Lecture /
Machine Learning

BackPropagation for Logistic
Regression

@AM 207

Last Times:

e Machine learning, especially supervised learning

e Bias, variance, and overfitting

e Minimized an objective function, called error or cost or risk
e Gradient Descent, SGD on Empirical Risk

e We introduced the test set

@AM 207

Statement of the Learning
5 Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.

&AM 207

LLN: Expectations -> sample averages

Empirical Risk Minimization:

Rp = E,[R] ~ % S R(z:)

on training set(sample) D.

@AM 207

What we'd really like: population

l.e. out of sample RISK

Rt (h,9) = By R(h(2),)] = [dop(@)(h(@) - 9)*(e..).

(Rout) = Ep(z4) [R(h(T),y)] = / dydz p(z,y)R(h(z),y)

/ dydzp(y | z)p(z)R(h(z),y) = / dzp(z) Epyz) [R(h(z),y)]

@AM 207

e This is an average over our sampling distribution, if we had it
e What do we do?

Fit hypothesis h = gp, where D is our training sample.

Then we'd like

<R0ut> — ED [Rout (gD7 y)] y

But:

@AM 207

Gradient Descent.

For a particular sample, we want:

Ryt (hy 1)) = / dzp(z)Vh o (h(z),9) (€. 9.).

LLN: = Vh— Y " Rout(h(z:),4i) ~ Va— ZRm

zEpop 'LED
SGD takes gradient inside sum

@AM 207

Empirical Risk Minimization

 But we only have the in-sample risk
e Furthermore its an empirical risk

e And its not even a full on empirical distribution, as N is usually
quite finite

@AM 207

y=f(93)+€ --------------------------

TARGET P(yl; Q JOINT P(m’@

DISTRIBUTION / ISTRIBUTION
l A
SAMPLE (TRAINING EXAMPLES) / neutr P(2)

(xlayl), (a:Za y2)a°'°a(xnayn) DISTRIBUTION

o

HYPOTHESIS
er M

hlah2a°°-aga-°°ah\l

4

— LEARNER

Y

RISK/ERROR

MEASURE

FINAL N
" nypoTHess 9~ f

&AM 207

UNDERFITTING (Bias)
vs OVERFITTING (Variance)

&AM 207

BALANCE THE COMPLEXITY

10!0
~&— train (n-sampie)
107t
min fest error at d=4

10°

mean squared error

degree

&AM 207

|s this still a test set?

Trouble:

e no discussion on the error bars on our error estimates
e "visually fitting" a value of d =— contaminated test set.

The moment we use it in the learning process, it is not a test set.

@AM 207

IS In-sample

Approximating out-of-sample?

Hoeffding's inequality
population fraction u, sample drawn with replacement, fraction v:
P(lv—p| >¢€) < 2¢ 2N

For hypothesis h, identify 1 with h(z;) # f(x;) at sample z;. Then
1, v are population/sample error rates. Then,

P(|Rin(h) — Rout(h)| > €) < 272N

@AM 207

e Hoeffding inequality holds ONCE we have picked a hypothesis h,
as we need it to label the 1 and Os.

e But over the training set we one by one pick all the models in the
hypothesis space

e best fit g is among the h in ‘H, g must be h; OR hy OR....Say
effectively M such choices:

P(|Rin(9) — Rout(9)| = €) <= Z P(|Rin(hi) — Rout (hi)| > €) <= 2Me 2N
h;,eH

@AM 207

Hoeffding, repharased:

Now let§ = 2 M e 26N,

Then, with probability 1 — §:

1 2M

Rout <= Rzn -+ \/ﬁln(T)

For finite effective hypothesis set size M, R,,,; ~ R;,, as N larger..

@AM 207

Training vs Test

e training error approximates out-of-sample error slowly
e |s test set just another sample like the training sample?

e key observation: test set is looking at only one hypothesis

because the fitting is already done on the training set. So M =1
for this sample!

@AM 207

Training vs Test

e the test set does not have an optimistic bias like the training
set(thats why the larger effective M factor)

e once you start fitting for things like d on the test set, you cant
call it a test set any more since we lose tight guarantee.

e test set has a cost of less data in the training set and must thus
fit a less complex model.

@AM 207

o~
— —
trains 9"
VALIDATION
trains g'1
inH, estimates Ry +(g™1)
e train-test not enough as we fit for d on : :
test set and contaminate it | trains g -
inH, estimates R, +(9™)
e thus do train-validate-test : :
trains g'n
Dataset D inH, estimates R, (0"
A
— —
~ " A_‘Y—J
Training Validation
Set Set
pick H . with lowest Rout(g'.). then retrain in H . on entire set
A A J \ J
VT Y Y
Training Validation Test
Set Set Set
~— —~— - HF_J
Training Set Test Se
®AM 207 wains g. € . tosts 0. € .

estimates Rout(g‘)

If we dont fit a hyperparameter

e first assume that the validation set is acting like a test set.

e validation risk or error is an unbiased estimate of the out of
sample risk.

e Hoeffding bound for a validation set is then identical to that of
the test set.

