
Lecture 25

Genera&ve Models and
Varia%onal Inference



Tutorial paper due

Tues May 1st, 11.59pm

Exam, 2-3 ques.ons, 1-2 simple, 1 a bit hard (bit more work)

Exam released same night. You will have 10 days.



• This course has mostly been about Unsupervised Learning

• That is, es:ma:ng a  from data

• Supervised learning can be cast into this density es:ma:on 
paradigm: 

• these are "predic:ve" distribu:ons

• We use some latent variables , which mat be clusters, or 
es:ma:on parameters 



Latent Variables

• key concept: full data likelihood vs par6al data likelihood

• probabilis6c model is a joint distribu,on , the full data 
likelihood

• with observed variables  corresponding to data, and latent 
variables 



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



EM



x-data likelihood: carry along 

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate 
 which gives 

rise to  or 
(blue curve) whose value equals the 
value of  at .

2. M-step: maximize  or  wrt  
to get .

3. Set 



VARIATIONAL
INFERENCE



Core Idea

 is now all parameters. Dont dis1nguish 
from .

Restric(ng to a family of approximate 
distribu(ons D over , find a member of 
that family that minimizes the KL 
divergence to the exact posterior. An 
op(miza(on problem:



VI vs MCMC

MCMC VI

More computa,onally intensive Less intensive

Guarantees producing asympto,cally exact 
samples from target distribu,on

No such guarantees

Slower Faster, especially for large data sets and 
complex distribu,ons

Best for precise inference Useful to explore many scenarios quickly or 
large data sets



Basic Setup in EM

Recall that , 

EM alternates between compu2ng the expected complete log 
likelihood according to  (the E step) and op2mizing it with 
respect to the model parameters (the M step).

EM assumes the expecta.on under  is computable and uses 
it in otherwise difficult parameter es.ma.on problems.



Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)



Mean Field: Find a  such that:

: KL minimized means ELBO maximized.

Choose a "mean-field"  such that:

Each individual latent factor can take on any paramteric form 
corresponding to the latent variable.



Example

a 2D Gaussian Posterior is approximated 
by a mean-field varia9onal structure with 
independent gaussians in the 2 
dimensions

The varia)onal posterior in green cannot 
capture the strong correla)on in the 
original posterior because of the mean 
field approxima)on.



Op#miza#on: CAVI

Coordinate ascent mean-field varia2onal inference

maximizes ELBO by itera1vely op1mizing each varia1onal factor of 
the mean-field varia1onal distribu1on, while holding the others 
fixed.

Define Complete Condi.onal of 



Algorithm

Input:  with data set , Output: 

Ini(alize: 

while ELBO has not converged (or z have not converged):`
    for each j:

    compute ELBO



where the expecta+ons above are with respect to the varia+onal 
distribu+on over :

Asser%on: 

(because the mean-field family assumes that all the latent variables 
are independent)



Example: "Fake :-) Gaussian"

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and log(sd). So, for e.g.,



ADVI



Core Idea:

• CAVI does not scale, needs graduate student descent

• Use gradient descent instead

• Use minibatches to do it on less data

• do it automa9cally using automa9c differen9a9on



ADVI in pymc3

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1, testval=0)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI( model=model)
advifit.fit(n=50000)
elbo = -advifit.hist
plt.plot(elbo[::10]);  

elbo: 



What does ADVI do?

1. Transforma+on of latent parameters (T transform)

• reparametrize mean field parameters to the real line

2. Standardiza+on transform for posterior to push gradient inside 
expecta+on (S transform)

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on



Remember:

Need

where  is the first transform and  is the standardiza1on.



(1) T-Transforma.on

• Latent parameters are transformed to representa/ons where the 
'new" parameters are unconstrained on the real-line. Specifically 
the joint  transforms to  where  is un-constrained.

• Minimize the KL-divergence between the transformed densi/es.

• This is done for ALL latent variables.

• Thus use the same varia/onal family for ALL parameters, and 
indeed for ALL models,



• Discrete parameters must be 
marginalized out.

• Op7mizing the KL-divergence implicitly 
assumes that the support of the 
approxima7ng density lies within the 
support of the posterior. These 
transforma7ons make sure that this is 
the case

• First choose as our family of 
approxima7ng densi7es mean-field 
normal distribu7ons. We'll transform 
the always posi7ve  params by simply 
taking their logs.



(2) S-transforma/on

• we must maximize our suitably transformed ELBO.

• we are op;mizing an expecta;on value with respect to the 
transformed approximate posterior. This posterior contains our 
transformed latent parameters so the gradient of this 
expecta;on is not simply defined.

• we want to push the gradient inside the expecta;on. For this, 
the distribu;on we use to calculate the expecta;on must be free 
of parameters



(3) Compute the expecta0on

As a result of this, we can now compute the integral as a monte-
carlo es6mate over a standard Gaussian--superfast, and we can 
move the gradient inside the expecta6on (integral) to boot. This 
means that our job now becomes the calcula6on of the gradient of 
the full-data joint-distribu6on.



