Lecture 4

Sampling:

Inverse Transform, Rejection Sampling, and Stratified Sampling

Announcements

- You will have upto $10 a m$ tomorrow on homework and subsequent homework
- You can take upto 5 late days (bumped up from 3). No more than 1 late day per homework

Last Time:

- Expectations and some notation
- The Law of large numbers
- Simulation and Monte Carlo for Integration
- Sampling and the CLT
- Errors in Monte Carlo

Expectation $E_{f}[X]$

$$
E_{f} X=\int x d F(x)= \begin{cases}\sum_{x} x f(x) & \text { if } \mathrm{X} \text { is discrete } \\ \int x f(x) d x & \text { if } \mathrm{X} \text { is continuous }\end{cases}
$$

LOTUS, if $Y=r(X)$:

$$
E[Y]=\int r(x) d F(x)
$$

If $r(X)=I_{A}(X)$, Indicator for event A, $p(X \in A)=E_{F}\left[I_{A}(X)\right]=$ frequentist probability

AM 207

Law of Large numbers (LLN)

- Expectations become sample averages. Convergence for large N.

$$
\begin{aligned}
E_{f}[g]= & \int g(x) d F=\int g(x) f(x) d x \\
& =\lim _{n \rightarrow \infty} \frac{1}{N} \sum_{x_{i} \sim f} g\left(x_{i}\right)
\end{aligned}
$$

- foundation of Monte Carlo techniques for expectations and integrals, which allow us to replace integration with summation

Central Limit Theorem

- note that we compute integrals from samples in one replication
- the sample averages are distributes around the true (distribution) expectation in a gaussian distribution with standard error $s=\frac{\sigma}{\sqrt{n}}$
- which mean to use depends on the accuracy you desire

Monte Carlo π

- LLN says throw rocks to compute expectation below
- $E_{f}\left[I_{\in C}(X, Y)\right]=\iint_{\in C} f_{X, Y}(x, y) d x d y$
- which is probability of being in C
- If $f_{X, Y}(x, y) \sim \operatorname{Uniform}(V)$:

$$
=\frac{1}{V} \iint_{\in C} d x d y=\frac{A}{V}
$$

Formalize Monte Carlo Integration idea

$$
\begin{gathered}
\text { For Uniform pdf: } U_{a b}(x)=1 / V=1 /(b-a) \\
J=\int_{a}^{b} f(x) U_{a b}(x) d x=\int_{a}^{b} f(x) d x / V=I / V
\end{gathered}
$$

From LOTUS and the law of large numbers:

$$
I=V \times J=V \times E_{U}[f]=V \times \lim _{n \rightarrow \infty} \frac{1}{N} \sum_{x_{i} \sim U} f\left(x_{i}\right)
$$

Today: We need Samples

- to compute expectations, integrals and do statistics, we need samples
- we start that journey today
- inverse transform
- rejection sampling
- importance sampling: a direct, low-variance way to do integrals and expectations

匋AM 207

Inverse transform

AM 207

algorithm

The CDF F must be invertible!

1. get a uniform sample u from $\operatorname{Unif}(0,1)$
2. solve for x yielding a new equation $x=F^{-1}(u)$ where F is the CDF of the distribution we desire.
3. repeat.

Why does it work?

$$
F^{-1}(u)=\text { smallest } \mathrm{x} \text { such that } F(x)>=u
$$

What distribution does random variable $y=F^{-1}(u)$ follow?
The CDF of y is $p(y<=x)$. Since F is monotonic:

$$
p(y<=x)=p(F(y)<=F(x))=p(u<=F(x))=F(x)
$$

F is the CDF of y, thus f is the pdf.

Example: exponential

pdf: $f(x)=\frac{1}{\lambda} e^{-x / \lambda}$ for $x \geq 0$ and $f(x)=0$ otherwise.

$$
u=\int_{0}^{x} \frac{1}{\lambda} e^{-x^{\prime} / \lambda} d x^{\prime}=1-e^{-x / \lambda}
$$

Solving for x

$$
x=-\lambda \ln (1-u)
$$

包AM 207

code

p = lambda x : np.exp(-x)
CDF $=$ lambda $x: 1-n p . \exp (-x)$
invCDF = lambda r: -np. $\log (1-r)$ \# invert the CDF
xmin $=0$ \# the lower limit of our domain
xmax $=6$ \# the upper limit of our domain
rmin $=$ CDF (xmin)
rmax $=\operatorname{CDF}(x m a x)$
$N=10000$
\# generate uniform samples in our range then invert the CDF
\# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram ($\mathrm{X}, 100$)
plt.hist(X,bins=100, label=u'Samples');
\# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)') plt.legend()