@AM 207

usually we want to fit a hyperparameter

e we wrongly already attempted to do on our previous test set.

e choose the d, g* combination with the lowest validation set risk.

* R,u(g ",d") has an optimistic bias since d effectively fit on
validation set

e its Hoeffding bound must now take into account the grid-size as
the effective size of the hypothesis space.

@AM 207

e this size from hyperparameters is typically a smaller size than
that from parameters.

Retrain on entire set!

e finally retrain on the entire train+validation set using the
appropriate (¢, d") combination.

e works as training for a given hypothesis space with more data
typically reduces the risk even further.

@AM 207

CROSS-VALIDATION

For hypothesis set H , : D
e
— m—
Fold 1 train g f, estimate R,
Fold 2 train g -, estimate R,
Fold 3 train g5, estimate Rgq
Fold 4 train g4, estimate R,

Calculate total error or risk over folds:

A1+ Reo + Rea + ARy

RAy =
CcvV P
For hypothesis H ,, report RCV Ef?tosg:

@AM 207

nH,

1"". H 1

inH.,

inH,

-~ N

estimates ROCV

estimates R1 cv

estimates R‘CV

estimates RnCV

. H_J
~
Training Validation
Set Set

pick H. with lowest R, , then retrainin 7, on entire set

- e _ \W_J
Training Set Test Set
trains g. € H, testsg. & H.
estimates Rout(g‘)

y.ftnH

y.ftinH,

20

ao

as

1.0

1.5

1.0

as

Qo

&AM 207

ao

as

1.0

20

1.5

1.0

as

Qo

-1.0

-1.5

-2.0

20

ao

as

1.0

1.5

1.0

as

Qo

-1.0

-1.5

-2.0

as

1.0

20

1.5

1.0

as

Qo

-1.0

-1.5

-2.0

-1.0

20

0.5

ao

as

1.0

1.5

1.0

as

Qo

-1.0

-1.5

-2.0
-1.0

0.5

ao

as

1.0

CROSS-VALIDATION

10"

° 10'2

IS 10"’

10'°

107

e aresampling method .
; 10°

e robust to outlier validation set g 1
el [o

e allows for larger training sets i
10'

e allows for error estimates P
10!

Here we find d = 3. o

107

@AM 207

10
degree

~— CV ermor
® test set eror
® wnls

15

Cross Validation considerations

e validation process as one that estimates R,,; directly, on the
validation set.

e |t's critical use is in the model selection process.

e once you do that you can estimate R,,; using the test set as
usual, but now you have also got the benefit of a robust average
and error bars.

e key subtlety: in the risk averaging process, you are actually

@AM 207

- —

High Bias Low Bias
Low Vanance High Variance

REGULARIZATION

Keep higher a-priori complexity and
Impose a

Error or risk —p»

complexity penalty

on risk instead, to choose a SUBSET of

Hpig- We'll make the coefficients small: - N subsets of
. H 13

&AM 207

44— Regulanzer

Regularzed with o =0.2

Unregularized

20

1.0

pr—

as

10 1.0

as

Qo

0.5

/*\5.6‘7%//

B o.
o g

1.5
1.0
as

f

&AM 207

as
aoc
a4
az e .|
Taning
wsling
alpha = 0.0
Qo
ao az a4 aoc as 1.0
X
1.0 .
as
ac
a4
az |, —— L
™ = raning
wsling
. alpha = 1205
Qo
Qo az a4 aoc as 1.0
X
1.0
as
aoc
a4
az f
Taning
wsting
o * alpha = 0.001
ao
ao az a4 aoc as 1.0
X
1.0 prreeg
as
ac
a4
e
a2 |
raning
wsting
* alpha=1
Qo
Qo az a4 aoc as 1.0

abs(coefficient)

abs(coefficient)

abs(coefficient)

abs(coefficient)

-8 alpha = 0.0

—8— alpha = 1e.05

—&— alpha = 0.001

—8— alpha =1

10
wefficients

10
oefficients

- .

10
wefficients

10
oefficients

2

REGULARIZATION

J

2 —I—aZHZ?.

1=0

th — yi—hja:i

y; €D

As we increase a, coefficients go towards
0.

J

Lasso uses o Z |6; |, sets coefficients to
i=0

exactly O.

1.0 1°
~&— alpha = 0.01

107
as
10°
10°
ae =
a 10t
% é
3— 10°
a4
10°
10
az
O
. e— '
. N Tam 1P
. BN wst
* alpha = 0.01
Qo0 - 10-' ’—k.
ao az a4 ae as 1.0 0 5 10
X oefficients

&AM 207

MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)
e "Squeeze" linear regression through a Sigmoid function
e this bounds the output to be a probability

e What is the sampling Distribution?

@AM 207

Sigmoid function

This function is plotted below:

h = lambda z: 1./(1l4np.exp(-2z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x. and h(w - x) with the

probability that the sampleisa'l' (y = 1).

@AM 207

1.0

0.8

0.6

0.4

0.2

0.0

Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y=0|x) =1— h(w - x).

These two can be written together as
P(y|X, W) — h(W . X)y(]_ - h(w . X))(l_y)

BERNOULLI!"

