
Lecture 25

Genera&ve Models and
Varia%onal Inference

Tutorial paper due

Tues May 1st, 11.59pm

Exam, 2-3 ques.ons, 1-2 simple, 1 a bit hard (bit more work)

Exam released same night. You will have 10 days.

• This course has mostly been about Unsupervised Learning

• That is, es:ma:ng a from data

• Supervised learning can be cast into this density es:ma:on
paradigm:

• these are "predic:ve" distribu:ons

• We use some latent variables , which mat be clusters, or
es:ma:on parameters

Latent Variables

• key concept: full data likelihood vs par6al data likelihood

• probabilis6c model is a joint distribu,on , the full data
likelihood

• with observed variables corresponding to data, and latent
variables

Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.

EM

x-data likelihood: carry along

If we define the ELBO or Evidence Lower
bound as:

then = ELBO + KL-divergence

• KL divergence only 0 when exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of :

Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate
 which gives

rise to or
(blue curve) whose value equals the
value of at .

2. M-step: maximize or wrt
to get .

3. Set

VARIATIONAL
INFERENCE

Core Idea

 is now all parameters. Dont dis1nguish
from .

Restric(ng to a family of approximate
distribu(ons D over , find a member of
that family that minimizes the KL
divergence to the exact posterior. An
op(miza(on problem:

VI vs MCMC

MCMC VI

More computa,onally intensive Less intensive

Guarantees producing asympto,cally exact
samples from target distribu,on

No such guarantees

Slower Faster, especially for large data sets and
complex distribu,ons

Best for precise inference Useful to explore many scenarios quickly or
large data sets

Basic Setup in EM

Recall that ,

EM alternates between compu2ng the expected complete log
likelihood according to (the E step) and op2mizing it with
respect to the model parameters (the M step).

EM assumes the expecta.on under is computable and uses
it in otherwise difficult parameter es.ma.on problems.

Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)

Mean Field: Find a such that:

: KL minimized means ELBO maximized.

Choose a "mean-field" such that:

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.

Example

a 2D Gaussian Posterior is approximated
by a mean-field varia9onal structure with
independent gaussians in the 2
dimensions

The varia)onal posterior in green cannot
capture the strong correla)on in the
original posterior because of the mean
field approxima)on.

Op#miza#on: CAVI

Coordinate ascent mean-field varia2onal inference

maximizes ELBO by itera1vely op1mizing each varia1onal factor of
the mean-field varia1onal distribu1on, while holding the others
fixed.

Define Complete Condi.onal of

Algorithm

Input: with data set , Output:

Ini(alize:

while ELBO has not converged (or z have not converged):`
 for each j:

 compute ELBO

where the expecta+ons above are with respect to the varia+onal
distribu+on over :

Asser%on:

(because the mean-field family assumes that all the latent variables
are independent)

Example: "Fake :-) Gaussian"

data = np.random.randn(100)
with pm.Model() as model:
 mu = pm.Normal('mu', mu=0, sd=1)
 sd = pm.HalfNormal('sd', sd=1)
 n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and log(sd). So, for e.g.,

ADVI

Core Idea:

• CAVI does not scale, needs graduate student descent

• Use gradient descent instead

• Use minibatches to do it on less data

• do it automa9cally using automa9c differen9a9on

ADVI in pymc3

data = np.random.randn(100)
with pm.Model() as model:
 mu = pm.Normal('mu', mu=0, sd=1, testval=0)
 sd = pm.HalfNormal('sd', sd=1)
 n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI(model=model)
advifit.fit(n=50000)
elbo = -advifit.hist
plt.plot(elbo[::10]);

elbo:

What does ADVI do?

1. Transforma+on of latent parameters (T transform)

• reparametrize mean field parameters to the real line

2. Standardiza+on transform for posterior to push gradient inside
expecta+on (S transform)

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on

Remember:

Need

where is the first transform and is the standardiza1on.

(1) T-Transforma.on

• Latent parameters are transformed to representa/ons where the
'new" parameters are unconstrained on the real-line. Specifically
the joint transforms to where is un-constrained.

• Minimize the KL-divergence between the transformed densi/es.

• This is done for ALL latent variables.

• Thus use the same varia/onal family for ALL parameters, and
indeed for ALL models,

• Discrete parameters must be
marginalized out.

• Op7mizing the KL-divergence implicitly
assumes that the support of the
approxima7ng density lies within the
support of the posterior. These
transforma7ons make sure that this is
the case

• First choose as our family of
approxima7ng densi7es mean-field
normal distribu7ons. We'll transform
the always posi7ve params by simply
taking their logs.

(2) S-transforma/on

• we must maximize our suitably transformed ELBO.

• we are op;mizing an expecta;on value with respect to the
transformed approximate posterior. This posterior contains our
transformed latent parameters so the gradient of this
expecta;on is not simply defined.

• we want to push the gradient inside the expecta;on. For this,
the distribu;on we use to calculate the expecta;on must be free
of parameters

(3) Compute the expecta0on

As a result of this, we can now compute the integral as a monte-
carlo es6mate over a standard Gaussian--superfast, and we can
move the gradient inside the expecta6on (integral) to boot. This
means that our job now becomes the calcula6on of the gradient of
the full-data joint-distribu6on.

