Lecture 5

Machine Learning
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Office Hours

Always in B125, Maxwell Dworkin.
e anytime by appointment with any of us.

e Rahul: Tue and Thu 1.30pm to 2.30pm. ONLINE Thu
2.30-3.30pm.

e Will Tuesday 4 - 5 pm
e Wed Patrick and TBD 4 - 7:30
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e 6:30 - 7:30 pm Wednesday will be online
e Thu Patrick 4-5:30, Peter 5:30 - 6:30
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Last Times:

e Expectations, sample average
e The Law of large numbers and Monte Carlo

e Sampling Methods
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Law of Large numbers (LLN)

e Expectations become sample averages. Convergence for large N.
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e for finite N a sample average

e thus expectations in the replication "dimension" come into play
e mean of sample means and standard error

e this is the sampling distribution

e CLT and all that jazz
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Today: machine Learning

 noiseless models, the approximation problems
 models with noise

e test sets and learning theory

e validation and cross-validation

e regularization
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Why study this?

e isnt this a course in Stoch Opt and Bayes?
e application of law of large numbers

e establishes ideas of supervised learning

e |earn validation for model selection

e bayes critical to understand machine learning
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CLASSIFICATION

e will a customer churn?

e is this a check? For how much?
e 2 man or a woman?

e will this customer buy?

e do you have cancer?

e is this spam?

Jimage from code in http:/bit.ly/1Azg29G



MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)
e "Squeeze" linear regression through a Sigmoid function
e this bounds the output to be a probability

e What is the sampling Distribution?
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Sigmoid function

This function is plotted below:

h = lambda z: 1./(1l4np.exp(-2z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x. and h(w - x) with the

probability that the sampleisa'l' (y = 1).

@AM 207

1.0

0.8

0.6

0.4

0.2

0.0



Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y=0|x) =1— h(w - x).

These two can be written together as
P(y|X, W) — h(W . X)y(]_ - h(w . X))(l_y)

BERNOULLI!"
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Multiplying over the samples we get:

P(y|X7 W) — P({yz}‘{xz}aw) — H P(yz|xz,w) - H h(w ‘ xz)yZ(]_ — h(W . Xi))(l_yi)

A noisy y is to imagine that our data D was generated from a joint
probability distribution P(z,y). Thus we need to model y at a given

z, written as P(y | x), and since P(z) is also a probability
distribution, we have:

P(z,y) = P(y | =)P(z),
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Indeed its important to realize that a particular sample can be
thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the
sampleyy,

L=Py|=x,w)
Again, we can equivalently maximize

L= log(P(y ‘ X, W))

@AM 207



Thus

{ = log (H h(w-x;)%(1— h(w- xi))(lyi))

= Z log( w-X; )% (1 — h(w.xi))(l_yi))
= Z log h(w - x;)% + log (1 — h(w - x;))\1 %)
— Z (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))
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REGRESSION

* how many dollars will you spend?
e what is your creditworthiness

e how many people will vote for Bernie t
days before election

e use to predict probabilities for
classification

e causal modeling in econometrics
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From Bayesian Reasoning and Machine Learning, David Barber:

"A father decides to teach his young son what a sports car is.
Finding it difficult to explain in words, he decides to give some
examples. They stand on a motorway bridge and ... the father cries
out ‘that’s a sports car!” when a sports car passes by. After ten
minutes, the father asks his son if he’s understood what a sports
car is. The son says, ‘sure, it's easy’. An old red VW Beetle passes
by, and the son shouts - ‘that’s a sports car!’. Dejected, the father
asks - ‘why do you say that?’. ‘Because all sports cars are red!’,
replies the son.”
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HYPOTHESIS SPACES

A polynomial looks so:

h(z) =0y + 012" +0yz°+. .. +0,2" = Zﬁiwi
i=0

All polynomials of a degree or complexity
d constitute a hypothesis space.