®AM 207

Multiplying over the samples we get:

P(y|X7 W) — P({yz}‘{xz}aw) — H P(yz|xz,w) - H h(w ‘ xz)yZ(]_ — h(W . Xi))(l_yi)

A noisy y is to imagine that our data D was generated from a joint
probability distribution P(z,y). Thus we need to model y at a given

z, written as P(y | x), and since P(x) is also a probability
distribution, we have:

P(z,y) = P(y | =z)P(z),

@AM 207

Indeed its important to realize that a particular sample can be
thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the
sampleyy,

L=Py|=x,w).
Again, we can equivalently maximize

L= log(P(y ‘ X, W))

@AM 207

Thus

¢ = log (H h(w-x;)%(1— h(w- xi))(lyi))

= Z log(w-X;)% (1 — h(w.xi))(l_yi))
= Z log h(w - x;)% + log (1 — h(w - x;))\1 %)
— Z (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))

@AM 207

NLL

The negative of this log likelihood (NLL), also called cross-entropy.

NLL = =Y (ulog(h(w - x)) + (1 — yi)log(1 — h(w - x))
Gradient: Vo, NLL = Y xF(pi — %) =X" - (p — w)

Hessian: H = X diag(p; (1 — p;))X positive definite = convex

@AM 207

&AM 207

X; W /

I. [
—’
| |

Units based diagram

I

Sigmoid

NLL —+ Cost

Y (yilog(h(w - x;)) + (1 — y,)log(1 — h(w - x,)))

Softmax formulation

e |dentify p; and 1 — p; as two separate probabilities constrained
toaddto 1. Thatis py; = p;;p9; = 1 — p;.

6W1 -X
S J—
P1i eWl'X | oWiyX
6W2°X
o . —
P2i =

eW]_ X _|_ 6W2 X

e Can translate coefficients by fixed amount ¢ without any change

@AM 207

NLL and gradients for Softmax

NLL = - (11(y;)log(p1s) + 12 (yi)log(p2i))

1

VL 5 - ZEE 3 -

@AM 207

&AM 207

Units diagram for Softmax

Softmax

6Wl X
eWix + eW2X
>

CWQ'X

— Cost

log(SM (w1 - x, Wy - X)) +

Mog(SMy(w; - x, ws - x)))

Rewrite NLL

NLL = — Z (11 (y;) LSMy (w1 - x,Wo - X) + 15(y;) LSMs (w1 - X, Wy - X))

1

W1-X
61

where SM; = puts the first argument in the

eW]_ X eWz X

numerator. Ditto for LSM; which is simply log(SMj).

@AM 207

Units diagram Again

Input 2 _x..

npu 21 = X4 V:I 23 = LSM, (22, 22)

1 > . .
I 1 — i Wy 2 =Z(11z;‘+12z3)
T9; —* Linear LSM NILL > Cost
« o0 //: zg =X; W3 Zg = LSA’fz(Z.’%,Z%)
>
L di | i
Z Wy

&AM 207

Equations, layer by layer

Zz — X;

z° = (21,23) = (W1 - X3, W2 - X;) = (W1 - 2], W2 - 2])

N
|

P = () = (LM (32,), LMy (4, 2))

2 = NLL(z®) = NLL(£3,23) = = ¥ (11(9:) 23 () + 12 (y:) 2 (3))

1

&AM 207

Reverse Mode Differentiation
Cost = f** (£ (£* (' (x))))

aftess o> of? of!

VxU0st = =5~ 3¢ Bl ox
Write as:
OfL"SS ofs of* of!
VXCOSt - (((8f3 sz) F) E)

@AM 207

From Reverse Mode to Back Propagation

e Recursive Structure
e Always a vector times a Jacobian

 We add a "cost layer" to $z”4$. The derivative of this layer with
respect to $z7°4$ will always be 1.

e We then propagate this derivative back.

@AM 207

@AM 207

Forward

Layer Cake

2zt = f4(2%) 0t =1

i b
Layer 5: NLL
¥ b
VA 3 = f 3 (z 2) 5 S
i b
Layer 2: LS
t v
2% = f,(z") 52
i b
Layer /: Linear
1 v
2! = x; b) 1

Backward

Backpropagation

RULE1: FORWARD (. forward in pytorch) z'*! = f!(z)

RULE2: BACKWARD (.backward in pytorch)

oC oC
l | _
0 :ﬁoréu_ 0z
oC 0C 09z Oz}
- _ E ! v _§ : 1+1 Y=<v
Ou = 0z o2t 8z, % 0z,

@AM 207

In particular:

B 0z _ oC
Y023 0z
RULE 3: PARAMETERS
oC 0C 0z 1 02
a0 2. 84+1 00 28 0!

U

(backward pass is thus also used to fill the variable.grad parts
of parameters in pytorch)

@AM 207

THATS IT! Write your Own Layer

Layer / - 891

@AM 207

Backward

2t = fu(2%) 6t =1

1 Y
Layer 5: NI
§ !
2% = £3(2?) 5°
1 b
Layer 2: LSAI
t v
2% = f,y(2") 52
i Y
Layer /: Linear
T v
2z 1 = X 5 1

Forward

@AM 207

