
Lecture 9

Informa(on Theory and Simulated 
Annealing



Last Time:

• BackPropaga+on

• Neural Nets and Universal Approxima+on

• KL-Divergence



TODAY

• KL divergence

• entropy and cross-entropy

• maximum entropy distribu8ons

Model Comparison

• deviance and a simula.on to understand it

• AIC as a in-sample correc.on for overfi9ng



MORE TODAY

• Baseball example and AIC for linear Regression

• AIC and variable (feature) selec=on

• local search with random starts

• simulated annealing



What did we learn about learning?

• x-valida)on: minimizes loss on training, fits hyperparams on 
valida)on

• test risk approximates out-of-sample risk

• regulariza)on or complexity selec)on helps avoid overfi>ng

• we have seen the context of supervised learning 

In unsupervised learning, want . Also need to learn these 
params using MLE or similar.



KL-Divergence

KL divergence measures distance/dissimilarity of the two 
distribu9ons p(x) and q(x).



KL-Divergence is always non-nega3ve

Jensen's inequality: given a convex func5on :

 (0 iff ).



PROBLEM: we dont know distribu6on . If we 
did, why do inference?

SOLUTION: Use the empirical distribu8on
That is, approximate popula1on expecta1ons 

by sample averages.



Maximum Likelihood jus1fica1on

Minimizing KL-divergence  maximizing 

Which is exactly the log likelihood! MLE!



Informa(on and Uncertainty

• coin at 50% odds has maximal uncertainty

• reflects my lack of knowledge of the physics

• many ways for 50% heads.

• an elec=on with  has a lot of Informa=on

informa(on is the reduc(on in uncertainty from learning an outcome



Informa(on Entropy, a measure of uncertainty

Desiderata:
- must be con2nuous so that there are no jumps
- must be addi2ve across events or states, and must increase as the 
number of events/states increases



Entropy for coin fairness

def h(p):
    if p==1.:
        ent = 0
    elif p==0.:
        ent = 0
    else:
        ent = - (p*math.log(p) + (1-p)* math.log(1-p))



Maximum Entropy (MAXENT)

• finding distribu-ons consistent with constraints and the current 
state of our informa-on

• what would be the least surprising distribu-on?

• The one with the least addi-onal assump-ons?

The distribu,on that can happen in the most ways is the one with 
the highest entropy



For a gaussian



Cross Entropy

Then one can write:

KL-Divergence is addi0onal entropy introduced by using  instead 
of .

We saw this for Logis/c regression



•  and  are not symmetric.

• if you use a unusual , low entropy distribu7on to approximate a 
usual one, you will be more surprised than if you used a high 
entropy, many choices one to approximate an unusual one.

Corollary: if we use a high entropy distribu6on 
to approximate the true one, we will incur 

lesser error.



Gaussian is MAXENT for fixed mean and variance

Consider 

 is CONSTRAINED to be .



Importance of MAXENT

• most common distribu.ons used as likelihoods (and priors) are in 

the exponen.al family, MAXENT subject to different constraints.

• gamma: MAXENT all distribu.ons with the same mean and same 

average logarithm.

• exponen.al: MAXENT all non-nega.ve con.nuous distribu.ons 

with the same average inter-event displacement



Importance of MAXENT

• Informa)on entropy enumerates the number of ways a 
distribu)on can arise, a8er having fixed some assump)ons.

• choosing a maxent distribu)on as a likelihood means that once 
the constraints has been met, no addi)onal assump)ons.

The most conserva.ve distribu.on we could 
choose consistent with our constraints!



MODEL COMPARISON



Likelihood Ra,o

 cancels out!!

In the sample approxima0on we have:



Model Comparison: Deviance

You only need the sample averages of the logarithm of  and :

Define the deviance: , a risk (e.g., - , 

although the distribu:on need not be a likelihood)...



Example

Generate data from:

2 parameter model.

Generate 10,000 realiza.ons, for 1-5 parameters, 20 data points 
and 100 data points.

Split into train and test, and do OLS.



Train to Test



AIC

The test set deviances are  above the training set ones.



Akake Informa(on Criterion:

AIC es#mates out-of-sample deviance

• Assump'on: likelihood is approximately mul'variate gaussian.

• penalized log-likelihood or risk if we choose to iden'fy our 
distribu'on with the likelihood: REGULARIZATION

• high  increases the out-of-sample deviance, less desirable.



Baseball data set
Description: Salaries in 1992 and 27 performance statistics for 337 baseball 

players (no pitchers) in 1991.

(from h(p://www.amstat.org/publica7ons/jse/v6n2/datasets.watnik.html)



AIC for Linear Regression

 where 



Local Search with Random starts

• wish to find best set of features for predic4on

• want parsimonious model, no overfi9ng

• Combinatoric search is hard

•  sized search space for baseball problem

• make local perturba4ons



from sklearn.linear_model import LinearRegression

runs_aic = np.empty((nstarts, iterations))

for i in range(nstarts):

    run_current = runs[i]

    for j in range(iterations):

        # Extract current set of predictors
        run_vars = predictors[predictors.columns[run_current]]
        g = LinearRegression().fit(X=run_vars, y=logsalary)
        run_aic = aic(g, run_vars, logsalary)
        run_next = run_current

