Lecture 6

Gradient Descent
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Last Time:

e Machine learning, especially supervised learning
e Bias, variance, and overfitting

e Minimized an objective function, called error or cost or risk
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Today: machine learning (contd), optimization using
gradient descent

e overfiting. complexity, and test sets
e gradient descent
e stochastic gradient descent

Remember Convex (bowl) like functions have 1 global minimum
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Statement of the Learning
5 Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.
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LLN: Expectations -> sample averages

Empirical Risk Minimization:

Rp = E,[R] ~ % S R(z:)

on training set(sample) D.
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What we'd really like: population

l.e. out of sample RISK

Rt (h,9) = By R(h(2), ) = [ dop(@)(h(@) - 9)*(e..).

(Rout) = Ep(z4) [R(h(T),y)] = / dydz p(z,y)R(h(z),y)

/ dydzp(y | z)p(z)R(h(z),y) = / dzp(z) Epyz) [R(h(z),y)]
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e This is an average over our sampling distribution, if we had it
e What do we do?

Fit hypothesis h = gp, where D is our training sample.

Then we'd like

<R0ut> — ED [Rout (gD7 y)] y

But:
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Empirical Risk Minimization

 But we only have the in-sample risk
e Furthermore its an empirical risk

e And its not even a full on empirical distribution, as N is usually
quite finite

(another way of stating the LLN: the sample empirical distribution
converges to the true population distribution as N — o0o)
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What to do? TRAIN and

TEST sets
Dataset )
— P
~— N
Training Set Test Set
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Emor or risk ————p»

BALANCE THE

o e T COMPLEXITY
Low Variance High Variance
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Is the In-Sample error small?

OR
FINDING DERIVATIVES



Newton's Method

Find a zero of the first derivative.
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Gradients and Hessians

Gradient: Vg (J) = 9J _ (201>

Hessian H = (2 O)
0 2

Hessian gives curvature. Why not use it?
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Gradient ascent (descent)

basically go opposite the direction of the
derivative.

Consider the objective function:
J(z) =2 —6x+5

gradient = fprime(old_x)

move = gradient * step
current x = old X - move

@AM 207

700

600

00

400

300

200

100

=100

=20 -10 0 10



good step size
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too big step size
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too small step size
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Example: Linear Regression

(y) = fo(z) = 6"z

Cost Function:

™m

76) = 3 3 (fola® — 40’

1=1

@AM 207



Gradient Descent

m

0:=60—nVeJ(0) =0—n)» VJ(6)

i=1
where n is the learning rate.

ENTIRE DATASET NEEDED

for 1 in range(n_epochs):
params grad = evaluate gradient(loss function, data, params)
params = params - learning rate * params_grad
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Linear Regression: Gradient
Descent
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Stochastic Gradient Descent

0:=0— aV,J;(6)

ONE POINT AT ATIME

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params _grad = evaluate gradient(loss function, example, params)
params = params - learning rate * params_grad

Mini-Batch: do some at a time
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LR, SGD: 6; := 6, + a(y') — fg(a:(i)))a:(i)

J
e the risk surface changes at each gradient calculation
e thus things are noisy
e cumulated risk is smoother, can be used to compare to SGD

e epochs are now the number of times you revisit the full dataset

e shuffle in-between to provide even more stochasticity
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IS In-sample

Approximating out-of-sample?



Hoeffding's inequality
population fraction u, sample drawn with replacement, fraction v:
P(lv—pu| >¢€) < 2¢ 2N

For hypothesis h, identify 1 with h(z;) # f(z;) at sample z;. Then
1, v are population/sample error rates. Then,

P(|Rin(h) — Rout(h)| > €) < 272N
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e Hoeffding inequality holds ONCE we have picked a hypothesis h,
as we need it to label the 1 and Os.

e But over the training set we one by one pick all the models in the
hypothesis space

e best fit g is among the h in ‘H, g must be h; OR hy OR....Say
effectively M such choices:

P(|Rin(9) — Rout(9)| = €) <= Z P(|Rin(hi) — Rout (hi)| > €) <= 2Me 2N
h;eH
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Hoeffding, repharased:

Now let§ = 2 M e 26N,

Then, with probability 1 — §:

1 2M

Rout <= Rzn -+ \/ﬁln(T)

For finite effective hypothesis set size M, R,,,; ~ R;,, as N larger..
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Training vs Test

e training error approximates out-of-sample error slowly
e |s test set just another sample like the training sample?

e key observation: test set is looking at only one hypothesis

because the fitting is already done on the training set. So M =1
for this sample!
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|s this still a test set?

Trouble:

e no discussion on the error bars on our error estimates
e "visually fitting" a value of d =— contaminated test set.

The moment we use it in the learning process, it is not a test set.
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Training vs Test

e the test set does not have an optimistic bias like the training
set(thats why the larger effective M factor)

e once you start fitting for things like d on the test set, you cant
call it a test set any more since we lose tight guarantee.

e test set has a cost of less data in the training set and must thus
fit a less complex model.
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