Lecture 4
Sampling:

Inverse Transform, Rejection Sampling, and
Stratified Sampling
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Announcements

e You will have upto 10am tomorrow on homework and
subsequent homework

e You can take upto 5 late days (bumped up from 3). No more than
1 late day per homework
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Last Time:

e Expectations and some notation

e The Law of large numbers

e Simulation and Monte Carlo for Integration
e Sampling and the CLT

e Errorsin Monte Carlo
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Expectation E¢|X]

B [, zf(z) if Xisdiscrete
by = /a:dF(a:) N {fmf(w)dw if X is continuous

LOTUS, if Y = r(X):
ElY] = /'r(a:)dF(a:)

If (X)) = I4(X), Indicator forevent A, p(X € A) = Er[I4(X)] =
frequentist probability
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Law of Large numbers (LLN)

e Expectations become sample averages. Convergence for large N.

e foundation of Monte Carlo techniques for expectations and
integrals, which allow us to replace integration with summation
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Central Limit Theorem

e note that we compute integrals from samples in one replication

e the sample averages are distributes around the true (distribution)
expectation in a gaussian distribution with standard error

S — ——

/n

 which mean to use depends on the accuracy you desire
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Formalize Monte Carlo Integration idea

For Uniform pdf: Uy, (z) =1/V =1/(b— a)

b b
J - / #(@)Uns () de = / f(z)dz/V = 1)V

From LOTUS and the law of large numbers:

o1
I:V><J=V><EU[f]:VXJL%N;]J"(%)



Today: We need Samples

e to compute expectations, integrals and do statistics, we need
samples

e we start that journey today
e |nverse transform
e rejection sampling

 importance sampling: a direct, low-variance way to do integrals
and expectations
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Inverse transform

f(x)
©C = N W A OO N ® ©
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algorithm

The CDF F' must be invertible!

1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation = F~*(u) where F is the
CDF of the distribution we desire.

3. repeat.
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Why does it work?

F~1(u) = smallest x such that F(z) >= u

What distribution does random variable y = F~* () follow?
The CDF of y is p(y <= ). Since F is monotonic:
p(y <= z) = p(F(y) <= F(z)) = p(u <= F(z)) = F(z)
F'is the CDF of y, thus f is the pdf.
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Example: exponential

pdf: f(z) = ;e—‘”“ forz > 0 and f(x) = 0 otherwise.

u=/ le_"”’/)‘d:zz' =1— e @A
0 A

Solving for z

r=—Aln(1 — u)
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code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin = CDF(xmin)

rmax = CDF(xmax)

N = 10000

# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution

R = np.random.uniform(rmin, rmax, N)

X = invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

# plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()
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Box-Muller

e how to draw from a normal?

 the CDF integral is not analytically solvable.

I = L e 2" /2qy
2™ J_ oo

e can do numerical inversion (out of scope) or use box-muller trick.
-trick involves starting with two Normals N (0, 1)
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X ~ N(0,1),Y ~ N(0,1) = X,Y ~ N(0,1)N(0,1)

1 2 1 2 1 2
_ —x° /2 /2 —7r°/2
e Var 2m

where r* = 2% + y°.

Using polar co-ordinates r and 6, we have...
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© ~ Unif(0,27),S = R* ~ Exp(1/2)

s =1 = —2In(1 — u)

r = \/—2ln(u1),9 = 27T U

where u; and us ~ Unif(0, 1).
Now, use x = r cosf, y = r sinf to obtain Normal samples.

What is fR,@ (’I", 9)7
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General transforms of a pdf

Let z = g(x) so that x = gt (2)

Define the Jacobian J(z) of the transformation 2 = g~ *(2) as the
partial derivatives matrix of the transformation.

Then:

fz(2) = fx (g7 (2)) x det(J(2))
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let g : r = \/;132 + 4%, tan(f) = y/z. Then g : & = r cos(6),
y = r sin(6)

. ( cos(0) sin(6)

—rsin(0) rcos(@)) det(J) =T

froe(r,0) = fxy(rcos(0),rsin(0)) x r
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Rejection Sampling

e Generate samples from a uniform distribution with support on
the rectangle

e See how many fall below y(x) at a specific x.
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Algorithm

1. Draw  uniformly from [z,.in, Zmaz]
2. Draw y uniformly from [0, 42|
3.ify < f(x), accept the sample

4. otherwise reject it

5. repeat
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example

P = lambda x: np.exp(-x)

xmin = @ # the lower limit of our domain

Xmax 10 # the upper limit of our domain

ymax = 1

#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = @ # the number of accepted samples
samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

pick a uniform number on [xmin, xmax) (e.g. 0...10)

#
x = np.random.uniform(xmin, xmax)
# pick a uniform number on [O, ymax)
y = np.random.uniform(@,ymax)
# Do the accept/reject comparison
if y < P(x):

samples[accepted] = x

accepted += 1

count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*P(xvals), 'r', label=u'P(x)")

plt.legend()

Count 100294 Accepted 10000
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problems

e determining the supremum may be costly
e the functional form may be complex for comparison

e even if you find a tight bound for the supremum, basic rejection
sampling is very inefficient: low acceptance probability

e infinite support
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Rejection on steroids

Introduce a proposal density g(z).