(4) Calculate the gradients

We can replace full  data by just one point (SGD) or mini-batch 
(some- ) and thus use noisy gradients to op=mize the varia=onal 
distribu=on.

An adap'vely tuned step-size is used to provide good convergence.



Relaxing the mean-field approxima3on

• Full-Rank ADVI: model covariance

• Normalizing Flows

• Operator Varia@onal Inference: allows generaliza@on of many 
algorithms under one umbrella

(all implemented in pymc3)

https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1610.09033.pdf


How good is varia,onal Bayes?

• its used heavily for models like LDA (latent-dirichlet alloca:on)

• but surprisingly the "goodness-of-fit" of the posterior 
approxima:on has been handled on a case by case basis

• un:l now: see Yao et. al

https://arxiv.org/pdf/1802.02538.pdf


LDA: a genera+ve model

See Blei et. al. 

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf


LDA assumes the following genera4ve process for each document 
w in a corpus D:

1. Choose .

2. Choose .

3. For each of the N words  (from vocab size V):

1. Choose a topic  (size k).

2. Choose a word  from ,  size V x k, a 
mulCnomial probability condiConed on the topic .



Two ideas from Yao et. al.

• pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementa>on, WIP). The 
idea comes from the process of smoothing in LOOCV es>ma>on

• VSBC (varia>onal simula>on based callibra>on) : Extends 
calibra>on from Bayesian Workflow to varia>onal case. pymc3 
experimenta>on by @junpenglao here, WIP

https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb


Pareto Smoothed Importance Sampling

Want . But we calculate  which is biased.

Use importance sampling:  where .  

may have large or infinite variance.

Use PSIS: fit shape k Pareto to M largest  and replace them by expected values 
of corresponding order sta?s?cs under the pareto. Also truncate all weights at 
raw maximum . Use joint as pareto cares not about mul?plying factors.



M empirically set as .

Result from extreme value theory 
(Pickands–Balkema–de Haan theorem): 
condi=onal excess distribu=on func=on is 
a generalized pareto

 great, ok between 0.5 and 0.7, not 
so good a3er 0.7, weights too large.

source

https://www.actuaries.org.uk/documents/short-introduction-extreme-value-theory-slides


VSBC

• basic idea from bayesian workflow, posterior from data 
simulated from prior ( ) should look like the prior. That 
is, ideally order sta=s=cs uniform

• in VSBC fit the posterior varia=onally. Will have some mismatch

• quan=fy mismatch by asymmetry in histogram of ith marginal 
callibra=on probabili=es 



Le#: ADVI posterior and pareto shape 
sta4s4cs

Below: VSBC histogram



Why use VB

• simply not possible to do inference in large models

• inference in neural networks: understanding robustness, etc

• hierarchical neural networks (perhaps on exam)

• Mixture density networks: mixture parameters are fi?ed using ANNs

• extension to generaBve semisupervised learning

• variaBonal autoencoders

https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf


Varia%onal
Autoencoders



Autoencoders: basic idea

• h is the representa,on. An 
undercomplete autoencoder makes h of 
smaller dimension than 

•  is the encoder and  the decoder

• simplest idea: minimize 

• can regularize instead of being 
undercomplete



• can think of an autoencoder as a way of 
approximately training a genera8ve 
model.

• the features of the autoencoder 
describe the latent variables that 
explain the input

• can go deep!

• generalize to a stochas8c autoencoder. 
The standard autoencoder then is a 
specific hidden state  or 



Varia%onal Autoencoder

• just as in ADVI, we want to learn an approximate "encoding 
posterior" 

• note that we have now again gone back to thinking of  as a 
(possibly) deep latent variable, or "representaCon".

We know how to do this:

ELBO maximiza+on



Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)



The Game

• get  samples coming from , - to be close to some prior, 
, typically chosen as an isotropic gaussian...the regulariza9on 

term

• first term is called "reconstruc9on loss", or "capacity of model to 
generate something like the data".



(from here)

https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1


VAE steps for MNIST

• details in original paper and notebook

• linear encoder for both  and 

• then transforma5on to  to be able to take gradient inside 
expecta5on as in ADVI

• then decode using a loss: binary cross-entropy  (for 
images) minus KL

https://arxiv.org/pdf/1312.6114.pdf


Disentanglement Issues

• can be understood from a gaussian 
mixtures perspec4ve

• we would prefer data locality

• thus crank up the prior (regulariza4on) 
term

• this is called the VAE



How to implement?

• possible in pytorch, also in pymc3

• see convolu6onal VAE for MNIST in pymc3

• no6ce that MNIST, which we did earlier as supervised is now 
being done unsupervised.

https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html


Why?

See pymc3 for e.g. for auto-encoding LDA

• varia&onal auto-encoders algorithm which allows us to perform 
inference efficiently for large datasets

• use tunable and flexible encoders such as mul&layer perceptrons 
(MLPs) as our varia&onal distribu&on to approximate complex 
varia&onal posterior
-then its just ADVI with mini-batch on PyMC3 or pytorch. Can 
use for any posterior, example LDA, or custom for MNIST

https://docs.pymc.io/notebooks/lda-advi-aevb.html