Box-Muller

- how to draw from a normal?
- the CDF integral is not analytically solvable.

$$
I=\frac{1}{2 \pi} \int_{-\infty}^{x} e^{-x^{\prime 2} / 2} d x^{\prime}
$$

- can do numerical inversion (out of scope) or use box-muller trick. -trick involves starting with two Normals $N(0,1)$

$$
X \sim N(0,1), Y \sim N(0,1) \Longrightarrow X, Y \sim N(0,1) N(0,1)
$$

pdf:

$$
f_{X Y}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \times \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} \times e^{-r^{2} / 2}
$$

where $r^{2}=x^{2}+y^{2}$.
Using polar co-ordinates r and θ, we have...

$$
\begin{gathered}
\Theta \sim \operatorname{Unif}(0,2 \pi), S=R^{2} \sim \operatorname{Exp}(1 / 2) \\
s=r^{2}=-2 \ln (1-u) \\
r=\sqrt{-2 \ln \left(u_{1}\right)}, \theta=2 \pi u_{2}
\end{gathered}
$$

where u_{1} and $u_{2} \sim \operatorname{Unif}(0,1)$.
Now, use $x=r \cos \theta, y=r \sin \theta$ to obtain Normal samples.
What is $f_{R, \Theta}(r, \theta)$?

包AM 207

General transforms of a pdf

Let $z=g(x)$ so that $x=g^{-1}(z)$
Define the Jacobian $J(z)$ of the transformation $x=g^{-1}(z)$ as the partial derivatives matrix of the transformation.

Then:

$$
f_{Z}(z)=f_{X}\left(g^{-1}(z)\right) \times \operatorname{det}(J(z))
$$

Let $g: r=\sqrt{x^{2}+y^{2}}, \tan (\theta)=y / x$. Then $g^{-1}: x=r \cos (\theta)$, $y=r \sin (\theta)$

$$
\begin{gathered}
J=\binom{\cos (\theta) \sin (\theta)}{-r \sin (\theta) r \cos (\theta)}, \operatorname{det}(J)=r \\
f_{R, \Theta}(r, \theta)=f_{X, Y}(r \cos (\theta), r \sin (\theta)) \times r \\
=\frac{1}{\sqrt{2 \pi}} e^{-(r \cos (\theta))^{2} / 2} \times \frac{1}{\sqrt{2 \pi}} e^{-(r \sin (\theta))^{2} / 2}=\frac{1}{2 \pi} \times e^{-r^{2} / 2} \times r .
\end{gathered}
$$

Rejection Sampling

- Generate samples from a uniform distribution with support on the rectangle
- See how many fall below $y(x)$ at a specific x .

Algorithm

1. Draw x uniformly from $\left[x_{\text {min }}, x_{\max }\right]$
2. Draw y uniformly from $\left[0, y_{\text {max }}\right]$
3. if $y<f(x)$, accept the sample
4. otherwise reject it
5. repeat

example

$P=$ lambda $x: n p . \exp (-x)$
xmin $=0$ \# the lower limit of our domain
xmax $=10$ \# the upper limit of our domain
$y \max =1$
\#you might have to do an optimization to find this
$N=10000$ \# the total of samples we wish to generate
accepted $=0$ \# the number of accepted samples
samples = np.zeros(N)
count $=0$ \# the total count of proposals
while (accepted < N)
\# pick a uniform number on [xmin, xmax) (e.g. 0...10
$x=n p . r a n d o m . u n i f o r m(x \min , x m a x)$
\# pick a uniform number on [0, ymax
$y=n p . r a n d o m . u n i f o r m(\theta, y \max)$
y $=$ Do the accept/reject comparison
if $y<P(x)$:
samples[accepted] = x
accepted += 1
count +=1
print("Count", count, "Accepted", accepted)
hinfo = np.histogram(samples, 30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000

problems

- determining the supremum may be costly
- the functional form may be complex for comparison
- even if you find a tight bound for the supremum, basic rejection sampling is very inefficient: low acceptance probability
- infinite support

AM 207

Rejection on steroids

Introduce a proposal density $g(x)$.

- $g(x)$ is easy to sample from and (calculate the pdf)
- Some M exists so that $M g(x)>f(x)$ in your entire domain of interest
- ideally $g(x)$ will be somewhat close to f
- optimal value for M is the supremum over your domain of interest of f / g.

X

- probability of acceptance is $1 / M$
(4M 207

Algorithm

1. Draw x from your proposal distribution $g(x)$
2. Draw y uniformly from $[0,1]$
3. if $y<f(x) / M g(x)$, accept the sample
4. otherwise reject it
5. repeat

X

AM 207

Example

```
p lambda x: np.exp(-x) # our distribution
= lambda x: 1/(x+1) #. our ( +1) # generatee're thus choosing M to be 1)
min = | # the lower limit of our domaintes our proposal using inverse sampling
mmax =10 # the upper limit of our domai
range limits for inverse sampling
umin = invCDFg(xmin)
N=10000 # the total of samples we wish to generate
accepted = 0# the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals
while (accepted < N):
    # Sample from g using inverse samplin
    u = np.random.uniform(umin, umax)
    xproposal = np.exp(u)
    # pick a uniform number o
    # Do the accept/reject compariso
        <p(xproposal)/d(xproposal)
        samples[accepted] = xproposal
        accepted += 1
    count +=1
print("Count", count, "Accepted", accepted)
get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples')
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals),'k', label=u'g(x)')
plt.legend()
```

Count 23809 Accepted 10000

AM 207

Importance sampling

The basic idea behind importance sampling is that we want to draw more samples where $h(x)$, a function whose integral or expectation we desire, is large. In the case we are doing an expectation, it would indeed be even better to draw more samples where $h(x) f(x)$ is large, where $f(x)$ is the pdf we are calculating the integral with respect to.

Unlike rejection sampling we use all samples!!

$$
E_{f}[h]=\int_{V} f(x) h(x) d x .
$$

Choosing a proposal distribution $g(x)$:

$$
\begin{gathered}
E_{f}[h]=\int h(x) g(x) \frac{f(x)}{g(x)} d V \\
E_{f}[h]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{x_{i} \sim g(.)} h\left(x_{i}\right) \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}
\end{gathered}
$$

If $w\left(x_{i}\right)=f\left(x_{i}\right) / g\left(x_{i}\right):$

$$
E_{f}[h]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{x_{i} \sim g(.)} w\left(x_{i}\right) h\left(x_{i}\right)
$$

Stratified Sampling

Split the domain on which we wish to calculate an expectation or integral into strata, to minimize variance.

Intuitively, smaller samples have less variance.

Want $\mu=E_{f}[h]=\int_{D} h(x) f(x) d x$

$$
\hat{\mu}=(1 / N) \sum_{x_{k} \sim f} h\left(x_{k}\right) ; E_{R}[\hat{\mu}]=\mu .
$$

Break the interval into M strata and take n_{j} samples for each strata j, such that $N=\sum_{j} n_{j}$.

$$
\mu=\int_{D} h(x) f(x) d x=\sum_{j} \int_{D_{j}} h(x) f(x) d x
$$

Say probability of being in region D_{j} is p_{j}. Then:

$$
p_{j}=\int_{D_{j}} f(x) d x . \text { Thus pdf in the } j \text { th strata is: } f_{j}(x)=\frac{f(x)}{p_{j}}
$$

Then

$$
\mu=\sum_{j} p_{j} \int_{D_{j}} h(x) \frac{f(x)}{p_{j}} d x=\sum_{j} p_{j} \mu_{j}
$$

where

$$
\mu_{j}=E_{f_{j}}[h] \text { and thus MC gives } \hat{\mu_{j}}=\frac{1}{n_{j}} \sum_{x_{i} j \sim f_{j}} h\left(x_{i} j\right) .
$$

Define $\hat{\mu_{s}}=\sum_{j} p_{j} \hat{\mu_{j}}$.
Then:

$$
E_{R}\left[\hat{\mu_{s}}\right]=\sum_{j} p_{j} E_{R}\left[\hat{\mu_{j}}\right]=\sum_{j} p_{j} \mu_{j}=\mu
$$

Thus $\hat{\mu_{s}}$ is an unbiased estimator of μ. Yay!

What about the variance?

$$
\operatorname{Var}_{R}\left[\hat{\mu_{s}}\right]=\operatorname{Var}_{R}\left[\sum_{j} p_{j} \hat{\mu}_{j}\right]=\sum_{j} p_{j}^{2} \operatorname{Var}_{R}\left[\hat{\mu_{j}}\right]=\sum_{j} p_{j}^{2} \frac{\sigma_{j}^{2}}{n_{j}}
$$

where $\sigma_{j}^{2}=\int_{D_{j}}\left(h(x)-\mu_{j}\right)^{2} f_{j}(x) d x$
is the "population variance" of $h(x)$ with respect to pdf $f_{j}(x)$ in region of support D_{j}.

