Lecture 4
Sampling:

Inverse Transform, Rejection Sampling, and
Stratified Sampling

@AM 207

Announcements

e You will have upto 10am tomorrow on homework and
subsequent homework

e You can take upto 5 late days (bumped up from 3). No more than
1 late day per homework

@AM 207

Last Time:

e Expectations and some notation

e The Law of large numbers

e Simulation and Monte Carlo for Integration
e Sampling and the CLT

e Errorsin Monte Carlo

@AM 207

Expectation E¢|X]

B [, zf(z) if Xisdiscrete
by = /a:dF(a:) N {fmf(w)dw if X is continuous

LOTUS, if Y = r(X):
ElY] = /'r(a:)dF(a:)

If (X)) = I4(X), Indicator forevent A, p(X € A) = Er[I4(X)] =
frequentist probability

@AM 207

Law of Large numbers (LLN)

e Expectations become sample averages. Convergence for large N.

e foundation of Monte Carlo techniques for expectations and
integrals, which allow us to replace integration with summation

@AM 207

Central Limit Theorem

e note that we compute integrals from samples in one replication

e the sample averages are distributes around the true (distribution)
expectation in a gaussian distribution with standard error

S — ——

/n

 which mean to use depends on the accuracy you desire

@AM 207

y)dzdy

I

£ g ©

= =
S5 E 2 E
@ O N ‘D < .
= O Yy O = =

- 8
© n / o ..._OJ =S
O X — > 5 .

S 2 g Y
s : =S T
+= IS =
S 23 = & @ =
S E£c ™ 8 3 ~I»
M t.o X o I

2R = o & |

v O W L

O N ©

m < — Fal N

) L3 < =

[) (] [) (}

@AM 207

Formalize Monte Carlo Integration idea

For Uniform pdf: Uy, (z) =1/V =1/(b— a)

b b
J - / #(@)Uns () de = / f(z)dz/V = 1)V

From LOTUS and the law of large numbers:

o1
I:V><J=V><EU[f]:VXJL%N;]J"(%)

Today: We need Samples

e to compute expectations, integrals and do statistics, we need
samples

e we start that journey today
e |nverse transform
e rejection sampling

 importance sampling: a direct, low-variance way to do integrals
and expectations

@AM 207

—
o

Inverse transform

f(x)
©C = N W A OO N ® ©

&AM 207

algorithm

The CDF F' must be invertible!

1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation = F~*(u) where F is the
CDF of the distribution we desire.

3. repeat.

@AM 207

Why does it work?

F~1(u) = smallest x such that F(z) >= u

What distribution does random variable y = F~* () follow?
The CDF of y is p(y <=). Since F is monotonic:
p(y <= z) = p(F(y) <= F(z)) = p(u <= F(z)) = F(z)
F'is the CDF of y, thus f is the pdf.

@AM 207

Example: exponential

pdf: f(z) = ;e—‘”“ forz > 0 and f(x) = 0 otherwise.

u=/ le_"”’/)‘d:zz' =1— e @A
0 A

Solving for z

r=—Aln(1 — u)

@AM 207

code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin = CDF(xmin)

rmax = CDF(xmax)

N = 10000

generate uniform samples in our range then invert the CDF
to get samples of our target distribution

R = np.random.uniform(rmin, rmax, N)

X = invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()

&AM 207

600

300

400

300

200

100

p(x)
Bl Samples

Box-Muller

e how to draw from a normal?

 the CDF integral is not analytically solvable.

I = L e 2" /2qy
2™ J_ oo

e can do numerical inversion (out of scope) or use box-muller trick.
-trick involves starting with two Normals N (0, 1)

@AM 207

X ~ N(0,1),Y ~ N(0,1) = X,Y ~ N(0,1)N(0,1)

1 2 1 2 1 2
_ —x° /2 /2 —7r°/2
e Var 2m

where r* = 2% + y°.

Using polar co-ordinates r and 6, we have...

