Lecture 9

Information Theory and Simulated Annealing

Last Time:

- BackPropagation
- Neural Nets and Universal Approximation
- KL-Divergence

TODAY

- KL divergence
- entropy and cross-entropy
- maximum entropy distributions

Model Comparison

- deviance and a simulation to understand it
- AIC as a in-sample correction for overfitting

MORE TODAY

- Baseball example and AIC for linear Regression
- AIC and variable (feature) selection
- local search with random starts
- simulated annealing

What did we learn about learning?

- x-validation: minimizes loss on training, fits hyperparams on validation
- test risk approximates out-of-sample risk
- regularization or complexity selection helps avoid overfitting
- we have seen the context of supervised learning p(y|x)

In unsupervised learning, want p(x). Also need to learn these params using MLE or similar.

KL-Divergence

$$egin{aligned} D_{KL}(p,q) &= E_p[log(p) - log(q)] = E_p[log(p)] \ &= \sum_i p_i log(rac{p_i}{q_i}) \,\, or \, \int dPlog(rac{p}{q}) \ \end{aligned}$$

 $D_{KL}(p,p)=0$

KL divergence measures distance/dissimilarity of the two distributions p(x) and q(x).

log(p/q)]

KL-Divergence is always non-negative

Jensen's inequality: given a convex function f(x):

$E[f(X)] \ge f(E[X])$

$\implies D_{KL}(p,q) \geq 0$ (0 iff $q = p \forall x$).

 $D_{KL}(p,q) = E_p[log(p/q)] = E_p[-log(q/p)] \geq -\log(E_p[q/p]) = -\log(\int dQ) = 0$

PROBLEM: we dont know distribution p. If we did, why do inference?SOLUTION: Use the empirical distribution That is, approximate population expectations by sample averages.

Maximum Likelihood justification

$$D_{KL}(p,q) = E_p[log(p/q)] = rac{1}{N}\sum_i (log(p_q))$$

Minimizing KL-divergence \implies maximizing $\sum_{i} log(q_i)$

Which is exactly the log likelihood! MLE!

$(p_i) - log(q_i)$

Information and Uncertainty

- coin at 50% odds has maximal uncertainty
- reflects my lack of knowledge of the physics
- many ways for 50% heads.
- an election with p = 0.99 has a lot of Information

information is the reduction in uncertainty from learning an outcome

Information Entropy, a measure of uncertainty

Desiderata:

- must be continuous so that there are no jumps
- must be additive across events or states, and must increase as the number of events/states increases

$$H(p)=-E_p[log(p)]=-\int p(x)log(p(x))dx ~~O.$$

 $PR - \sum_{i} p_i log(p_i)$

Entropy for coin fairness

 $H(p)=-E_p[log(p)]=-p*log(p)-(1-p)*log(1-p)$

ent = -(p*math.log(p) + (1-p)*math.log(1-p))

Maximum Entropy (MAXENT)

- finding distributions consistent with constraints and the current state of our information
- what would be the least surprising distribution?
- The one with the least additional assumptions?

The distribution that can happen in the most ways is the one with the highest entropy

For a gaussian

$$p(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

$$H(p)=E_p[log(p)]=E_p[-rac{1}{2}log(2\pi\sigma^2)-(x)]$$

$$= -rac{1}{2} log(2\pi\sigma^2) - rac{1}{2\sigma^2} E_p[(x-\mu)^2] = -rac{1}{2} log(2\pi\sigma^2) + rac{1}{2} e_p[(x-\mu)^2] = -rac{1}{2} e_p[(x-\mu)^2]$$

 $(x-\mu)^2/2\sigma^2]$

 $-rac{1}{2}=rac{1}{2}log(2\pi e\sigma^2)$

Cross Entropy

$H(p,q) = -E_p[log(q)]$

Then one can write:

$D_{KL}(p,q) = H(p,q) - H(p)$

KL-Divergence is additional entropy introduced by using q instead of p.

