
Lecture 7

Machine Learning

BackPropaga*on for Logis*c 
Regression



Last Times:

• Machine learning, especially supervised learning

• Bias, variance, and overfi7ng

• Minimized an objec<ve func<on, called error or cost or risk

• Gradient Descent, SGD on Empirical Risk

• We introduced the test set



Statement of the Learning 
Problem

The sample must be representa/ve of the 
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.



LLN: Expecta,ons -> sample averages

Empirical Risk Minimiza0on:

on training set(sample) .



What we'd really like: popula3on

i.e. out of sample RISK



• This is an average over our sampling distribu5on, if we had it

• What do we do?

Fit hypothesis , where  is our training sample.

Then we'd like

But:



Gradient Descent.

For a par'cular sample, we want:

LLN: 

SGD takes gradient inside sum



Empirical Risk Minimiza0on

• But we only have the in-sample risk

• Furthermore its an empirical risk

• And its not even a full on empirical distribu<on, as N is usually 
quite finite





UNDERFITTING (Bias)
vs OVERFITTING (Variance)



BALANCE THE COMPLEXITY



Is this s'll a test set?
Trouble:

• no discussion on the error bars on our error es0mates

• "visually fi7ng" a value of  contaminated test set.

The moment we use it in the learning process, it is not a test set.



Is in-sample
Approxima)ng out-of-sample?



Hoeffding's inequality

popula&on frac&on , sample drawn with replacement, frac&on :

For hypothesis , iden/fy 1 with  at sample . Then 
 are popula/on/sample error rates. Then,



• Hoeffding inequality holds ONCE we have picked a hypothesis , 
as we need it to label the 1 and 0s.

• But over the training set we one by one pick all the models in the 
hypothesis space

• best fit  is among the  in ,  must be  OR  OR....Say 
effec$vely M such choices:



Hoeffding, repharased:

Now let .

Then, with probability :

For finite effec,ve hypothesis set size ,  as N larger..



Training vs Test

• training error approximates out-of-sample error slowly

• is test set just another sample like the training sample?

• key observa;on: test set is looking at only one hypothesis 
because the fi?ng is already done on the training set. So  
for this sample!



Training vs Test

• the test set does not have an op-mis-c bias like the training 
set(thats why the larger effec-ve M factor)

• once you start fi?ng for things like  on the test set, you cant 
call it a test set any more since we lose -ght guarantee.

• test set has a cost of less data in the training set and must thus 
fit a less complex model.



VALIDATION
• train-test not enough as we fit for  on 

test set and contaminate it

• thus do train-validate-test



If we dont fit a hyperparameter

• first assume that the valida0on set is ac0ng like a test set.

• valida0on risk or error is an unbiased es0mate of the out of 
sample risk.

• Hoeffding bound for a valida0on set is then iden0cal to that of 
the test set.



usually we want to fit a hyperparameter

• we wrongly already a*empted to do on our previous test set.

• choose the  combina8on with the lowest valida8on set risk.

•  has an op8mis8c bias since  effec8vely fit on 
valida8on set

• its Hoeffding bound must now take into account the grid-size as 
the effec8ve size of the hypothesis space.



• this size from hyperparameters is typically a smaller size than 
that from parameters.

Retrain on en*re set!

• finally retrain on the en.re train+valida.on set using the 
appropriate  combina.on.

• works as training for a given hypothesis space with more data 
typically reduces the risk even further.



CROSS-VALIDATION





CROSS-VALIDATION
is

• a resampling method

• robust to outlier valida4on set

• allows for larger training sets

• allows for error es4mates

Here we find .



Cross Valida+on considera+ons

• valida'on process as one that es'mates  directly, on the 
valida'on set.

• It's cri'cal use is in the model selec'on process.

• once you do that you can es'mate  using the test set as 
usual, but now you have also got the benefit of a robust average 
and error bars.

• key subtlety: in the risk averaging process, you are actually 



REGULARIZATION
Keep higher a-priori complexity and 
impose a

complexity penalty

on risk instead, to choose a SUBSET of 
. We'll make the coefficients small:





REGULARIZATION

As we increase , coefficients go towards 
0.

Lasso uses  sets coefficients to 

exactly 0.





MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  with the 
probability that the sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  given a 
par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

A noisy  is to imagine that our data  was generated from a joint 
probability distribu7on . Thus we need to model  at a given 

, wri<en as , and since  is also a probability 
distribu7on, we have:



Indeed its important to realize that a par1cular sample can be 
thought of as a draw from some "true" probability distribu1on.

 maximum likelihood es$ma$on maximises the likelihood of the 
sample y,

Again, we can equivalently maximize



Thus



NLL

The nega(ve of this log likelihood (NLL), also called cross-entropy.

Gradient: 

Hessian:  posi+ve definite  convex



Units based diagram



So#max formula,on

• Iden&fy  and  as two separate probabili&es constrained 
to add to 1. That is 

•

•

• Can translate coefficients by fixed amount  without any change



NLL and gradients for So0max



Units diagram for So/max



Rewrite NLL

where  puts the first argument in the 

numerator. Di3o for  which is simply .



Units diagram Again



Equa%ons, layer by layer



Reverse Mode Differen.a.on

Write as:



From Reverse Mode to Back Propaga4on

• Recursive Structure

• Always a vector 3mes a Jacobian

• We add a "cost layer" to $z^4$. The deriva3ve of this layer with 
respect to $z^4$ will always be 1.

• We then propagate this deriva3ve back.



Layer Cake



Backpropaga)on

RULE1: FORWARD (.forward in pytorch) 

RULE2: BACKWARD (.backward in pytorch)

 or .



In par'cular:

RULE 3: PARAMETERS

(backward pass is thus also used to fill the variable.grad parts 
of parameters in pytorch)



THATS IT! Write your Own Layer