        # Test all models in 1-neighborhood and select lowest AIC
        for k in range(ncols):
            run_step = run_current.copy()
            run_step[k] = not run_current[k]
            run_vars = predictors[predictors.columns[run_step]]
            g = LinearRegression().fit(X=run_vars, y=logsalary)
            step_aic = aic(g, run_vars, logsalary)
            if step_aic < run_aic:
                run_next = run_step.copy()
                run_aic = step_aic

        run_current = run_next.copy()
        runs_aic[i,j] = run_aic

    runs[i] = run_current



FEATURES

arbitration     5   BEST SOLUTION: (array([ 1,  2,  5,  7,  9, 11, 12, 13, 14, 15, 24, 25]),)
rbis            5
freeagent       5
obppererror     4       0 -420.000042669
sos             4       1 -418.380197435
hitsperso       3       2 -419.743167044
sbshits         3       3 -418.611888647
hitspererror    3       4 -418.611888647
sbsobp          3       AICs
soserrors       2
runs            2
hrsperso        2

Features present in most starts, le0, best solu2on, right top, AICs, right



NEED GLOBAL OPTIM



Example: 



Observa(ons:

If you iden+fy a distribu+on  
one may define a secondary distribu+on:

• [O1]: the exponen/a/on ensures that 
the peak from global minimum is 
favored over the rest in 

• [O2]: you get a peakier distribu/on as 
 around the global minimum: 

distribu/on  op/mum!



Physical Annealing
A system is first heated to a mel0ng state and then cooled down slowly.

• when solid is heated, its molecules start moving randomly, and 
its energy increases

• [O3]: if subsequent process of cooling is slow, the energy 
decreases slowly, with some random increases governed by the 
Boltzmann distribuAon

• if cooling slow and deep enough, system will eventually seBle 
down to the lowest energy state with minimal potenAal energy



Simulated Annealing

Minimize  by iden+fying with the energy of an imaginary physical 
system undergoing an annealing process.

Move from  to  via a proposal.

If the new state has lower energy, accept .

[O3]: If the new state has higher energy, accept with probability



• stochas(c acceptance of higher energy states, allows our process 
to escape local minima.

• When T is high, the acceptance of these uphill moves is higher, 
and local minima are discouraged.

• As T is lowered, more concentrated search near current local 
minimum, since only few uphill moves will be allowed.

• Thus, if we get our temperature decrease schedule right, we can 
hope that we will converge to a global minimum.



If the lowering of the temperature is sufficiently slow, the system 
reaches "thermal equilibrium" at each temperature. Then 
Boltzmann's distribu@on applies:

 where

 



Proposal

• it proposes a new posi-on x from a neighborhood  at which to 
evaluate the func-on.

• all the posi-ons x in the domain we wish to minimize a func-on 
 over ought to be able to communicate.

• detailed balance: proposal is symmetric

• ensures  generated by simulated annealing is a sta-onary 
markov chain with target boltzmann distribu-on: equilibrium



The Simulated Annealing Algorithm

1. Ini&alize  where  = itera&ons at a par&cular 
temperature.

2. Perform  transi&ons:
(a) propose  (b) If  is accepted (according to probability 

 ), set , else set 

3. Update T and L, go to 2



def sa(energyfunc, initials, epochs, tempfunc, iterfunc, proposalfunc):
    accumulator=[]
    best_solution = old_solution = initials['solution']
    T=initials['T']
    length=initials['length']
    best_energy = old_energy = energyfunc(old_solution)
    accepted=0
    total=0
    for index in range(epochs):
        print("Epoch", index)
        if index > 0:
            T = tempfunc(T)
            length=iterfunc(length)
        print("Temperature", T, "Length", length)
        for it in range(length):
            total+=1
            new_solution = proposalfunc(old_solution)
            new_energy = energyfunc(new_solution)
            # Use a min here as you could get a "probability" > 1
            alpha = min(1, np.exp((old_energy - new_energy)/T))
            if ((new_energy < old_energy) or (np.random.uniform() < alpha)):
                # Accept proposed solution
                accepted+=1
                accumulator.append((T, new_solution, new_energy))
                if new_energy < best_energy:
                    # Replace previous best with this one
                    best_energy = new_energy
                    best_solution = new_solution
                    best_index=total
                    best_temp=T
                old_energy = new_energy
                old_solution = new_solution
            else:
                # Keep the old stuff
                accumulator.append((T, old_solution, old_energy))

    best_meta=dict(index=best_index, temp=best_temp)
    print("frac accepted", accepted/total, "total iterations", total, 'bmeta', best_meta)
    return best_meta, best_solution, best_energy, accumulator



tf = lambda t: 0.8*t #temperature function
itf = lambda length: math.ceil(1.2*length) #iteration function
inits=dict(solution=8, length=100, T=100)
bmeta, bs, be, out = sa(f, inits, 30, tf, itf, pf)

Epoch 0
Temperature 100 Length 100
Epoch 1
Temperature 80.0 Length 120
Epoch 2
Temperature 64.0 Length 144
Epoch 3
Temperature 51.2 Length 173
Epoch 4
Temperature 40.96000000000001 Length 208
Epoch 5
Temperature 32.76800000000001 Length 250
Epoch 6
Temperature 26.21440000000001 Length 300
Epoch 7
Temperature 20.97152000000001 Length 360
...
Epoch 27
Temperature 0.24178516392292618 Length 13863
Epoch 28
Temperature 0.19342813113834095 Length 16636
Epoch 29
Temperature 0.15474250491067276 Length 19964
frac accepted 0.7921531132581857 total iterations 119232 bmeta {'index': 112695, 'temp': 0.15474250491067276}




