Lecture 3

More Stats:
Expectations, LLN, Monte Carlo, and the CLT
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Collaboration Policy

“You can collaborate with up-to two additional people on any
homework, as long as you write your own homework and mention your
collaborators on it.”
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What does this mean?

 You can talk to anyone as long as you write your own work for
anything you plan on submitting

 You can turn in 3 identical problem sets as long as each of you
name both of your collaborators on your homework. Each person
MUST turn in their own problem set.

o Attribution is key!! Anything that you “borrow” from someone/
someplace else please make sure to attribute!!!
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So far:

 Probability and Bayes Theorem
e Distributions

 Frequentist Statistics

e Maximum Likelihood Estimation

e Sampling Distribution
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Today

e Expectations and some notation

e The Law of large numbers

e Simulation and Monte Carlo for Integration
e Sampling and the CLT

e Errorsin Monte Carlo
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Expectation E¢| X]
Why calculate it?

e we'll see it corresponds to the frequentist notion of probability
e we often want point estimates

Expectations are always with respect to a pmf or density. Often just
called the mean of the mass function or density. More weight to
more probable values.
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For the discrete random variable X:

Ef[X] =) =z f(x).
Continuous case:

E,[X] = / z f(z)dz — / 2dF(z)
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Notation

The expected value, or mean, or first moment, of X is defined to be

{Z rf(xz) if X is discrete

[zf(z)dz if X is continuous

EfX /:BdF

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with respect to a
counting measure.
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LOTUS: Law of the unconscious statistician

Also known as The rule of the lazy statistician.

Theorem:

ifY = r(X),

EY] = /r(a:)dF(a:)
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Application: Probability as Expectation

Let A be an event and let r(x) = I4(z) (Indicator for event A)

Then:
B/14(X)] = [ Ia(2)dF(2) = [ fx(e)do = p(X € 4)
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Ever longer sequences for means
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Law of Large numbers

Let 21, 25,...,x, be asequence of IID values from random
variable X, which has finite mean p. Let:

1
Snzgzzzlwza

Then:

S, — pasn — oo.
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Frequentist Interpretation of probability
Ep(I4(X)] =p(X € A)

Suppose Z = I4(X) ~ Bernoulli(p = P(A)).

Now if we take a long sequence seq=10010011100. ... from Z,
then

P(A) =mean(seq) as length(seq)— oo
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Monte Carlo Algorithm

e use randomness to solve what is often a deterministic problem
e application of the law of large numbers
e integrals, expectations, marginalization

o we'll study optimization, integration, and obtaining draws from a
probability distribution
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...l wondered whether a more practical
method than “abstract thinking” might
not be to lay it out say one hundred
times and simply observe and count
the number of successful plays
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...and more generally how to change
processes described by certain
differential equations into an
equivalent form interpretable as a
succession of random operations

— Stanislaw Ulam
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estimating =
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Formalize Monte Carlo Integration idea

For Uniform pdf: Uy, (z) =1/V =1/(b— a)

b b
J - / #(@)Uns () de = / f(z)dz/V = 1)V

From LOTUS and the law of large numbers:

o1
I:V><J=V><EU[f]:VXJL%N;]J"(%)



Example

3
I= /2 [2® + 4z sin(z)] dz.

def f£(x):
return x**2 + 4*x*np.sin(x)
def intf(x):
return x*¥*3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)

a = 2;

b = 3;

N= 10000

X = np.random.uniform(low=a, high=b, size=N)
Y =f(X)

V = b-a

Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251
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Accuracy as a function of the number of samples
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Variance of the estimate
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M replications of N coin tosses
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sample means: 200 replications of N coin tosses
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E{R} (Na‘:) — E{R} (2131 + To+. .. —|—£13N) — E{R} (:131) + E{R} (mg)—l—. . —I—E{R} (:BN)

In limit M — oo of replications, each of the expectations in RHS
can be replaced by the population mean p using the law of large
numbers! Thus:

In limit M — oo of replications the expectation value of the sample
means converges to the population mean.

