP/BV4Dfhx9CJXSinlT5Lb3dSsU0oppVT0xHyLSSmlVHzRxKSUUspRNDEppZRyFE1MSimlHEUTk1JKKUeJh3FMtmrpyrqJRERew+re7yvbM6tHQhORG4A/AN2AL7EqLC+3NypnEpGOgL/pk180xjRVNDShiMh44BljTHaDZUnA7cBNQA7WUJpfGWM22BGjtpiaIUKVdRPJQOBhYKTPP2fNKGkDEZmEVSDzaWAiUAa8JSI9bQ3MuQZ6vn6P48+l22yLyIFEZBTWOeU7v+d04E6sC+mrgXbAeyLSLroRWrTFFKZIVNZNJCLSHjgVeNMYs8LueJzEc/U6E5hvjJnpWfYO1jyOtwC/tjE8p8rHKpXzjt2BOJGIZAC/AWYBh4H0Buuygd8DM4wxj3iWfQJsByZjTUAQVdpiCl8kKusmknzP10Jbo3Cm3kAP4FXvAmPMUWAJYVZYTgD56LkUyMVYrcdbgf/xWTcCaMPx59sB4CNsOt80MYUvEpV1E0k+UA3MFpH9IlIpIs+LSBe7A3MA7/nh7/w53WfCYmXJB1qJSIGIVInIDhG51dP6VNZ8oj09LSLf6X6859tmn+VbsOmzSm/l+bC5sm5cCOYYYn2QZGAdk8ux5jqcDbwvIoOMMdURD9S5Ap0/yUBrjtUiS3ieRN0f6xbV77FuQY0D7geygHvsi84ZjDE7A6xuC1QbY2p8lodd0bu5NDGdyM7KuvEimGP4V+BZY8wHnmUfi8h6YAVwJfBUZEN0tEQ/f8JxKfCNMcbbyvxQRNoAfxSRB4wxVTbG5nRJOOxc08Tkw+bKunEhhGN4XFdUY8xKESnD6mGVyInJe35kY7UuafC6TrvSH88YU4dVysbXm8BUrGd2ge5wJLpyIENE0jzPMr2ysemzSp8xRUAzKusmDBG5WkTO81mWhHV7z994lERS5Pnq7/zZGOVYHE9EuorIjZ66aw1leb4m+vnUlCKsC0nfoQi9sOmzShNT5IRTWTeRTAMe9pS097oE68PkY3tCcowioBjrfAHqn9uNQyss+5MBzMMqENrQRGCjMWZP9EOKKQVAFcefbx2A72DT+aa38iKnycq6Ce5e4A3gaRFZhNX7ZxbWSP0CWyOzmTHGLSL3A38XkQNYo/B/iTUi/yFbg3MgY8xWEXkWmCUiLqznm1dgJaYfBNxZYYypEJH/4djx2wjcgfVIYoEdMWmLKUKCrKybsIwxb2FVEe6NNb7rDmAhcK2dcTmFMeZRrDEn12INyG4PfN8YsyXgjolrMvAIcDPWeJyhwERjzKsB91Jet2Nd9Pwe+D+sZ0sXGWNsecakFWyVUko5iraYlFJKOYomJqWUUo6iiUkppZSjaGJSSinlKJqYlFJKOYomJqWUUo6iiUmpGCUibhGZG8Z+vlMdKeUoOvODUglEROZjVQ6+2O5YlGqMtpiUSizfo/mz5ysVUZqYlFJKOYreylMqBojINcAfseYW/AprbriG6zM866/Cmp/RBawFZhtjFnu28c4/1sPz/QXGmA9FpCtwN9btvS5ABbAU+KMxJlDBR6UiQltMSjmciEzGKpxYijWx6xrgI5/NnsSaCPdNrJnI/wz0AF4REfFsc63nPQo9368XkSzgE6xJhucBPweexrrl96ZP2RalokJbTEo5mCcx3ItVo+oiT7VWRGQbcI/n+5OxWkrTjTGzG+y7AngL+C5gjDFPi8hsYLcx5mnPNt4W1rnGmKUN9q0AbgME+DrCP6ZSx9EWk1LONhjoBCzyJiWPv3u/McbsBtoB/+1d5kloGZ6XbRp7c2PMc0Ann6TUCvDe9mt0X6UiRVtMSjnbaZ6vx9VhMsYcEJGGlZCrgZ+KyPeAvkAekOlZ19QFqFtE7gRGYrWQTgO8t/D04lVFnSYmpWJDpp9lyQCe50TLgAFYpbCXAF8CW4GVgd5URPphdXRIAt4BFgGrsW7v/aOFYlcqJJqYlHK2rZ6vecDb3oUiko1Vah3gSmAQ8GNjzLMNthkRxPv/AcgG8owx2xvs+6dmxq1U2LSZrpSzfQ4UAz/3dAn3mtrg+46er/Vdu0UkCfiF52XDC9A6jv+774hVRntng32zgUl+9lUqKvSkU8rBjDEuEbkZeB74RESewnoONAmo9Gz2LlALPCMij3mWXQkMxxrPlN3gLUuAISJyE/CG599lwH9E5BUgF2uMVFfP9g33VSoqtMWklMMZY14CJmD9vT4AnA9MBA541hdiJaJaz/rbgUPAaKxnTec3eLt7gMPAw8C5wFzgLqA/8AgwBfgQOAsrqTXcV6moSHK73U1vpZRSSkWJtpiUUko5iiYmpZRSjqKJSSmllKNoYlJKKeUompiUUko5iiYmpZRSjqKJSSmllKNoYlJKKeUompiUUko5yv8D3rzv5s1CKlMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(6,6))\n", "plt.scatter(tee_data, tee_ppc);\n", "plt.plot([-10, 12],[-10,12]);\n", "plt.xlim([-10,12])\n", "plt.ylim([-10,12])\n", "plt.xlabel(\"data\")\n", "plt.ylabel(\"ppc\")" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.26000000000000001" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(np.array(tee_ppc) >= np.array(tee_data))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus any asymmetry can be simply explained by sampling variation.\n", "\n", "In this way, this model is adequate for some purposes but not for others." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }