Lecture 25

Generative Models and
Variational Inference

Tutorial paper due

Tues May 1st, 11.59pm
Exam, 2-3 questions, 1-2 simple, 1 a bit hard (bit more work)

Exam released same night. You will have 10 days.

@AM 207

 This course has mostly been about Unsupervised Learning

e That is, estimating a p(x) from data

e Supervised learning can be cast into this density estimation
paradigm: p(z, y)

e these are "predictive" distributions

e We use some latent variables z, which mat be clusters, or
estimation parameters 6

@AM 207

Latent Variables

e key concept: full data likelihood vs partial data likelihood

» probabilistic model is a joint distribution p(x, z), the full data
likelihood

e with observed variables x corresponding to data, and latent
variables z

@AM 207

Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U,)p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.

@AM 207

@AM 207

X-data likelihood: carry along 6

(, 2|6)
q

log p(z|0) =Eq[logp | + Dkr(q,p)

KL(q||p)
If we define the ELBO or Evidence Lower

bound as:

z, z|0)
q

L(q,0) = E, [logp(|

then log p(x|@) = ELBO + KL-divergence

@AM 207

e KL divergence only O when p = g exactly everywhere
e minimizing KL means maximizing ELBO
 ELBO L(q,0) is a lower bound on the log-likelihood.

 ELBO is average full-data likelihood minus entropy of g:

L(q,0) = E, [logp(x’qz‘e)] = E,[logp(z, z|0)] — E,[log q]

@AM 207

Process

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate
q(z,004) = p(z|x, 0,4) Which gives |
rise to Q(O, Hold) or ELBO(H, Hold)
(blue curve) whose value equals the
value of p(x|0) at 0,4.

2. M-step: maximize Q or ELBO wrt 6
to get ey T

3. Set Ovida = Orew
@AM 207

VARIATIONAL
INFERENCE

Core ldea

z is now all parameters. Dont distinguish
from 6.

Restricting to a family of approximate

d
t

istributions D over z, find a member of
nat family that minimizes the KL

C

lvergence to the exact posterior. An

optimization problem:

q (2) = ar(g)r;l;n KL(q(z)||p(z|z))

@AM 207

0.8}

0.6

04}

0.2}

VI vs MCMC

MCMC Vi

More computationally intensive Less intensive

Guarantees producing asymptotically exact No such guarantees
samples from target distribution

Slower Faster, especially for large data sets and
complex distributions

Best for precise inference Useful to explore many scenarios quickly or
large data sets

@AM 207

Basic Setup in EM

Recall that KL + FLBO = log(p(x)),
ELBO(q) = E,[(log(p(2,x))] — E,[log(q(z))]

EM alternates between computing the expected complete log
likelihood according to p(z|x) (the E step) and optimizing it with

respect to the model parameters (the M step).

EM assumes the expectation under p(z|x) is computable and uses
it in otherwise difficult parameter estimation problems.

@AM 207

Basic Setup in VI

KL + ELBO = log(p(x)): ELBO bounds log(evidence)

2,2), _ o palDp(e)
az) |~ Pallos =y

—> ELBO(q) = Eqy(.|z)[(log(p(z|2))] — KL(q(2|z)||p(2))

p(2) |

ELBO(q) = E,llog q(z)

= FE,|logp(x|z)| + E,|log

(likelihood-prior balance)

@AM 207

Mean Field: Find a ¢ such that:

KL + ELBO = log(p(x)): KL minimized means ELBO maximized.

Choose a "mean-field" ¢ such that:

m

q(2) = || 9i(2))

j=1

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.

@AM 207

Exact Posterior

Mean-field Approximation

@AM 207

a(2) = | | 4i(=)

j=1

a 2D Gaussian Posterior is approximated
by a mean-field variational structure with
independent gaussians in the 2
dimensions

The variational posterior in green cannot
capture the strong correlation in the
original posterior because of the mean
field approximation.

Optimization: CAVI

Coordinate ascent mean-field variational inference

maximizes ELBO by iteratively optimizing each variational factor of
the mean-field variational distribution, while holding the others

fixed.

Define Complete Conditional of z; = p(z;|z2_;, x)

@AM 207

Algorithm

Input: p(z, z) with data set z, Output: ¢(z) = H q; (%)
J
Initialize: ¢;(z;)

while ELBO has not converged (or z have not converged):
for each j:

q; x exp(E_;|logp(z;|z—;,x])
compute ELBO

@AM 207

where the expectations above are with respect to the variational
distribution over z_;:

H(Jl(zl)

1]

Assertion: ¢} (z;) o« exp{E_;[log(p(z;|z—j,))]}
— q;(2;) x exp{E_;|log(p(z;, z—j,x))|}

(because the mean-field family assumes that all the latent variables
are independent)

@AM 207

Example: "Fake :-) Gaussian®"

data = np.random.randn(100)
with pm.Model() as model:
mu = pm.Normal('mu', mu=0, sd=1)
sd = pm.HalftNormal('sd', sd=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and Log(sd). So, for e.g.,

u~ N(uu,02),log(c) ~ N(ps,02)

@AM 207

Core ldea:

e CAVI does not scale, needs graduate student descent
e Use gradient descent instead
e Use minibatches to do it on less data

e do it automatically using automatic differentiation

@AM 207

ADVI in pymc3

5 mu
—— ADVI
data = np.random.randn(1600) 0 NUTS
with pm.Model() as model:
mu = pm.Normal('mu', mu=0, sd=1, testval=0) 4
sd = pm.HalfNormal('sd', sd=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI(model=model)
advifit.fit(n=50000) 3
elbo = -advifit.hist
plt.plot(elbo[::10]);
2
1
elbo: =" 0
-0.8 0.2

&AM 207

What does ADVI do?

1. Transformation of latent parameters (T transform)
e reparametrize mean field parameters to the real line

2. Standardization transform for posterior to push gradient inside
expectation (S transform)

3. Monte-Carlo estimate of expectation

4. Hill-climb using automatic differentiation

@AM 207

Remember:

ELBO(q) = E4[(log(p(z,z))] — E,llog(q(2))]

Need

VoL = E[V,llogp(z, T~ (57 (n))) + log(det(Jp1 (S~ (n))))]

where S is the first transform and 7' is the standardization.

@AM 207

(1) T-Transformation

e |[atent parameters are transformed to representations where the
'new" parameters are unconstrained on the real-line. Specifically
the joint p(«, §) transforms to p(x, n) where 7 is un-constrained.

e Minimize the KL-divergence between the transformed densities.
e This is done for ALL latent variables.

e Thus use the same variational family for ALL parameters, and
indeed for ALL models,

@AM 207

e Discrete parameters must be
marginalized out.

e Optimizing the KL-divergence implicitly
assumes that the support of the
approximating density lies within the

support of the posterior. These ! T A oo Prior
. . > ’uk ‘.| e Posterior
transformations make sure that this is g . \ — Ll s
the case 2 ! 'v,
e First choose as our family of 0o 1 2 3 6 -1 0 1 2%¢
approximat—ing densit—ies mean_ﬁeld (a) Latent variable space (b) Real coordinate space

normal distributions. We'll transform
the always positive o params by simply
taking their logs.

@AM 207

(2) S-transformation

e we must maximize our suitably transformed ELBO.

e we are optimizing an expectation value with respect to the
transformed approximate posterior. This posterior contains our
transformed latent parameters so the gradient of this
expectation is not simply defined.

e we want to push the gradient inside the expectation. For this,
the distribution we use to calculate the expectation must be free
of parameters

@AM 207

(3) Compute the expectation

As a result of this, we can now compute the integral as a monte-
carlo estimate over a standard Gaussian--superfast, and we can
move the gradient inside the expectation (integral) to boot. This

means that our job now becomes the calculation of the gradient of
the full-data joint-distribution.

@AM 207

(4) Calculate the gradients

We can replace full z data by just one point (SGD) or mini-batch

(some-z) and thus use noisy gradients to optimize the variational
distribution.

An adaptively tuned step-size is used to provide good convergence.

@AM 207

Relaxing the mean-field approximation

e Full-Rank ADVI: model covariance

e Normalizing Flows

e Operator Variational Inference: allows generalization of many
algorithms under one umbrella

(all implemented in pymc3)

@AM 207

https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1610.09033.pdf

How good is variational Bayes?

e its used heavily for models like LDA (latent-dirichlet allocation)

e but surprisingly the "goodness-of-fit" of the posterior
approximation has been handled on a case by case basis

e until now: see Yao et. al

@AM 207

https://arxiv.org/pdf/1802.02538.pdf

LDA: a generative model

See Blei et. al.

&AM 207

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

LDA assumes the following generative process for each document
W in a corpus D:

1. Choose N ~ Poisson(§).

2. Choose 6 ~ Dir(a).

3. For each of the N words w,, (from vocab size V):
1. Choose a topic z, ~ Multinomial(0) (size k).

2. Choose a word w,, from p(w, |z,, B), B size V x k, a
multinomial probability conditioned on the topic z, .
§AM 207

Two ideas from Yao et. al.

e pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementation, WIP). The
Idea comes from the process of smoothing in LOOCV estimation

e VSBC (variational simulation based callibration) : Extends
calibration from Bayesian Workflow to variational case. pymc3

experimentation by @junpenglao here, WIP

@AM 207

https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb

Pareto Smoothed Importance Sampling

Want E, [h(6)]. But we calculate E,[h(6)] = (1/S5)) h(8,) which is biased.

Zs wsh(es)
Es Ws

Use importance sampling: E,[h(6)] =

where w, = p(0;,vy)/q. ws

may have large or infinite variance.

Use PSIS: fit shape k Pareto to M largest w, and replace them by expected values
of corresponding order statistics under the pareto. Also truncate all weights at
raw maximum w,. Use joint as pareto cares not about multiplying factors.

@AM 207

100%
80%
60%
40%
20%

Cumulative Distribution

0% l | |
0.1 1 10

100

—+—Shape =0 —=—-Shape =0.5

Shape = 1

&AM 207

M empirically set as min(S/5, 3/S).

Result from extreme value theory
(Pickands-Balkema-de Haan theorem):
conditional excess distribution function is
a generalized pareto

1

% (1+k(”%“))-rl, k 0.
1

exp(”—”), k= 0.

a

p(ylﬂ’ a, k) =

o

k < 0.5 great, ok between 0.5 and 0.7, not
so good after 0.7, weights too large.

source

https://www.actuaries.org.uk/documents/short-introduction-extreme-value-theory-slides

VSBC

e basic idea from bayesian workflow, posterior from data
simulated from prior (6, ~ p(@)) should look like the prior. That

IS, ideally order statistics uniform
e in VSBC fit the posterior variationally. Will have some mismatch

e quantify mismatch by asymmetry in histogram of ith marginal
callibration probabilities p;; = P,(6; < [6];)

@AM 207

k hat

40 1

marginal and joint
k hat diagnoistics
centered

o ?

joint k

=1.0

®
.’:’?’

& 2 3 4 5 8 7 8 H ¢
variables

Joints of T and 6+
centered

b
AD\il, i 9
o e .Q
B
NUTS e
. o
. .“".i Q.
: D
X vOTAY S e o
N L’ w
non-centered g
ADVI
-2 0 2
log T

&AM 207

—
"

N

(=]

U
N

marginal and joint
k hat diagnoistics
non—centered

joint k
=.64
. e
. '
S B
IR A ’
& 2 3 4 5 8 7 8 K 1
variables
point estimation error
over—
dispersed
8, 28
RN F Y-S
5 7.__,%;6_.:“”_‘7,91

ei-""" ?‘ps

(non—centered) e
(centered] |
under-

N) 3 dispersed
bias of posterior mean

Left: ADVI posterior and pareto shape

statistics

Below: VSBC histogram

centered
10

1
KS-test p= 0.34

Ininninhiinig

centered
T

p=0.00, reject

non-centere
T

p=0.00, reje

0.5
Pr:

Why use VB

e simply not possible to do inference in large models

e inference in neural networks: understanding robustness, etc

e hierarchical neural networks (perhaps on exam)

e Mixture density networks: mixture parameters are fitted using ANNs
e extension to generative semisupervised learning

e variational autoencoders

@AM 207

https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf

Variational
Autoencoders

@AM 207

Autoencoders: basic idea

h is the representation. An
undercomplete autoencoder makes h of
smaller dimension than z

f is the encoder and g the decoder
simplest idea: minimize L(z, g(f(z)))

can regularize instead of being
undercomplete

e can think of an autoencoder as a way of
approximately training a generative
model.

e the features of the autoencoder
describe the latent variables that
explain the input

e can go deep!

e generalize to a stochastic autoencoder.
The standard autoencoder then is a
specific hidden state h or z

@AM 207

{ Py
A?I]Cc_‘u".vt' 'l | 'z,:

Pdecader "B | h'

Variational Autoencoder

e just as in ADVI, we want to learn an approximate "encoding
posterior" p(z|z)

e note that we have now again gone back to thinking of z as a
(possibly) deep latent variable, or "representation”.

We know how to do this:

ELBO maximization
@AM 207

Basic Setup in VI

KL + ELBO = log(p(x)): ELBO bounds log(evidence)

2,2), _ o palDp(e)
az) |~ Pallos =y

—> ELBO(q) = Eqy(.|z)[(log(p(z|2))] — KL(q(2|z)||p(2))

p(2) |

ELBO(q) = E,llog q(z)

= FE,|logp(x|z)| + E,|log

(likelihood-prior balance)

@AM 207

The Game

ELBO(q) = Ey() [(log(p(z|2))] — KL(g(z|z)||p(2))

* get z samples coming from z, q(z|x)- to be close to some prior,
p(z), typically chosen as an isotropic gaussian...the regularization
term

e first term is called "reconstruction loss", or "capacity of model to
generate something like the data".

@AM 207

encode > decode >

(from he

&AM 207

https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1

VAE steps for MNIST

e details in original paper and notebook

e linear encoder for both 1 and log(o?)

* then transformation to N (0, 1) to be able to take gradient inside
expectation as in ADVI

» then decode using a loss: binary cross-entropy p(z|z) (for
images) minus KL

@AM 207

https://arxiv.org/pdf/1312.6114.pdf

Disentanglement Issues

e can be understood from a gaussian
mixtures perspective

 we would prefer data locality

e thus crank up the prior (regularization)
term

e thisis called the SVAE

&AM 207

How to implement?

e possible in pytorch, also in pymc3
e see convolutional VAE for MNIST in pymc3

e notice that MNIST, which we did earlier as supervised is now
being done unsupervised.

@AM 207

https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html

Why?

See pymc3 for e.g. for auto-encoding LDA

e variational auto-encoders algorithm which allows us to perform
inference efficiently for large datasets

e use tunable and flexible encoders such as multilayer perceptrons
(MLPs) as our variational distribution to approximate complex
variational posterior
-then its just ADVI with mini-batch on PyMC3 or pytorch. Can
use for any posterior, example LDA, or custom for MNIST

@AM 207

https://docs.pymc.io/notebooks/lda-advi-aevb.html

