Lecture 8

Neural Nets and Information Theory



Last Times:

Machine Learning

SGD for minimizing a loss
regularization

logistic log-loss

Thinking in units, autodiff



Today

BackPropagation

Neural Nets and Universal Approximation
KL-Divergence, entropy and cross-entropy
maximum entropy distributions

deviance

AlIC



What did we learn about learning?

e X-validation: minimizes loss on training, fits hyperparams on
validation

e test risk approximates out-of-sample risk
e regularization or complexity selection helps avoid overfitting

e we have seen the context of supervised learning p(y|x)

In unsupervised learning, want p(z). Also need to learn these
params using MLE or similar.



Something more: Scoring or Decision Loss

we train using log-loss for example

but we can score using a different loss function, example, 1-0
loss (which is not convex)

this Decision Loss depends on the problem at hand

we will come back to this



Logistic Regression

1
1+e 2%

Define h(z) =

Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
Py =0|x) =1 — h(w - x).
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P(y|x,w) = P({yi }|{xi}, H P(y;|xi, w H h(w-x;)% (1 — h(w - Xi))(l_y")
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Units based diagram

h(x W) = T
Sigmoid | . NLL — Cost

Y (yilog(h(w - x;)) + (1 — y,)log(1 — h(w - x,)))



Softmax formulation

ldentify p; and 1 — p; as two separate probabilities constrained
toaddto 1. Thatis py; = p;;p9; = 1 — p;.

6W1 -X

P1i = eWl'X | oWiyX
6W2°X

P2i —

6W]_ X _|_ 6W2 X

Can translate coefficients by fixed amount ¢ without any change



Units diagram for Softmax

Softmax

WX
C 1

>
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log(SM(wy - x, w2 - X)) +



Units diagram Again
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Equations, layer by layer
Zz — X;
Z2 — (Z%,Z%) — (W1 * Xiy, W9 °X7;) — (W1 '/

2 = (4, 2) = (LSMi (2}, ), LSMs (4, 3))

2 = NLL(z®) = NLL(£3,23) = = ¥ (11(9:) 23 () + 12 (y:) 2 (3))



Reverse Mode Differentiation
Cost = f** (£ (£* (' (x))))

aftess o> of? of!

VxU0st = =5~ 3¢ Bl ox
Write as:
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VXCOSt - ((( 8f3 sz ) F) E)



From Reverse Mode to Back Propagation

Recursive Structure
Always a vector times a Jacobian

We add a "cost layer" to $z74%. The derivative of this layer with
respect to $z7°4$ will always be 1.

We then propagate this derivative back.



Layer Cake

Backward
*
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Backpropagation

RULE1: FORWARD (. forward in pytorch) z'*! = f!(z)

RULE2: BACKWARD (.backward in pytorch)

oC oC
l l
O = ﬁoréu_ 0z




In particular:

0z* oC

3 _ _
Ou = 0z 023

RULE 3: PARAMETERS
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(backward pass is thus also used to fill the variable.grad parts
of parameters in pytorch)



THATS IT! Write your Own Layer

Layer / - 80!




2t = f4(2%) 5t =1
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What it looks like?

See https:/github.com/joelgrus/joelnet

Look at the video. A full deep learning library in 35 minutes!



Input

Neural Nets: The perceptron

Non-
linearity

>



Just combine perceptrons

both deep and wide

this buys us complex nonlinearity

both for regression and classification

key technical advance: BackPropagation with
autodiff

key technical advance: gpu



Input

Combine Perceptrons
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Universal Approximation

any one hidden layer net can approximate any continuous
function with finite support, with appropriate choice of
nonlinearity

under appropriate conditions, all of sigmoid, tanh, RELU can
work

but may need lots of units

and will learn the function it thinks the data has, not what you
think



KL-Divergence

D1 (p,q) = Ep|log(p) — log(q)] = Epllog(p/q)]
— sz-log(%) or /dPlog(E)

q

Dgkr,(p,p) =0

KL divergence measures distance/dissimilarity of the two
distributions p(x) and q(x).



KL example

Bernoulli Distribution p with p = 0.3.

Try toapproximate by q. What parameter?

def kld(p,q):
return p*np.log(p/q) + (1-p)*np.log((1-p)/(1-9))
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KL-Divergence is always non-negative

Jensen's inequality: given a convex function f(x):
E[f(X)] = f(E[X])

— DKL (p, Q) >0 (O Iff q — pVa:)

D1 (p,q) = Byllog(n/q)] = Ey[—log(a/p)] > —log(E,[a/p]) = — log( / 4Q) = 0



PROBLEM: we dont know distribution p. If we did, why
do inference?

SOLUTION: Use the empirical distribution

That is, approximate population expectations by sample
averages.

So, E, | f] ~ % Z f(zx;). Go back and see Logistic regression!