H,:h,(x) =0, + 0,z

Hoo : hoo(z) = i@ixi
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Approximation: Learning without noise

30 points of data. Which fit is better? Line in ‘H, or curve in ‘H,,?
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Bias or Mis-specification Error
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RISK: What does it mean to FIT?

Minimize distance from the line?

Ro(hn(2)) = 3+ (s — ha(e:))?

;€D

Minimize squared distance from the line.
Empirical Risk Minimization.

_ in Rn(h .
g1(z) arg, min p(hi(z))

Get intercept wy and slope w;.



. TARGET vy = f(z)
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SAMPLE vs POPULATION

Want: Ryt (h) = Ey[(h(z) ~ £(2))*) = [ dap(z)(h(z) - £(2))’

LLN:
Rout(h) = lim — 3 (h(z:) - f@))? = lim — 3 (h(z:) - 3:)’

n—o00 M n—oo M
z;~p(x) z;~p(z)

D representative (D ~ p(z)) = Rp(h) = Z (h(z:) —¥i)°

x; €D
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Statement of the Learning
5 Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.
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CONVEX MINIMIZATION

VAVAVAV;

In general one can use gradient descent .

For linear-regression, one can however just do this using matrix
algebra.

Image From Nando-deFreitas Deep Learning Course 2015
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THE REAL WORLD HAS NOISE

1.0
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THE REAL WORLD HAS NOISE

Which fit is better now?
The line or the curve?
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Every model has Bias and Variance

Rout(h) = By [(h() — 9)?] = / dap(z) (h(z) — f(z) — )%,

Fit hypothesis h = gp, where D is our training sample.

Define:
(R) = / dydz p(z, ) (h(z) — y)? = / dydzp(y | 2)p(z)(h(z) — y)*.
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Then,

(R) = Ep) [Ep|(9p — 9)°]] + Ep) [(f — 9)°] + 0

This is the bias variance decomposition for regression.
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e first term is variance, squared error of the various fit g's from the
average g, the hairiness.

e second term is bias, how far the average g is from the original f
this data came from.

e third term is the stochastic noise, minimum error that this model
will always have.
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DATA SIZE MATTERS: straight line fits to a sine curve

samples with 5 data points samples with 2 data points

20

Corollary: Must fit simpler models to less data!

&AM 207



TRAIN AND TEST

Dataset )
. e
—
~— N\ J
N~ Y
Training Set Test Set

R —— { (from the Lord)
® raning
® wmsting
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Emor or risk ————p»

BALANCE THE

o e T COMPLEXITY
Low Variance High Variance
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|s this still a test set?

Trouble:

e no discussion on the error bars on our error estimates
e "visually fitting" a value of d =— contaminated test set.

The moment we use it in the learning process, it is not a test set.
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Hoeffding's inequality
population fraction u, sample drawn with replacement, fraction v:
P(lv—pu| >¢€) < 2¢ 2N

For hypothesis h, identify 1 with h(z;) # f(z;) at sample z;. Then
1, v are population/sample error rates. Then,

P(|Rin(h) — Rout(h)| > €) < 272N
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e Hoeffding inequality holds ONCE we have picked a hypothesis h,
as we need it to label the 1 and Os.

e But over the training set we one by one pick all the models in the
hypothesis space

e best fit g is among the h in ‘H, g must be h; OR hy OR....Say
effectively M such choices:

P(|Rin(9) — Rout(9)| = €) <= Z P(|Rin(hi) — Rout (hi)| > €) <= 2Me 2N
h;eH
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Hoeffding, repharased:

Now let§ = 2 M e 26N,

Then, with probability 1 — §:

1 2M

Rout <= Rzn -+ \/ﬁln(T)

For finite effective hypothesis set size M, R,,,; ~ R;,, as N larger..
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Training vs Test

e training error approximates out-of-sample error slowly
e |s test set just another sample like the training sample?

