
Lecture 4

Sampling:
Inverse Transform, Rejec1on Sampling, and

Stra1fied Sampling

Announcements
• You will have upto 10am tomorrow on homework and

subsequent homework

• You can take upto 5 late days (bumped up from 3). No more than
1 late day per homework

Last Time:

• Expecta)ons and some nota)on

• The Law of large numbers

• Simula)on and Monte Carlo for Integra)on

• Sampling and the CLT

• Errors in Monte Carlo

Expecta(on

LOTUS, if :

If , Indicator for event A,
frequen2st probability

Law of Large numbers (LLN)

• Expecta)ons become sample averages. Convergence for large N.

• founda(on of Monte Carlo techniques for expecta(ons and
integrals, which allow us to replace integra(on with summa(on

Central Limit Theorem

• note that we compute integrals from samples in one replica4on

• the sample averages are distributes around the true (distribu4on)
expecta4on in a gaussian distribu4on with standard error

• which mean to use depends on the accuracy you desire

Monte Carlo

• LLN says throw rocks to compute
expecta4on below

•

• which is probability of being in C

• If :

Formalize Monte Carlo Integra1on idea
For Uniform pdf:

From LOTUS and the law of large numbers:

Today: We need Samples

• to compute expecta,ons, integrals and do sta,s,cs, we need
samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to do integrals
and expecta,ons

Inverse transform

algorithm

The CDF must be inver1ble!

1. get a uniform sample from

2. solve for yielding a new equa8on where is the
CDF of the distribu8on we desire.

3. repeat.

Why does it work?

 smallest x such that

What distribu,on does random variable follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus is the pdf.

Example: exponen,al

pdf: for and otherwise.

Solving for

code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
generate uniform samples in our range then invert the CDF
to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()

Box-Muller

• how to draw from a normal?

• the CDF integral is not analy7cally solvable.

• can do numerical inversion (out of scope) or use box-muller trick.
-trick involves star7ng with two Normals

pdf:

where .

Using polar co-ordinates and , we have...

where and .

Now, use to obtain Normal samples.

What is ?

General transforms of a pdf

Let so that

Define the Jacobian of the transforma2on as the
par2al deriva2ves matrix of the transforma2on.

Then:

Let : , . Then : ,

.

Rejec%on Sampling

• Generate samples from a uniform distribu3on with support on
the rectangle

• See how many fall below at a specific x.

Algorithm

1. Draw uniformly from

2. Draw uniformly from

3. if , accept the sample

4. otherwise reject it

5. repeat

example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
 # pick a uniform number on [xmin, xmax) (e.g. 0...10)
 x = np.random.uniform(xmin, xmax)
 # pick a uniform number on [0, ymax)
 y = np.random.uniform(0,ymax)
 # Do the accept/reject comparison
 if y < P(x):
 samples[accepted] = x
 accepted += 1

 count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000

problems

• determining the supremum may be costly

• the func6onal form may be complex for comparison

• even if you find a 6ght bound for the supremum, basic rejec6on
sampling is very inefficient: low acceptance probability

• infinite support

Variance
Reduc&on

Rejec%on on steroids

Introduce a proposal density .

• is easy to sample from and
(calculate the pdf)

• Some exists so that
in your en8re domain of interest

• ideally will be somewhat close to

• op8mal value for M is the supremum
over your domain of interest of .

• probability of acceptance is

Algorithm

1. Draw from your proposal distribu4on

2. Draw uniformly from [0,1]

3. if , accept the sample

4. otherwise reject it

5. repeat

Example

p = lambda x: np.exp(-x) # our distribution
g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

 # Sample from g using inverse sampling
 u = np.random.uniform(umin, umax)
 xproposal = np.exp(u) - 1

 # pick a uniform number on [0, 1)
 y = np.random.uniform(0,1)

 # Do the accept/reject comparison
 if y < p(xproposal)/g(xproposal):
 samples[accepted] = xproposal
 accepted += 1

 count +=1

print("Count", count, "Accepted", accepted)
get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

Importance sampling

The basic idea behind importance sampling is that we want to draw
more samples where , a func7on whose integral or expecta7on
we desire, is large. In the case we are doing an expecta7on, it
would indeed be even be<er to draw more samples where

 is large, where is the pdf we are calcula7ng the
integral with respect to.

Unlike rejec+on sampling we use all samples!!

Choosing a proposal distribu1on :

If :

Stra%fied Sampling

Split the domain on which we wish to
calculate an expecta3on or integral into
strata, to minimize variance.

Intui&vely, smaller samples have less
variance.

Want

Break the interval into strata and take samples for each
strata , such that .

Say probability of being in region is . Then:

. Thus pdf in the th strata is: .

Then

where

 and thus MC gives

Define

Then:

Thus is an unbiased es,mator of . Yay!

What about the variance?

where

is the "popula-on variance" of with respect to pdf in
region of support .

Remember and assume that

we get:

 which is the

stra+fied variance plus a quan+ty that can be be shown to be
posi+ve by the cauchy schwartz equality.

MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?

Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy: and with the
probability that the sample is a '1' ().

Then, the condi,onal probabili,es of or given a
par,cular sample's features are:

These two can be wri/en together as

BERNOULLI!!

Mul$plying over the samples we get:

A noisy is to imagine that our data was generated from a joint
probability distribu7on . Thus we need to model at a given

, wri<en as , and since is also a probability
distribu7on, we have:

Indeed its important to realize that a par1cular sample can be
thought of as a draw from some "true" probability distribu1on.

 maximum likelihood esmaon maximises the likelihood of the
sample y,

Again, we can equivalently maximize

Thus

