
Lecture 4

Sampling:
Inverse Transform, Rejec1on Sampling, and 

Stra1fied Sampling



Announcements
• You will have upto 10am tomorrow on homework and 

subsequent homework

• You can take upto 5 late days (bumped up from 3). No more than 
1 late day per homework



Last Time:

• Expecta)ons and some nota)on

• The Law of large numbers

• Simula)on and Monte Carlo for Integra)on

• Sampling and the CLT

• Errors in Monte Carlo



Expecta(on 

LOTUS, if :

If , Indicator for event A, 
frequen2st probability



Law of Large numbers (LLN)

• Expecta)ons become sample averages. Convergence for large N.

• founda(on of Monte Carlo techniques for expecta(ons and 
integrals, which allow us to replace integra(on with summa(on 



Central Limit Theorem

• note that we compute integrals from samples in one replica4on

• the sample averages are distributes around the true (distribu4on) 
expecta4on in a gaussian distribu4on with standard error 

• which mean to use depends on the accuracy you desire



Monte Carlo 

• LLN says throw rocks to compute 
expecta4on below

•

• which is probability of being in C

• If :



Formalize Monte Carlo Integra1on idea
For Uniform pdf: 

From LOTUS and the law of large numbers:



Today: We need Samples

• to compute expecta,ons, integrals and do sta,s,cs, we need 
samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to do integrals 
and expecta,ons



Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  where  is the 
CDF of the distribu8on we desire.

3. repeat.



Why does it work?

 smallest x such that 

What distribu,on does random variable  follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus  is the pdf.



Example: exponen,al

pdf:  for  and  otherwise.

Solving for 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()



Box-Muller

• how to draw from a normal?

• the CDF integral is not analy7cally solvable. 

• can do numerical inversion (out of scope) or use box-muller trick.
-trick involves star7ng with two Normals 



pdf:

where .

Using polar co-ordinates  and , we have...



where  and  .

Now, use  to obtain Normal samples.

What is ?



General transforms of a pdf

Let  so that 

Define the Jacobian  of the transforma2on  as the 
par2al deriva2ves matrix of the transforma2on.

Then:



Let  : , . Then  : , 

.



Rejec%on Sampling

• Generate samples from a uniform distribu3on with support on 
the rectangle

• See how many fall below  at a specific x.



Algorithm

1. Draw  uniformly from 

2. Draw  uniformly from 

3. if , accept the sample

4. otherwise reject it

5. repeat



example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
    # pick a uniform number on [xmin, xmax) (e.g. 0...10)
    x = np.random.uniform(xmin, xmax)
    # pick a uniform number on [0, ymax)
    y = np.random.uniform(0,ymax)
    # Do the accept/reject comparison
    if y < P(x):
        samples[accepted] = x
        accepted += 1

    count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000



problems

• determining the supremum may be costly

• the func6onal form may be complex for comparison

• even if you find a 6ght bound for the supremum, basic rejec6on 
sampling is very inefficient: low acceptance probability

• infinite support



Variance
Reduc&on



Rejec%on on steroids

Introduce a proposal density .

•  is easy to sample from and 
(calculate the pdf)

• Some  exists so that  
in your en8re domain of interest

• ideally  will be somewhat close to 

• op8mal value for M is the supremum 
over your domain of interest of .

• probability of acceptance is 



Algorithm

1. Draw  from your proposal distribu4on 

2. Draw  uniformly from [0,1]

3. if , accept the sample

4. otherwise reject it

5. repeat



Example

p = lambda x: np.exp(-x)  # our distribution
g = lambda x: 1/(x+1)  # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
# range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

    # Sample from g using inverse sampling
    u = np.random.uniform(umin, umax)
    xproposal = np.exp(u) - 1

    # pick a uniform number on [0, 1)
    y = np.random.uniform(0,1)

    # Do the accept/reject comparison
    if y < p(xproposal)/g(xproposal):
        samples[accepted] = xproposal
        accepted += 1

    count +=1

print("Count", count, "Accepted", accepted)
# get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000



Importance sampling

The basic idea behind importance sampling is that we want to draw 
more samples where , a func7on whose integral or expecta7on 
we desire, is large. In the case we are doing an expecta7on, it 
would indeed be even be<er to draw more samples where 

 is large, where  is the pdf we are calcula7ng the 
integral with respect to.

Unlike rejec+on sampling we use all samples!!



Choosing a proposal distribu1on :

If :



Stra%fied Sampling

Split the domain on which we wish to 
calculate an expecta3on or integral into 
strata, to minimize variance.

Intui&vely, smaller samples have less 
variance.

Want 



Break the interval into  strata and take  samples for each
strata , such that .

Say probability of being in region  is . Then:

. Thus pdf in the th strata is: .



Then

where

 and thus MC gives 



Define 

Then:

Thus  is an unbiased es,mator of . Yay!



What about the variance?

where 

is the "popula-on variance" of  with respect to pdf  in 
region of support .





Remember  and assume that 

we get:

 which is the 

stra+fied variance plus a quan+ty that can be be shown to be 
posi+ve by the cauchy schwartz equality.



MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  with the 
probability that the sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  given a 
par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

A noisy  is to imagine that our data  was generated from a joint 
probability distribu7on . Thus we need to model  at a given 

, wri<en as , and since  is also a probability 
distribu7on, we have:



Indeed its important to realize that a par1cular sample can be 
thought of as a draw from some "true" probability distribu1on.

 maximum likelihood es$ma$on maximises the likelihood of the 
sample y,

Again, we can equivalently maximize



Thus


