Lecture 5 Machine Learning

Office Hours

Always in B125, Maxwell Dworkin.

- anytime by appointment with any of us.
- Rahul: Tue and Thu 1.30pm to 2.30pm. ONLINE Thu 2.30-3.30pm.
- Will Tuesday 4 5 pm
- Wed Patrick and TBD 4 7:30

- 6:30 7:30 pm Wednesday will be online
- Thu Patrick 4-5:30, Peter 5:30 6:30

Last Times:

- Expectations, sample average
- The Law of large numbers and Monte Carlo
- Sampling Methods

Law of Large numbers (LLN)

• Expectations become sample averages. Convergence for large N.

$$egin{aligned} E_f[g] &= \int g(x) dF = \int g(x) f(x) dx \ &= \lim_{n o \infty} rac{1}{N} \sum_{x_i \sim f} g(x_i) \end{aligned}$$

- for finite N a sample average
- thus expectations in the replication "dimension" come into play
- mean of sample means and standard error
- this is the sampling distribution
- CLT and all that jazz

Today: machine Learning

- noiseless models, the approximation problems
- models with noise
- test sets and learning theory
- validation and cross-validation
- regularization

Why study this?

- isnt this a course in Stoch Opt and Bayes?
- application of law of large numbers
- establishes ideas of supervised learning
- learn validation for model selection
- bayes critical to understand machine learning

CLASSIFICATION

- will a customer churn?
- is this a check? For how much?
- a man or a woman?
- will this customer buy?
- do you have cancer?
- is this spam?

image from code in http://bit.ly/1Azg29G

MLE for Logistic Regression

- example of a Generalized Linear Model (GLM)
- "Squeeze" linear regression through a Sigmoid function
- this bounds the output to be a probability
- What is the sampling Distribution?

Sigmoid function

This function is plotted below:

```
h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);
```

Identify: $z = \mathbf{w} \cdot \mathbf{x}$. and $h(\mathbf{w} \cdot \mathbf{x})$ with the probability that the sample is a '1' (y = 1).

Then, the conditional probabilities of y=1 or y=0 given a particular sample's features \mathbf{x} are:

$$P(y = 1|\mathbf{x}) = h(\mathbf{w} \cdot \mathbf{x})$$

 $P(y = 0|\mathbf{x}) = 1 - h(\mathbf{w} \cdot \mathbf{x}).$

These two can be written together as

$$P(y|\mathbf{x},\mathbf{w}) = h(\mathbf{w}\cdot\mathbf{x})^y(1-h(\mathbf{w}\cdot\mathbf{x}))^{(1-y)}$$

BERNOULLI!!

Multiplying over the samples we get:

$$P(y|\mathbf{x},\mathbf{w}) = P(\{y_i\}|\{\mathbf{x}_i\},\mathbf{w}) = \prod_{y_i \in \mathcal{D}} P(y_i|\mathbf{x}_i,\mathbf{w}) = \prod_{y_i \in \mathcal{D}} h(\mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - h(\mathbf{w} \cdot \mathbf{x}_i))^{(1-y_i)}$$

A noisy y is to imagine that our data \mathcal{D} was generated from a joint probability distribution P(x,y). Thus we need to model y at a given x, written as $P(y \mid x)$, and since P(x) is also a probability distribution, we have:

$$P(x,y) = P(y \mid x)P(x),$$

Indeed its important to realize that a particular sample can be thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the sample y,

$$\mathcal{L} = P(y \mid \mathbf{x}, \mathbf{w}).$$

Again, we can equivalently maximize

$$\ell = log(P(y \mid \mathbf{x}, \mathbf{w}))$$

Thus

$$egin{aligned} \ell &= log \left(\prod_{y_i \in \mathcal{D}} h(\mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - h(\mathbf{w} \cdot \mathbf{x}_i))^{(1 - y_i)}
ight) \ &= \sum_{y_i \in \mathcal{D}} log \left(h(\mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - h(\mathbf{w} \cdot \mathbf{x}_i))^{(1 - y_i)}
ight) \ &= \sum_{y_i \in \mathcal{D}} log h(\mathbf{w} \cdot \mathbf{x}_i)^{y_i} + log \left(1 - h(\mathbf{w} \cdot \mathbf{x}_i)
ight)^{(1 - y_i)} \ &= \sum_{y_i \in \mathcal{D}} \left(y_i log (h(\mathbf{w} \cdot \mathbf{x})) + (1 - y_i) log (1 - h(\mathbf{w} \cdot \mathbf{x}))
ight) \end{aligned}$$

REGRESSION

- how many dollars will you spend?
- what is your creditworthiness
- how many people will vote for Bernie t days before election
- use to predict probabilities for classification
- causal modeling in econometrics

From Bayesian Reasoning and Machine Learning, David Barber:

"A father decides to teach his young son what a sports car is." Finding it difficult to explain in words, he decides to give some examples. They stand on a motorway bridge and ... the father cries out 'that's a sports car!' when a sports car passes by. After ten minutes, the father asks his son if he's understood what a sports car is. The son says, 'sure, it's easy'. An old red VW Beetle passes by, and the son shouts – 'that's a sports car!'. Dejected, the father asks – 'why do you say that?'. 'Because all sports cars are red!', replies the son."