(4) Calculate the gradients

We can replace full data by just one point (SGD) or mini-batch
(some-) and thus use noisy gradients to op=mize the varia=onal
distribu=on.

An adap'vely tuned step-size is used to provide good convergence.

Relaxing the mean-field approxima3on

• Full-Rank ADVI: model covariance

• Normalizing Flows

• Operator Varia@onal Inference: allows generaliza@on of many
algorithms under one umbrella

(all implemented in pymc3)

https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1610.09033.pdf

How good is varia,onal Bayes?

• its used heavily for models like LDA (latent-dirichlet alloca:on)

• but surprisingly the "goodness-of-fit" of the posterior
approxima:on has been handled on a case by case basis

• un:l now: see Yao et. al

https://arxiv.org/pdf/1802.02538.pdf

LDA: a genera+ve model

See Blei et. al.

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

LDA assumes the following genera4ve process for each document
w in a corpus D:

1. Choose .

2. Choose .

3. For each of the N words (from vocab size V):

1. Choose a topic (size k).

2. Choose a word from , size V x k, a
mulCnomial probability condiConed on the topic .

Two ideas from Yao et. al.

• pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementa>on, WIP). The
idea comes from the process of smoothing in LOOCV es>ma>on

• VSBC (varia>onal simula>on based callibra>on) : Extends
calibra>on from Bayesian Workflow to varia>onal case. pymc3
experimenta>on by @junpenglao here, WIP

https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb

Pareto Smoothed Importance Sampling

Want . But we calculate which is biased.

Use importance sampling: where .

may have large or infinite variance.

Use PSIS: fit shape k Pareto to M largest and replace them by expected values
of corresponding order sta?s?cs under the pareto. Also truncate all weights at
raw maximum . Use joint as pareto cares not about mul?plying factors.

M empirically set as .

Result from extreme value theory
(Pickands–Balkema–de Haan theorem):
condi=onal excess distribu=on func=on is
a generalized pareto

 great, ok between 0.5 and 0.7, not
so good a3er 0.7, weights too large.

source

https://www.actuaries.org.uk/documents/short-introduction-extreme-value-theory-slides

VSBC

• basic idea from bayesian workflow, posterior from data
simulated from prior () should look like the prior. That
is, ideally order sta=s=cs uniform

• in VSBC fit the posterior varia=onally. Will have some mismatch

• quan=fy mismatch by asymmetry in histogram of ith marginal
callibra=on probabili=es

Le#: ADVI posterior and pareto shape
sta4s4cs

Below: VSBC histogram

Why use VB

• simply not possible to do inference in large models

• inference in neural networks: understanding robustness, etc

• hierarchical neural networks (perhaps on exam)

• Mixture density networks: mixture parameters are fi?ed using ANNs

• extension to generaBve semisupervised learning

• variaBonal autoencoders

https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf

Varia%onal
Autoencoders

Autoencoders: basic idea

• h is the representa,on. An
undercomplete autoencoder makes h of
smaller dimension than

• is the encoder and the decoder

• simplest idea: minimize

• can regularize instead of being
undercomplete

• can think of an autoencoder as a way of
approximately training a genera8ve
model.

• the features of the autoencoder
describe the latent variables that
explain the input

• can go deep!

• generalize to a stochas8c autoencoder.
The standard autoencoder then is a
specific hidden state or

Varia%onal Autoencoder

• just as in ADVI, we want to learn an approximate "encoding
posterior"

• note that we have now again gone back to thinking of as a
(possibly) deep latent variable, or "representaCon".

We know how to do this:

ELBO maximiza+on

Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)

The Game

• get samples coming from , - to be close to some prior,
, typically chosen as an isotropic gaussian...the regulariza9on

term

• first term is called "reconstruc9on loss", or "capacity of model to
generate something like the data".

(from here)

https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1

VAE steps for MNIST

• details in original paper and notebook

• linear encoder for both and

• then transforma5on to to be able to take gradient inside
expecta5on as in ADVI

• then decode using a loss: binary cross-entropy (for
images) minus KL

https://arxiv.org/pdf/1312.6114.pdf

Disentanglement Issues

• can be understood from a gaussian
mixtures perspec4ve

• we would prefer data locality

• thus crank up the prior (regulariza4on)
term

• this is called the VAE

How to implement?

• possible in pytorch, also in pymc3

• see convolu6onal VAE for MNIST in pymc3

• no6ce that MNIST, which we did earlier as supervised is now
being done unsupervised.

https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html

Why?

See pymc3 for e.g. for auto-encoding LDA

• varia&onal auto-encoders algorithm which allows us to perform
inference efficiently for large datasets

• use tunable and flexible encoders such as mul&layer perceptrons
(MLPs) as our varia&onal distribu&on to approximate complex
varia&onal posterior
-then its just ADVI with mini-batch on PyMC3 or pytorch. Can
use for any posterior, example LDA, or custom for MNIST

https://docs.pymc.io/notebooks/lda-advi-aevb.html