%nDtraz’n



Maximum Likelihood justification

1

D1 (p,q) = Eyllog(p/a)) = 7 Y _(log(p:) — log(a:)

Which is exactly the log likelihood! MLE!



Information and Uncertainty

coin at 50% odds has maximal uncertainty
reflects my lack of knowledge of the physics
many ways for 50% heads.

an election with p = 0.99 has a lot of Information

information is the reduction in uncertainty from learning an outcome



Information Entropy, a measure of uncertainty

Desiderata:
- must be continuous so that there are no jumps
- must be additive across events or states, and must increase as the

number of events/states increases

H(p) = ~Eyllogp)] = - [ p(e)iog(p(a))dz OF - > pilog(p)
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Entropy for coin fairness

H(p) = —Ep|log(p)] = —p * log(p) — (1 — p) * log(1 — p)

def h(p):
if p==1.:
ent =

elif p==0.:

ent =
else:
ent =

- (p*math.log(p) + (1-p)* math.log(l-p))



Thermodynamic notion of Entropy

N! L.,
P(ni,ng,...,npy) = T ! H(M) ’

N!
[1; mi!

Multiplicity: W =

Entropy H = %log(W) which is:

1
Nlog(P(nz-, N,y nyr)) sans constant



Using Stirling's approximation log(IN!) ~ Nlog(IN) — N as N — oo
and where fractions n; /N are held fixed:

H = — ZP@ZOQ(Z%:)

A particular arrangement {n; } = (m,n2,n3,...,n37) IS a
microstate and the overall distribution of {p; }, is a macrostate.

Maximize with Largrange multipliers: p; = 1/M all equal.



Maximum Entropy (MAXENT)

e finding distributions consistent with constraints and the current
state of our information

 what would be the least surprising distribution?
e The one with the least additional assumptions?

The distribution that can happen in the most ways is the one with
the highest entropy



Normal as MAXENT
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For a gaussian

1 2 /02
_ —(z—p)"/20
p(z) = —==¢
1
H(p) = Epllog(p)] = Ep[—5log(2m0”) — (z — p)*/20”]
1 1 1 1 1
— —log(2mc?) 52 E,[(x — pn)*] = —Elog(27m2) 5= §log(27rea2)



Cross Entropy

H(p,q) = —E,[log(q)

Then one can write:

Dxkr(p,q) = H(p,q) — H(p)

KL-Divergence is additional entropy introduced by using ¢ instead
of p.

We saw this for Logistic regression



 H(p,q) and Dgry (p, q) are not symmetric.

e |f you use a unusual, low entropy distribution to approximate a
usual one, you will be more surprised than if you used a high
entropy, many choices one to approximate an unusual one.

Corollary: if we use a high entropy distribution
to aproximate the true one, we will incur lesser
error.



Back to the gaussian

Consider Dkr (q,p) = E,4|log(q/p)] = H(q,p) — H(q) >= 0

H(q,p) = E,|log(p)] = —%log(mez) !

2 ECI[(w o :U’)z]

E,[(z — p)*] is CONSTRAINED to be o*.

1

1
H(q,p) = —5109(27702) —

% = —Elog(ZweJZ) = H(p) >= H(q)!"



Importance of MAXENT

e most common distributions used as likelihoods (and priors) are in
the exponential family, MAXENT subject to different constraints.

e gamma: MAXENT all distributions with the same mean and same
average logarithm.

o exponential: MAXENT all non-negative continuous distributions
with the same average inter-event displacement



Importance of MAXENT

e |[nformation entropy ennumerates the number of ways a
distribution can arise, after having fixed some assumptions.

e choosing a maxent distribution as a likelihood means that once
the constraints has been met, no additional assumptions.

The most conservative distribution we could
choose consistent with our constraints!



Model Comparison: Likelihood Ratio

H (p) cancels out!!

Dkr(p,q) — Dxr(p,7) = H(p,q) — H(p,7) = Eyllog(r) — log(q)] = E, [log(g)]

In the sample approximation we have:

rz 1 T 1 L,
Dkr(p,q) — Dkr(p,r) = Zlog - N Q(H.q.)z—l()g(—)




Model Comparison: Deviance

You only need the sample averages of the logarithm of r and ¢:

Dkr(p,q) — Dxr(p,r) = (log(r)) — (log(q))
Define the deviance: D(g) = —2 Z log(g;), arisk (e.g., -2 x ¢,

although the distribution need not be a likelihood)...

Dkr1.(p,q) — Dkr(p,7) = (D(q) — D(r))



deviance
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AlIC
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The test set deviances are 2 * p above the training set ones.



Akake Information Criterion:

AlIC estimates out-of-sample deviance

AIC = Dyyrgin + 2p

e Assumption: likelihood is approximately multivariate gaussian.

e penalized log-likelihood or risk if we choose to identify our
distribution with the likelihood: REGULARIZATION

e high p increases the out-of-sample deviance, less desirable.