e key observation: test set is looking at only one hypothesis

because the fitting is already done on the training set. So M =1
for this sample!
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Training vs Test

e the test set does not have an optimistic bias like the training
set(thats why the larger effective M factor)

e once you start fitting for things like d on the test set, you cant
call it a test set any more since we lose tight guarantee.

e test set has a cost of less data in the training set and must thus
fit a less complex model.
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e train-test not enough as we fit for d on : :
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A
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Training Validation
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A A J \ J
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If we dont fit a hyperparameter

e first assume that the validation set is acting like a test set.

e validation risk or error is an unbiased estimate of the out of
sample risk.

e Hoeffding bound for a validation set is then identical to that of
the test set.
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usually we want to fit a hyperparameter

e we wrongly already attempted to do on our previous test set.

e choose the d, g* combination with the lowest validation set risk.

* R,u(g ",d") has an optimistic bias since d effectively fit on
validation set

e its Hoeffding bound must now take into account the grid-size as
the effective size of the hypothesis space.
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e this size from hyperparameters is typically a smaller size than
that from parameters.

Retrain on entire set!

e finally retrain on the entire train+validation set using the
appropriate (¢, d") combination.

e works as training for a given hypothesis space with more data
typically reduces the risk even further.
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CROSS-VALIDATION

For hypothesis set H , : D
e
— m—
Fold 1 train g f, estimate R,
Fold 2 train g -, estimate R,
Fold 3 train g5, estimate Rgq
Fold 4 train g4, estimate R,

Calculate total error or risk over folds:

A1+ Reo + Rea + ARy

RAy =
CcvV P
For hypothesis H ,, report RCV Ef?tosg:
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Training Validation
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CROSS-VALIDATION

10"

° 10'2

IS 10"’

10'°

107

e aresampling method .
; 10°

e robust to outlier validation set g 1
el [ o

e allows for larger training sets i
10'

e allows for error estimates P
10!

Here we find d = 3. o

107
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Cross Validation considerations

e validation process as one that estimates R,,; directly, on the
validation set. It's critical use is in the model selection process.

e once you do that you can estimate R,,,; using the test set as

usual, but now you have also got the benefit of a robust average
and error bars.

e key subtlety: in the risk averaging process, you are actually
averaging over different g models, with different parameters.
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High Bias Low Bias
Low Vanance High Variance

REGULARIZATION

Keep higher a-priori complexity and
Impose a

Error or risk —p»

complexity penalty

on risk instead, to choose a SUBSET of

Hpig- We'll make the coefficients small: - N subsets of
. H 13
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Regularzed with o =0.2

Unregularized

20

1.0

pr—

as

10 1.0

as

Qo

0.5

/*\5.6‘7%//

B o.
o g

1.5
1.0
as

f

&AM 207



as
aoc
a4
az e .|
Taning
wsling
alpha = 0.0
Qo
ao az a4 aoc as 1.0
X
1.0 .
as
ac
a4
az |, —— L
™ = raning
wsling
. alpha = 1205
Qo
Qo az a4 aoc as 1.0
X
1.0
as
aoc
a4
az f
Taning
wsting
o *  alpha = 0.001
ao
ao az a4 aoc as 1.0
X
1.0 prreeg
as
ac
a4
e
a2 |
raning
wsting
*  alpha=1
Qo
Qo az a4 aoc as 1.0

abs(coefficient)

abs(coefficient)

abs(coefficient)

abs(coefficient)

-8 alpha = 0.0

—8— alpha = 1e.05

—&— alpha = 0.001

—8— alpha =1

10
wefficients

10
oefficients

- .

10
wefficients

10
oefficients

2

REGULARIZATION

J

2 —I—aZHZ?.

1=0

th — yi—hja:i

y; €D

As we increase a, coefficients go towards
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Next time

Minimize the risk

e analytically
e using gradient descent

e using stochastic gradient descent
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