* g(x) is easy to sample from and
(calculate the pdf)

* Some M exists so that M g(z) > f(z)
in your entire domain of interest

* ideally g(«) will be somewhat close to f

e optimal value for M is the supremum
over your domain of interest of f/g.

 probability of acceptanceis 1/ M
@AM 207
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Algorithm

—
o
1

1. Draw z from your proposal distribution
g(z)

2. Draw y uniformly from [0,1]
3.ify < f(x)/M g(x), accept the sample
4. otherwise reject it

5. repeat

Y Axis
C = N WA OO N @® ©
R e S S
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Example

1600

P lambda x: np.exp(-x) # our distribution

g lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)

invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling

xmin = @ # the lower limit of our domain 1“(]()
xmax = 10 # the upper limit of our domain

# range limits for inverse sampling

umin = invCDFg(xmin)

umax = invCDFg(xmax)

N = 10000 # the total of samples we wish to generate 1:2()()
accepted = @ # the number of accepted samples

samples = np.zeros(N)

count = @ # the total count of proposals

1000

while (accepted < N):

# Sample from g using inverse sampling
u = np.random.uniform(umin, umax)
xproposal = np.exp(u) - 1 mo

# pick a uniform number on [0, 1)
y = np.random.uniform(@,1) (J
# Do the accept/reject comparison
if y < p(xproposal)/g(xproposal):
samples[accepted] = xproposal

accepted += 1 400

count +=1

print("Count", count, "Accepted", accepted)

# get the histogram info mo
hinfo = np.histogram(samples,50)

plt.hist(samples,bins=50, label=u'Samples');

xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][@]*p(xvals), 'r', label=u'p(x)') ()
plt.plot(xvals, hinfo[@][@]*g(xvals), 'k', label=u'g(x)')

plt.legend()

Count 23809 Accepted 10000
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Importance sampling

The basic idea behind importance sampling is that we want to draw
more samples where h(z), a function whose integral or expectation

we desire, Is large. In the case we are doing an expectation, it
would indeed be even better to draw more samples where

h(x)f(x) is large, where f(x) is the pdf we are calculating the
integral with respect to.

Unlike rejection sampling we use all samples!!
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Byt = | f@h@)dz

Choosing a proposal distribution g(x):

E;[h] = / h(z)g(z)

E¢lh| = lim — Z hiL'z )

N—>oo N

Byl = Jim 37 3 w(eh
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Stratified Sampling

Split the domain on which we wish to
calculate an expectation or integral into
strata, to minimize variance.

Intuitively, smaller samples have less
variance.

Want g = E;[h] = / h(z) f(z) da

p=(1/N) ) h(z); Er[a] = p.

wka
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Break the interval into M strata and take n; samples for each
strata j, such that N = Z ;.
J

p= [ h@f@dz =3 [ hie)f(a)de
D j D;
Say probability of being in region D; is p;. Then:

f(z)

pj = / f(z)dz. Thus pdf in the jth stratais: f;(z) =
D; Dj
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Then

where

1
pu; = Ey [h] and thus MC gives /i; = — E h(x;7).
J iUz'ijj
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Define /i, = Y  pj;.
j

Then:

ZPJER Zp],u]

Thus (i, Is an unbiased estimator of . Yay!
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What about the variance?
72
Varg|iis| = Varg| ij,uj Zp?VarR[,uAj] — Zp?n—]
j j J

where o2 — /D (h(z) — ;) f;(z)da

J

is the "population variance" of h(x) with respect to pdf f;(x) in
region of support D;.
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Remember Varg|is] Z and assume that n; = p;, N

we get:

1
Varslil = 3 Ymie + (Zw? ; uz) which i the
J

stratified variance plus a quantity that can be be shown to be
positive by the cauchy schwartz equality.
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MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)
e "Squeeze" linear regression through a Sigmoid function
e this bounds the output to be a probability

e What is the sampling Distribution?
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Sigmoid function

This function is plotted below:

h = lambda z: 1./(1l4np.exp(-2z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x. and h(w - x) with the

probability that the sampleisa'l' (y = 1).
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Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y=0|x) =1— h(w - x).

These two can be written together as
P(y|X, W) — h(W . X)y(]_ - h(w . X))(l_y)

BERNOULLI!"
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Multiplying over the samples we get:

P(y|X7 W) — P({yz}‘{xz}aw) — H P(yz|xz,w) - H h(w ‘ xz)yZ(]_ — h(W . Xi))(l_yi)

A noisy y is to imagine that our data D was generated from a joint
probability distribution P(z,y). Thus we need to model y at a given

z, written as P(y | x), and since P(x) is also a probability
distribution, we have:

P(z,y) = P(y | =z)P(z),
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Indeed its important to realize that a particular sample can be
thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the
sampleyy,

L=Py|=x,w).
Again, we can equivalently maximize

L= log(P(y ‘ X, W))
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Thus

¢ = log (H h(w-x;)%(1— h(w- xi))(lyi))

= Z log( w-X; )% (1 — h(w.xi))(l_yi))
= Z log h(w - x;)% + log (1 — h(w - x;))\1 %)
— Z (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))
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