@AM 207



&AM 207

0.7

0.6

0.5

04

0.3

Distribution of Sample Means

) p = o e !

400

600

800

1000



Now let underlying distribution have well defined mean 1 AND a
well defined variance o*.

V{R} (NQ_Z) — V{R} (.’131 —+ To+. .. —I—.’BN) — V:[R} (.’Bl) - V;[R} (wg)—l—. .. —I—V{R} (:BN)

Now in limit M — oo, each of the variances in the RHS can be

replaced by the population variance using the law of large numbers!
Thus:

Viry(NZ) = No”
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The Central Limit Theorem (CLT)

Let 21, 25,...,x, be asequence of lID values from a random
variable X. Suppose that X has the finite mean u AND finite
variance &*. Then:

1 n
S, = — E x;, converges to
n
i=1

0.2

Sp ~ N(u,—)asn — oo.
n
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Origin story of the Gaussian

Under Lyapunov conditions, the z; dont have to be identically
distributed, as long as p is the mean of the means and ¢ is the sum

of the individual variances. This gives us the standard origin story of
the gaussian.

vV is called the standard error s.

S —

7
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Meaning

e weight-watchers’ study of 1000 people, average weight is 150
lbs with ¢ of 30Ibs.

e Randomly choose many samples of 100 people each, the mean

weights of those samples would cluster around 1501bs with a
standard error of 3lbs.

e 3 different sample of 100 people with an average weight of
17/0Ilbs would be more than 6 standard errors beyond the
population mean.
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Maximum Likelihood estimation

4+ p(x11.8)

pdf
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Linear Regression MLE

—
o

y
O = N W A U Y NN oW
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Gaussian Distribution assumption

Each y; is gaussian distributed with mean w - x; (the y predicted by
the regression line) and variance o*:

y; ~ N(w - xi,az).

1 2/,
N(p,0%) = 0\/27%6 (y=h)" /20"
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We can then write the likelihood:

L = p(y|x, W, 0) — Hp(yz-\xi,W, 0)

—1

£ = (2m0?) /2 g7 Tiluwx)*

The log likelihood £ then is given by:
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Maximizing gives:

wyre = (X' X) ' X'y,
where we stack rows to get:

X = stack({x;})

1
e =7 DU — W xi)’.

1
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Back to Monte Carlo

We want to calculate:
1 n
Su(f) == ) flxi)
i=1

* Whatever V[f(X)] is, the variance of the sampling distribution of
the mean goes down as 1/n

* Thus s goesdownas1/,/n
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Why is this important?

* |n higher dimensions d, the CLT still holds and the error still

1
scales as —.

/n

e How does this compete with numerical integration? For
n = N4

e left or right rule: o< 1/n, Midpoint rule: o 1/n?

e Trapezoid: 1/n2, Simpson: o 1/n4
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Basic Numerical Integration idea

(from wikipedia)
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Next time

In order to calculate expectations, do integrals, and do statistics,
we must learn how to do

SAMPLING
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A taste:

Inverse transform

f(x)
©C = N W A OO N ® ©
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algorithm

The CDF F' must be invertible!

1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation = F~*(u) where F is the
CDF of the distribution we desire.

3. repeat.
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Example: exponential

pdf: f(z) = ;e—‘”“ forz > 0 and f(x) = 0 otherwise.

u=/ le_"”’/)‘d:zz' =1— e @A
0 A

Solving for z

r=—Aln(1 — u)
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code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin = CDF(xmin)

rmax = CDF(xmax)

N = 10000

# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution

R = np.random.uniform(rmin, rmax, N)

X = invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

# plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()
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Hit or miss

e Generate samples from a uniform distribution with support on
the rectangle

* See how many fall below y(z) at a specific z sliver.

This is the basic idea behind rejection sampling
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