@AM 207

© ~ Unif(0,27),S = R* ~ Exp(1/2)

s =1 = —2In(1 — u)

r = \/—2ln(u1),9 = 27T U

where u; and us ~ Unif(0, 1).
Now, use x = r cosf, y = r sinf to obtain Normal samples.

What is fR,@ (’I", 9)7

@AM 207

General transforms of a pdf

Let z = g(x) so that x = gt (2)

Define the Jacobian J(z) of the transformation 2 = g~ *(2) as the
partial derivatives matrix of the transformation.

Then:

fz(2) = fx (g7 (2)) x det(J(2))

@AM 207

let g : r = \/;132 + 4%, tan(f) = y/z. Then g : & = r cos(6),
y = r sin(6)

. (cos(0) sin(6)

—rsin(0) rcos(@)) det(J) =T

froe(r,0) = fxy(rcos(0),rsin(0)) x r

@AM 207

Rejection Sampling

e Generate samples from a uniform distribution with support on
the rectangle

e See how many fall below y(x) at a specific x.

@AM 207

Algorithm

1. Draw uniformly from [z,.in, Zmaz]
2. Draw y uniformly from [0, 42|
3.ify < f(x), accept the sample

4. otherwise reject it

5. repeat

&AM 207

ym ax

accept

reject

example

P = lambda x: np.exp(-x)

xmin = @ # the lower limit of our domain

Xmax 10 # the upper limit of our domain

ymax = 1

#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = @ # the number of accepted samples
samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

pick a uniform number on [xmin, xmax) (e.g. 0...10)

#
x = np.random.uniform(xmin, xmax)
pick a uniform number on [O, ymax)
y = np.random.uniform(@,ymax)
Do the accept/reject comparison
if y < P(x):

samples[accepted] = x

accepted += 1

count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*P(xvals), 'r', label=u'P(x)")

plt.legend()

Count 100294 Accepted 10000

&AM 207

3000

2500

2000

1500

1000

P(x)
Bl Samples

problems

e determining the supremum may be costly
e the functional form may be complex for comparison

e even if you find a tight bound for the supremum, basic rejection
sampling is very inefficient: low acceptance probability

e infinite support

@AM 207

Variance
Reduction

Rejection on steroids

Introduce a proposal density g(z).

* g(x) is easy to sample from and
(calculate the pdf)

* Some M exists so that M g(z) > f(z)
in your entire domain of interest

* ideally g(«) will be somewhat close to f

e optimal value for M is the supremum
over your domain of interest of f/g.

 probability of acceptanceis 1/ M
@AM 207

Y Axis

—
o
i

= N W A OO OO N ® ©
| I B R B R RS R

M g(x)

f(x)

Algorithm

—
o
1

1. Draw z from your proposal distribution
g(z)

2. Draw y uniformly from [0,1]
3.ify < f(x)/M g(x), accept the sample
4. otherwise reject it

5. repeat

Y Axis
C = N WA OO N @® ©
R e S S

@AM 207

Example

1600

P lambda x: np.exp(-x) # our distribution

g lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)

invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling

xmin = @ # the lower limit of our domain 1“(]()
xmax = 10 # the upper limit of our domain

range limits for inverse sampling

umin = invCDFg(xmin)

umax = invCDFg(xmax)

N = 10000 # the total of samples we wish to generate 1:2()()
accepted = @ # the number of accepted samples

samples = np.zeros(N)

count = @ # the total count of proposals

1000

while (accepted < N):

Sample from g using inverse sampling
u = np.random.uniform(umin, umax)
xproposal = np.exp(u) - 1 mo

pick a uniform number on [0, 1)
y = np.random.uniform(@,1) (J
Do the accept/reject comparison
if y < p(xproposal)/g(xproposal):
samples[accepted] = xproposal

accepted += 1 400

count +=1

print("Count", count, "Accepted", accepted)

get the histogram info mo
hinfo = np.histogram(samples,50)

plt.hist(samples,bins=50, label=u'Samples');

xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][@]*p(xvals), 'r', label=u'p(x)') ()
plt.plot(xvals, hinfo[@][@]*g(xvals), 'k', label=u'g(x)')

plt.legend()

Count 23809 Accepted 10000

&AM 207

Importance sampling

The basic idea behind importance sampling is that we want to draw
more samples where h(z), a function whose integral or expectation

we desire, Is large. In the case we are doing an expectation, it
would indeed be even better to draw more samples where

h(x)f(x) is large, where f(x) is the pdf we are calculating the
integral with respect to.

