
Lecture 6

Gradient Descent



Last Time:

• Machine learning, especially supervised learning

• Bias, variance, and overfi7ng

• Minimized an objec<ve func<on, called error or cost or risk



Today: machine learning (contd), op6miza6on using 
gradient descent

• overfi'ng. complexity, and test sets

• gradient descent

• stochas9c gradient descent

Remember Convex (bowl) like func5ons have 1 global minimum



Statement of the Learning 
Problem

The sample must be representa/ve of the 
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.



LLN: Expecta,ons -> sample averages

Empirical Risk Minimiza0on:

on training set(sample) .



What we'd really like: popula3on

i.e. out of sample RISK



• This is an average over our sampling distribu5on, if we had it

• What do we do?

Fit hypothesis , where  is our training sample.

Then we'd like

But:



Empirical Risk Minimiza0on

• But we only have the in-sample risk

• Furthermore its an empirical risk

• And its not even a full on empirical distribu<on, as N is usually 
quite finite

(another way of sta.ng the LLN: the sample empirical distribu.on 
converges to the true popula.on distribu.on as )



What to do? TRAIN and 
TEST sets



BALANCE THE 
COMPLEXITY



Is the In-Sample error small?
OR

FINDING DERIVATIVES



Newton's Method

Find a zero of the first deriva1ve.



Gradients and Hessians

Gradient: 

Hessian H = 

Hessian gives curvature. Why not use it?



Gradient ascent (descent)

basically go opposite the direc1on of the 
deriva1ve.

Consider the objec/ve func/on: 

gradient = fprime(old_x)
move = gradient * step
current_x = old_x - move



good step size



too big step size



too small step size



Example: Linear Regression

Cost Func*on:



Gradient Descent

where  is the learning rate.

ENTIRE DATASET NEEDED

for i in range(n_epochs):
  params_grad = evaluate_gradient(loss_function, data, params)
  params = params - learning_rate * params_grad`



Linear Regression: Gradient 
Descent



Stochas(c Gradient Descent

ONE POINT AT A TIME

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad

Mini-Batch: do some at a 1me



LR, SGD: 

• the risk surface changes at each gradient calcula2on

• thus things are noisy

• cumulated risk is smoother, can be used to compare to SGD

• epochs are now the number of 2mes you revisit the full dataset

• shuffle in-between to provide even more stochas2city





Is in-sample
Approxima)ng out-of-sample?



Hoeffding's inequality

popula&on frac&on , sample drawn with replacement, frac&on :

For hypothesis , iden/fy 1 with  at sample . Then 
 are popula/on/sample error rates. Then,



• Hoeffding inequality holds ONCE we have picked a hypothesis , 
as we need it to label the 1 and 0s.

• But over the training set we one by one pick all the models in the 
hypothesis space

• best fit  is among the  in ,  must be  OR  OR....Say 
effec$vely M such choices:



Hoeffding, repharased:

Now let .

Then, with probability :

For finite effec,ve hypothesis set size ,  as N larger..



Training vs Test

• training error approximates out-of-sample error slowly

• is test set just another sample like the training sample?

• key observa;on: test set is looking at only one hypothesis 
because the fi?ng is already done on the training set. So  
for this sample!



Is this s'll a test set?
Trouble:

• no discussion on the error bars on our error es0mates

• "visually fi7ng" a value of  contaminated test set.

The moment we use it in the learning process, it is not a test set.



Training vs Test

• the test set does not have an op-mis-c bias like the training 
set(thats why the larger effec-ve M factor)

• once you start fi?ng for things like  on the test set, you cant 
call it a test set any more since we lose -ght guarantee.

• test set has a cost of less data in the training set and must thus 
fit a less complex model.