We saw this for Logistic regression

- H(p,q) and $D_{KL}(p,q)$ are not symmetric.
- if you use a unusual, low entropy distribution to approximate a usual one, you will be more surprised than if you used a high entropy, many choices one to approximate an unusual one.

Corollary: if we use a high entropy distribution to approximate the true one, we will incur lesser error.

Gaussian is MAXENT for fixed mean and variance

Consider $D_{KL}(q,p) = E_q[log(q/p)] = H(q,p) - H(q) >= 0$

$$H(q,p)=E_q[log(p)]=-rac{1}{2}log(2\pi\sigma^2)-rac{1}{2\sigma^2}$$

 $E_q[(x - \mu)^2]$ is CONSTRAINED to be σ^2 .

$$H(q,p) = -rac{1}{2} log(2\pi\sigma^2) - rac{1}{2} = -rac{1}{2} log(2\pi e\sigma^2) =$$

$\frac{1}{2}E_{q}[(x-\mu)^{2}]$

= H(p) > = H(q)!!!

Importance of MAXENT

- most common distributions used as likelihoods (and priors) are in the exponential family, MAXENT subject to different constraints.
- gamma: MAXENT all distributions with the same mean and same average logarithm.
- exponential: MAXENT all non-negative continuous distributions with the same average inter-event displacement

Importance of MAXENT

- Information entropy enumerates the number of ways a distribution can arise, after having fixed some assumptions.
- choosing a maxent distribution as a likelihood means that once the constraints has been met, no additional assumptions.

The most conservative distribution we could choose consistent with our constraints!

r ways a ssumptions. neans that onc

MODEL COMPARISON

Likelihood Ratio

H(p) cancels out!!

$$D_{KL}(p,q)-D_{KL}(p,r)=H(p,q)-H(p,r)=E_p[log(r)-$$

In the sample approximation we have:

$$D_{KL}(p,q) - D_{KL}(p,r) = rac{1}{N}\sum_i log(rac{r_i}{q_i}) = rac{1}{N}log(rac{\Gamma}{\Gamma})$$

$- \log(q)] = E_p[log(rac{r}{q})]$

 $rac{\prod_i r_i}{\prod_i q_i}) = rac{1}{N} log(rac{\mathcal{L}_r}{\mathcal{L}_a})$

Model Comparison: Deviance

You only need the sample averages of the logarithm of r and q:

$$D_{KL}(p,q) - D_{KL}(p,r) = \langle log(r)
angle - \langle$$

Define the deviance:
$$D(q) = -2\sum_i log(q_i)$$
, a risk

although the distribution need not be a likelihood)...

$$D_{KL}(p,q)-D_{KL}(p,r)=rac{2}{N}(D(q)-$$

 $\langle log(q)
angle$

k (e.g., - $2 imes \ell$,

-D(r))

Example

Generate data from:

$$\mu_i = 0.15 x_{1,i} - 0.4 x_{2,i}, \; y \sim N(\mu,1)$$

2 parameter model.

Generate 10,000 realizations, for 1-5 parameters, 20 data points and 100 data points.

Split into train and test, and do OLS.

Train to Test

AIC

The test set deviances are 2 * p above the training set ones.

Akake **Information Criterion**:

AIC estimates out-of-sample deviance

$$AIC = D_{train} + 2p$$

- Assumption: likelihood is approximately multivariate gaussian.
- penalized log-likelihood or risk if we choose to identify our distribution with the likelihood: REGULARIZATION
- high *p* increases the out-of-sample deviance, less desirable.

Baseball data set

Description: Salaries in 1992 and 27 performance statistics for 337 baseball players (no pitchers) in 1991.

	salary	average	obp	runs	hits	doubles	triples	homeruns	rbis	walks	SOS	sbs	errors	freeagent	arbitration	ru
0	3300	0.272	0.302	69	153	21	4	31	104	22	80	4	4	1	0	0.
1	2600	0.269	0.335	58	111	17	2	18	66	39	69	0	4	1	0	0.
2	2500	0.249	0.337	54	115	15	1	17	73	63	116	6	6	1	0	0.
3	2475	0.260	0.292	59	128	22	7	12	50	23	64	21	22	0	1	0.!
4	2313	0.273	0.346	87	169	28	5	8	58	70	53	3	9	0	1	1.)