HYPOTHESIS SPACES

A polynomial looks so:

$$h(x)= heta_0+ heta_1x^1+ heta_2x^2+\ldots+ heta_nx^n=\sum_{i=0}^n heta_ix^i$$

All polynomials of a degree or complexity d constitute a hypothesis space.

$$\mathcal{H}_{\scriptscriptstyle 1}: h_{\scriptscriptstyle 1}(x) = heta_{\scriptscriptstyle 0} + heta_{\scriptscriptstyle 1} x$$

$$\mathcal{H}_{\mathbf{20}}: h_{\mathbf{20}}(x) = \sum_{i=0}^{20} heta_i x^i$$

Approximation: Learning without noise

30 points of data. Which fit is better? Line in \mathcal{H}_1 or curve in \mathcal{H}_{20} ?

Bias or Mis-specification Error

RISK: What does it mean to FIT?

Minimize distance from the line?

$$R_{\mathcal{D}}(h_1(x)) = rac{1}{N} \sum_{y_i \in \mathcal{D}} (y_i - h_1(x_i))^2$$

Minimize squared distance from the line. Empirical Risk Minimization.

$$g_1(x) = rg\min_{h_1(x) \in \mathcal{H}} R_{\mathcal{D}}(h_1(x)).$$

Get intercept w_0 and slope w_1 .

SAMPLE vs POPULATION

Want:
$$R_{out}(h)=E_{p(x)}[(h(x)-f(x))^2]=\int dx p(x)(h(x)-f(x))^2$$

LLN:

$$R_{out}(h) = \lim_{n o\infty}rac{1}{n}\sum_{x_i\sim p(x)}(h(x_i)-f(x_i))^2 = \lim_{n o\infty}rac{1}{n}\sum_{x_i\sim p(x)}(h(x_i)-y_i)^2$$

$${\mathcal D}$$
 representative $({\mathcal D} \sim p(x)) \implies {\mathcal R}_{{\mathcal D}}(h) = \sum_{x_i \in {\mathcal D}} (h(x_i) - y_i)^2$

Statement of the Learning Problem

The sample must be representative of the population!

 $egin{aligned} A:R_{\mathcal{D}}(g) \; smallest \, on \, \mathcal{H} \ B:R_{out}(g) pprox R_{\mathcal{D}}(g) \end{aligned}$

A: Empirical risk estimates in-sample risk.

B: Thus the out of sample risk is also small.

CONVEX MINIMIZATION

In general one can use gradient descent.

For linear-regression, one can however just do this using matrix algebra.

Image From Nando-deFreitas Deep Learning Course 2015

THE REAL WORLD HAS NOISE

THE REAL WORLD HAS NOISE

Which fit is better now?

The line or the curve?

UNDERFITTING (Bias) vs OVERFITTING (Variance)

Every model has Bias and Variance

$$R_{out}(h) = E_{p(x)}[(h(x)-y)^2] = \int dx p(x)(h(x)-f(x)-\epsilon)^2.$$

Fit hypothesis $h=g_{\mathcal{D}}$, where \mathcal{D} is our training sample.

Define:

$$\langle R
angle = \int dy dx \, p(x,y) (h(x)-y)^2 = \int dy dx p(y\mid x) p(x) (h(x)-y)^2.$$

$$\langle R
angle = E_{\mathcal{D}}[R_{out}(g_{\mathcal{D}})] = E_{\mathcal{D}}E_{p(x)}[(g_{\mathcal{D}}(x) - f(x) - \epsilon)^2]$$

$$ar{g} = E_{\mathcal{D}}[g_{\mathcal{D}}] = (1/M) \sum_{\mathcal{D}} g_{\mathcal{D}}$$

Then,

$$\langle R
angle = E_{p(x)}[E_{\mathcal{D}}[(g_{\mathcal{D}}-ar{g})^2]] + E_{p(x)}[(f-ar{g})^2] + \sigma^2$$

This is the bias variance decomposition for regression.

- first term is **variance**, squared error of the various fit g's from the average g, the hairiness.
- second term is **bias**, how far the average g is from the original f this data came from.
- third term is the **stochastic noise**, minimum error that this model will always have.

