
Lecture 3

More Stats:
Expecta(ons, LLN, Monte Carlo, and the CLT



Collabora'on Policy

“You can collaborate with up-to two addi4onal people on any 
homework, as long as you write your own homework and men4on your 

collaborators on it.”



What does this mean?

• You can talk to anyone as long as you write your own work for 
anything you plan on submi8ng

• You can turn in 3 iden;cal problem sets as long as each of you 
name both of your collaborators on your homework. Each person 
MUST turn in their own problem set.

• ACribu;on is key!! Anything that you “borrow” from someone/
someplace else please make sure to aCribute!!!



So far:

• Probability and Bayes Theorem

• Distribu6ons

• Frequen6st Sta6s6cs

• Maximum Likelihood Es6ma6on

• Sampling Distribu6on



Today

• Expecta)ons and some nota)on

• The Law of large numbers

• Simula)on and Monte Carlo for Integra)on

• Sampling and the CLT

• Errors in Monte Carlo



Expecta(on 

Why calculate it?

• we'll see it corresponds to the frequen4st no4on of probability

• we o8en want point es4mates

Expecta(ons are always with respect to a pmf or density. O8en just 
called the mean of the mass func(on or density. More weight to 
more probable values.



For the discrete random variable :

Con$nuous case:



Nota%on

The expected value, or mean, or first moment, of X is defined to be

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with respect to a 
coun5ng measure.



LOTUS: Law of the unconscious sta4s4cian

Also known as The rule of the lazy sta/s/cian.

Theorem:

if ,



Applica'on: Probability as Expecta'on

Let A be an event and let  (Indicator for event A)

Then:



Ever longer sequences for means



Law of Large numbers

Let  be a sequence of IID values from random 
variable , which has finite mean . Let:

Then:



Frequen'st Interpreta'on of probability

Suppose . 

Now if we take a long sequence seq=10010011100.... from , 
then

mean(seq) as length(seq)



Monte Carlo Algorithm

• use randomness to solve what is o2en a determinis3c problem

• applica3on of the law of large numbers

• integrals, expecta3ons, marginaliza3on

• we'll study op3miza3on, integra3on, and obtaining draws from a 
probability distribu3on



...I wondered whether a more prac0cal 
method than “abstract thinking” might 

not be to lay it out say one hundred 
0mes and simply observe and count 

the number of successful plays



...and more generally how to change 
processes described by certain 
differen6al equa6ons into an 

equivalent form interpretable as a 
succession of random opera6ons

— Stanislaw Ulam



es#ma#ng 

If :



Formalize Monte Carlo Integra1on idea
For Uniform pdf: 

From LOTUS and the law of large numbers:



Example

def f(x):
    return x**2 + 4*x*np.sin(x)
def intf(x):
    return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;    
b = 3;
N= 10000
X = np.random.uniform(low=a, high=b, size=N)
Y =f(X)
V = b-a
Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251



Accuracy as a func+on of the number of samples



Variance of the es.mate



M replica*ons of N coin tosses



sample means: 200 replica/ons of N coin tosses



In limit  of replica/ons, each of the expecta/ons in RHS 
can be replaced by the popula/on mean  using the law of large 
numbers! Thus:

In limit  of replica/ons the expecta/on value of the sample 
means converges to the popula/on mean.



Distribu(on of Sample Means



Now let underlying distribu1on have well defined mean  AND a 
well defined variance .

Now in limit , each of the variances in the RHS can be 
replaced by the popula;on variance using the law of large numbers! 
Thus:



The Central Limit Theorem (CLT)

Let  be a sequence of IID values from a random 
variable . Suppose that  has the finite mean  AND finite 
variance . Then:

 converges to



Origin story of the Gaussian

Under Lyapunov condi0ons, the  dont have to be iden0cally 
distributed, as long as  is the mean of the means and  is the sum 
of the individual variances. This gives us the standard origin story of 
the gaussian.

 is called the standard error .



Gaussians



Meaning

• weight-watchers’ study of 1000 people, average weight is 150 
lbs with  of 30lbs.

• Randomly choose many samples of 100 people each, the mean 
weights of those samples would cluster around 150lbs with a 
standard error of 3lbs.

• a different sample of 100 people with an average weight of 
170lbs would be more than 6 standard errors beyond the 
populaDon mean.



Maximum Likelihood es0ma0on



Linear Regression MLE



Gaussian Distribu,on assump,on

Each  is gaussian distributed with mean  (the y predicted by 
the regression line) and variance :



We can then write the likelihood:

The log likelihood  then is given by:



Maximizing gives:

where we stack rows to get:



Back to Monte Carlo

We want to calculate:

• Whatever  is, the variance of the sampling distribu8on of 
the mean goes down as 

• Thus  goes down as 



Why is this important?

• In higher dimensions , the CLT s3ll holds and the error s3ll 

scales as .

• How does this compete with numerical integra3on? For 
:

• le? or right rule: , Midpoint rule: 

• Trapezoid: , Simpson: 



Basic Numerical Integra1on idea

(from wikipedia)



Next &me

In order to calculate expecta/ons, do integrals, and do sta/s/cs, 
we must learn how to do

SAMPLING



A taste: Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  where  is the 
CDF of the distribu8on we desire.

3. repeat.



Example: exponen,al

pdf:  for  and  otherwise.

Solving for 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()



Hit or miss

• Generate samples from a uniform distribu3on with support on 
the rectangle

• See how many fall below  at a specific  sliver.

This is the basic idea behind rejec/on sampling