AM 207

$$
\begin{gathered}
\operatorname{Var}_{R}[\hat{\mu}]=\frac{\sigma^{2}}{N}=\frac{1}{N} \int_{D}(h(x)-\mu)^{2} f(x) d x \\
=\frac{1}{N} \sum_{j} p_{j} \int_{D_{j}}(h(x)-\mu)^{2} f_{j}(x) d x=\frac{1}{N} \sum_{j} p_{j}\left(\int_{D_{j}} h(x)^{2} f_{j}(x) d x+\mu^{2} \int_{D_{j}} f_{j}(x) d x-2 \mu \int_{D_{j}} h(x) f_{j}(x) d x\right) \\
=\frac{1}{N}\left(\sum_{j} p_{j} \int_{D_{j}} h(x)^{2} f_{j}(x) d x-\mu^{2}\right) \\
=\frac{1}{N}\left(\sum_{j} p_{j}\left[\sigma_{j}^{2}+\mu_{j}^{2}\right]-\mu^{2}\right)
\end{gathered}
$$

Remember $\operatorname{Var}_{R}\left[\hat{\mu_{s}}\right]=\sum_{j} p_{j}^{2} \frac{\sigma_{j}^{2}}{n_{j}}$ and assume that $n_{j}=p_{j} N$ we get:

$$
\operatorname{Var}_{R}[\hat{\mu}]=\frac{1}{N} \sum_{j} p_{j} \sigma_{j}^{2}+\frac{1}{N}\left(\sum_{j} p_{j} \mu_{j}^{2}-\mu^{2}\right) \text { which is the }
$$

stratified variance plus a quantity that can be be shown to be positive by the cauchy schwartz equality.

MLE for Logistic Regression

- example of a Generalized Linear Model (GLM)
- "Squeeze" linear regression through a Sigmoid function
- this bounds the output to be a probability
- What is the sampling Distribution?

Sigmoid function

This function is plotted below:
h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);
Identify: $z=\mathbf{w} \cdot \mathbf{x}$. and $h(\mathbf{w} \cdot \mathbf{x})$ with the probability that the sample is a ' 1 ' $(y=1)$.

Then, the conditional probabilities of $y=1$ or $y=0$ given a particular sample's features \mathbf{x} are:

$$
\begin{aligned}
& P(y=1 \mid \mathbf{x})=h(\mathbf{w} \cdot \mathbf{x}) \\
& P(y=0 \mid \mathbf{x})=1-h(\mathbf{w} \cdot \mathbf{x}) .
\end{aligned}
$$

These two can be written together as

$$
P(y \mid \mathbf{x}, \mathbf{w})=h(\mathbf{w} \cdot \mathbf{x})^{y}(1-h(\mathbf{w} \cdot \mathbf{x}))^{(1-y)}
$$

BERNOULLI!!

Multiplying over the samples we get:

$$
P(y \mid \mathbf{x}, \mathbf{w})=P\left(\left\{y_{i}\right\} \mid\left\{\mathbf{x}_{i}\right\}, \mathbf{w}\right)=\prod_{y_{i} \in \mathcal{D}} P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)=\prod_{y_{i} \in \mathcal{D}} h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)^{y_{i}}\left(1-h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)\right)^{\left(1-y_{i}\right)}
$$

A noisy y is to imagine that our data \mathcal{D} was generated from a joint probability distribution $P(x, y)$. Thus we need to model y at a given x, written as $P(y \mid x)$, and since $P(x)$ is also a probability distribution, we have:

$$
P(x, y)=P(y \mid x) P(x)
$$

Indeed its important to realize that a particular sample can be thought of as a draw from some "true" probability distribution.
maximum likelihood estimation maximises the likelihood of the sample y,

$$
\mathcal{L}=P(y \mid \mathbf{x}, \mathbf{w})
$$

Again, we can equivalently maximize

$$
\ell=\log (P(y \mid \mathbf{x}, \mathbf{w}))
$$

Thus

$$
\begin{aligned}
\ell & =\log \left(\prod_{y_{i} \in \mathcal{D}} h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)^{y_{i}}\left(1-h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)\right)^{\left(1-y_{i}\right)}\right) \\
& =\sum_{y_{i} \in \mathcal{D}} \log \left(h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)^{y_{i}}\left(1-h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)\right)^{\left(1-y_{i}\right)}\right) \\
& =\sum_{y_{i} \in \mathcal{D}} \log h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)^{y_{i}}+\log \left(1-h\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)\right)^{\left(1-y_{i}\right)} \\
& =\sum_{y_{i} \in \mathcal{D}}\left(y_{i} \log (h(\mathbf{w} \cdot \mathbf{x}))+\left(1-y_{i}\right) \log (1-h(\mathbf{w} \cdot \mathbf{x}))\right)
\end{aligned}
$$