DATA SIZE MATTERS: straight line fits to a sine curve

Corollary: Must fit simpler models to less data!

TRAIN AND TEST

High Bias Low Bias Low Variance High Variance Underfitting Overfitting Complexity "d"

BALANCE THE COMPLEXITY

Is this still a test set?

Trouble:

- no discussion on the error bars on our error estimates
- "visually fitting" a value of $d \implies$ contaminated test set.

The moment we use it in the learning process, it is not a test set.

Hoeffding's inequality

population fraction μ , sample drawn with replacement, fraction ν :

$$P(|
u - \mu| > \epsilon) \leq 2e^{-2\epsilon^2 N}$$

For hypothesis h, identify 1 with $h(x_i) \neq f(x_i)$ at sample x_i . Then μ, ν are population/sample error rates. Then,

$$P(|R_{in}(h)-R_{out}(h)|>\epsilon)\leq 2e^{-2\epsilon^2N}$$

- Hoeffding inequality holds ONCE we have picked a hypothesis h, as we need it to label the 1 and 0s.
- But over the training set we one by one pick all the models in the hypothesis space
- best fit g is among the h in \mathcal{H} , g must be h_1 OR h_2 OR....Say **effectively** M such choices:

$$P(|R_{in}(g) - R_{out}(g)| \geq \epsilon) <= \sum_{h_i \in \mathcal{H}} P(|R_{in}(h_i) - R_{out}(h_i)| \geq \epsilon) <= 2\,M\,e^{-2\epsilon^2 N}$$

Hoeffding, repharased:

Now let $\delta = 2\,M\,e^{-2\epsilon^2 N}$.

Then, with probability $1 - \delta$:

$$R_{out} <= R_{in} + \sqrt{rac{1}{2N}ln(rac{2M}{\delta})}$$

For finite effective hypothesis set size $M,\,R_{out}\sim R_{in}$ as N larger..

Training vs Test

- training error approximates out-of-sample error slowly
- is test set just another sample like the training sample?
- key observation: test set is looking at only one hypothesis because the fitting is already done on the training set. So M=1 for this sample!

$$R_{out} <= R_{in} + \sqrt{rac{1}{2N_{test}}ln(rac{2}{\delta})}$$

Training vs Test

- the test set does not have an optimistic bias like the training set(thats why the larger effective M factor)
- once you start fitting for things like d on the test set, you cant call it a test set any more since we lose tight guarantee.
- test set has a cost of less data in the training set and must thus fit a less complex model.

VALIDATION

- train-test not enough as we fit for d on test set and contaminate it
- thus do train-validate-test

If we dont fit a hyperparameter

- first assume that the validation set is acting like a test set.
- validation risk or error is an unbiased estimate of the out of sample risk.
- Hoeffding bound for a validation set is then identical to that of the test set.

usually we want to fit a hyperparameter

- we wrongly already attempted to do on our previous test set.
- choose the d, g^* combination with the lowest validation set risk.
- $R_{val}(g^{-*},d^*)$ has an optimistic bias since d effectively fit on validation set
- its Hoeffding bound must now take into account the grid-size as the effective size of the hypothesis space.

 this size from hyperparameters is typically a smaller size than that from parameters.

Retrain on entire set!

- finally retrain on the entire train+validation set using the appropriate (g^{-*}, d^*) combination.
- works as training for a given hypothesis space with more data typically reduces the risk even further.

CROSS-VALIDATION

CROSS-VALIDATION

is

- a resampling method
- robust to outlier validation set
- allows for larger training sets
- allows for error estimates

Here we find d=3.

Cross Validation considerations

- validation process as one that estimates R_{out} directly, on the validation set. It's critical use is in the model selection process.
- once you do that you can estimate R_{out} using the test set as usual, but now you have also got the benefit of a robust average and error bars.
- key subtlety: in the risk averaging process, you are actually averaging over different g^- models, with different parameters.

REGULARIZATION

Keep higher a-priori complexity and impose a

complexity penalty

on risk instead, to choose a SUBSET of \mathcal{H}_{big} . We'll make the coefficients small:

$$\sum_{i=0}^j heta_i^2 < C.$$

coefficients coefficients

REGULARIZATION

$$\mathcal{R}(h_j) = \sum_{y_i \in \mathcal{D}} (y_i - h_j(x_i))^2 + lpha \sum_{i=0}^j heta_i^2.$$

As we increase α , coefficients go towards 0.

Lasso uses $\alpha \sum_{i=0}^{j} |\theta_i|$, sets coefficients to exactly 0.

Next time

Minimize the risk

- analytically
- using gradient descent
- using stochastic gradient descent