(from http://www.amstat.org/publications/jse/v6n2/datasets.watnik.html)

AIC for Linear Regression

 $AIC = D_{train} + 2p$ where $D(q) = -2\sum_{i} log(q_i) = -2\ell$

$$\sigma^2_{MLE} = rac{1}{N}SSE$$

$$AIC = -2(-rac{N}{2}(log(2\pi) + log(\sigma^2)) - 2(-rac{1}{2\sigma_M^2})$$

AIC = Nlog(SSE/N) + 2p + constant

-- imes SSE) + 2pLE

Local Search with Random starts

- wish to find best set of features for prediction
- want parsimonious model, no overfitting
- Combinatoric search is hard
- 2^{27} sized search space for baseball problem
- make local perturbations

from sklearn.linear_model import LinearRegression

```
runs aic = np.empty((nstarts, iterations))
                                                                        -380
for i in range(nstarts):
    run_current = runs[i]
                                                                        -390
    for j in range(iterations):
        # Extract current set of predictors
        run_vars = predictors[predictors.columns[run_current]]
        g = LinearRegression().fit(X=run_vars, y=logsalary)
                                                                        -400
        run_aic = aic(g, run_vars, logsalary)
        run_next = run_current
        # Test all models in 1-neighborhood and select lowest AIC
                                                                        -410
        for k in range(ncols):
            run_step = run_current.copy()
            run_step[k] = not run_current[k]
            run_vars = predictors[predictors.columns[run_step]]
            g = LinearRegression().fit(X=run vars, y=logsalary)
                                                                        -420
            step_aic = aic(g, run_vars, logsalary)
            if step_aic < run_aic:</pre>
                run_next = run_step.copy()
                run_aic = step_aic
                                                                        -430
                                                                                       2
                                                                             0
                                                                                                  4
        run_current = run_next.copy()
        runs_aic[i,j] = run_aic
```

runs[i] = run_current

FEATURES

arbitration	5	BEST SOLUTION: (array([1, 2, 5, 7, 9, 11, 1
rbis	5	
freeagent	5	
obppererror	4	0 -420.000042669
SOS	4	1 -418.380197435
hitsperso	3	2 -419.743167044
sbshits	3	3 -418.611888647
hitspererror	3	4 -418.611888647
sbsobp	3	AICs
soserrors	2	
runs	2	
hrsperso	2	

Features present in most starts, left, best solution, right top, AICs, right

12, 13, 14, 15, 24, 25]),)

NEED GLOBAL OPTIM

Example:
$$x^2 + 4sin(2x)$$

Observations:

If you identify a distribution $p(x) = e^{-f(x)}$ one may define a secondary distribution:

$$p_T(x) = e^{-f(x)/T} = P(x)^{1/T}$$

- [O1]: the exponentiation ensures that the peak from global minimum is favored over the rest in *f*
- [O2]: you get a peakier distribution as $T \rightarrow 0$ around the global minimum: distribution \rightarrow optimum!

Physical Annealing

A system is first heated to a melting state and then cooled down slowly.

- when solid is heated, its molecules start moving randomly, and its energy increases
- [O3]: if subsequent process of cooling is slow, the energy decreases slowly, with some random increases governed by the **Boltzmann distribution**
- if cooling slow and deep enough, system will eventually settle down to the lowest energy state with minimal potential energy

Simulated Annealing

Minimize f by identifying with the energy of an imaginary physical system undergoing an annealing process.

Move from x_i to x_j via a **proposal**.

If the new state has lower energy, accept x_i .