Unlike rejection sampling we use all samples!!

@AM 207

Byt = | f@h@)dz

Choosing a proposal distribution g(x):

E;[h] = / h(z)g(z)

E¢lh| = lim — Z hiL'z)

N—>oo N

Byl = Jim 37 3 w(eh

@AM 207

dhl
-~ ga arge
h(x)

f(x)

d h large

W samples, large weidQts

many samples, small weights

Stratified Sampling

Split the domain on which we wish to
calculate an expectation or integral into
strata, to minimize variance.

Intuitively, smaller samples have less
variance.

Want g = E;[h] = / h(z) f(z) da

p=(1/N)) h(z); Er[a] = p.

wka

@AM 207

Y Axis

—a
o
1

= N W A OO OO N ® ©
| I B R B R B R E—

Break the interval into M strata and take n; samples for each
strata j, such that N = Z ;.
J

p= [h@f@dz =3 [hie)f(a)de
D j D;
Say probability of being in region D; is p;. Then:

f(z)

pj = / f(z)dz. Thus pdf in the jth stratais: f;(z) =
D; Dj

@AM 207

Then

where

1
pu; = Ey [h] and thus MC gives /i; = — E h(x;7).
J iUz'ijj

@AM 207

Define /i, = Y pj;.
j

Then:

ZPJER Zp],u]

Thus (i, Is an unbiased estimator of . Yay!

@AM 207

What about the variance?
72
Varg|iis| = Varg| ij,uj Zp?VarR[,uAj] — Zp?n—]
j j J

where o2 — /D (h(z) — ;) f;(z)da

J

is the "population variance" of h(x) with respect to pdf f;(x) in
region of support D;.

@AM 207

@AM 207

Remember Varg|is] Z and assume that n; = p;, N

we get:

1
Varslil = 3 Ymie + (Zw? ; uz) which i the
J

stratified variance plus a quantity that can be be shown to be
positive by the cauchy schwartz equality.

@AM 207

MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)
e "Squeeze" linear regression through a Sigmoid function
e this bounds the output to be a probability

e What is the sampling Distribution?

@AM 207

Sigmoid function

This function is plotted below:

h = lambda z: 1./(1l4np.exp(-2z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x. and h(w - x) with the

probability that the sampleisa'l' (y = 1).

@AM 207

1.0

0.8

0.6

0.4

0.2

0.0

Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y=0|x) =1— h(w - x).

These two can be written together as
P(y|X, W) — h(W . X)y(]_ - h(w . X))(l_y)

BERNOULLI!"

®AM 207

Multiplying over the samples we get:

P(y|X7 W) — P({yz}‘{xz}aw) — H P(yz|xz,w) - H h(w ‘ xz)yZ(]_ — h(W . Xi))(l_yi)

A noisy y is to imagine that our data D was generated from a joint
probability distribution P(z,y). Thus we need to model y at a given

z, written as P(y | x), and since P(x) is also a probability
distribution, we have:

P(z,y) = P(y | =z)P(z),

@AM 207

Indeed its important to realize that a particular sample can be
thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the
sampleyy,

L=Py|=x,w).
Again, we can equivalently maximize

L= log(P(y ‘ X, W))

@AM 207

Thus

¢ = log (H h(w-x;)%(1— h(w- xi))(lyi))

= Z log(w-X;)% (1 — h(w.xi))(l_yi))
= Z log h(w - x;)% + log (1 — h(w - x;))\1 %)
— Z (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))

@AM 207