[O3]: If the new state has higher energy, accept with probability

$$A=\exp\left(-\Delta f/kT
ight)$$

- stochastic acceptance of higher energy states, allows our process to escape local minima.
- When T is high, the acceptance of these uphill moves is higher, and local minima are discouraged.
- As T is lowered, more concentrated search near current local minimum, since only few uphill moves will be allowed.
- Thus, if we get our temperature decrease schedule right, we can hope that we will converge to a global minimum.

If the lowering of the temperature is sufficiently slow, the system reaches "thermal equilibrium" at each temperature. Then Boltzmann's distribution applies:

$$p(X=i) = rac{1}{Z(T)} \mathrm{exp}\left(rac{-E_i}{kT}
ight)$$

where

$$Z(T) = \sum_j \exp\left(rac{-E_j}{kT}
ight)$$

Proposal

- it proposes a new position x from a **neighborhood** \mathcal{N} at which to evaluate the function.
- all the positions x in the domain we wish to minimize a function f over ought to be able to communicate.
- detailed balance: proposal is symmetric
- ensures $\{x_t\}$ generated by simulated annealing is a stationary markov chain with target boltzmann distribution: equilibrium

The Simulated Annealing Algorithm

- 1. Initialize $x_i, T, L(T)$ where L = iterations at a particular temperature.
- 2. Perform *L* transitions: (a) propose x_i (b) If x_i is accepted (according to probability $P=e^{(-\Delta E/T)}$), set $x_{i+1}=x_{i}$, else set $x_{i+1}=x_{i}$
- 3. Update T and L, go to 2


```
def sa(energyfunc, initials, epochs, tempfunc, iterfunc, proposalfunc):
    accumulator=[]
    best solution = old solution = initials['solution']
   T=initials['T']
    length=initials['length']
   best_energy = old_energy = energyfunc(old_solution)
    accepted=0
    total=0
    for index in range(epochs):
        print("Epoch", index)
        if index > 0:
           T = tempfunc(T)
            length=iterfunc(length)
        print("Temperature", T, "Length", length)
        for it in range(length):
            total+=<mark>1</mark>
            new solution = proposalfunc(old solution)
            new_energy = energyfunc(new_solution)
            # Use a min here as you could get a "probability" > 1
            alpha = min(1, np.exp((old_energy - new_energy)/T))
            if ((new_energy < old_energy) or (np.random.uniform() < alpha)):</pre>
                # Accept proposed solution
                accepted+=1
                accumulator.append((T, new solution, new energy))
                if new_energy < best_energy:</pre>
                    # Replace previous best with this one
                    best_energy = new_energy
                    best solution = new solution
                    best_index=total
                    best temp=T
                old_energy = new_energy
                old_solution = new_solution
            else:
                # Keep the old stuff
                accumulator.append((T, old_solution, old_energy))
    best_meta=dict(index=best_index, temp=best_temp)
   print("frac accepted", accepted/total, "total iterations", total, 'bmeta', best meta)
```

return best_meta, best_solution, best_energy, accumulator


```
tf = lambda t: 0.8*t #temperature function
itf = lambda length: math.ceil(1.2*length) #iteration function
inits=dict(solution=8, length=100, T=100)
bmeta, bs, be, out = sa(f, inits, 30, tf, itf, pf)
```

Epoch 0 Temperature 100 Length 100 Epoch 1 Temperature 80.0 Length 120 Epoch 2 Temperature 64.0 Length 144 Epoch 3 Temperature 51.2 Length 173 Epoch 4 Temperature 40.9600000000001 Length 208 Epoch 5 Temperature 32.7680000000001 Length 250 Epoch 6 Temperature 26.2144000000001 Length 300 Epoch 7 Temperature 20.9715200000001 Length 360 . . . Epoch 27 Temperature 0.24178516392292618 Length 13863 Epoch 28 Temperature 0.19342813113834095 Length 16636 Epoch 29 Temperature 0.15474250491067276 Length 19964 frac accepted 0.7921531132581857 total iterations 119232 bmeta {'index': 112695, 'temp': 0.15474250491067276}

