Lecture 24

VARIATIONAL INFERENCE

Latent variables

e instead of bayesian vs frequentist, think hidden vs not hidden
e key concept: full data likelihood vs partial data likelihood
» probabilistic model is a joint distribution p(x, z)

e observed variables x corresponding to data, and latent variables
Z

@AM 207

From edwardlib: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.

@AM 207

Generative Model: How to simulate from it?

Z ~ Categorical(A1, A2, ..., k)

where Z says which component X is drawn from.

Thus); is the probability that the hidden class variable z = j.

Then: X ~ p,(z|0,) and general structure is:

p(x|6) = Zp T, z|0) = Zp p(z|z, 0) where 0 = {0, }.

@AM 207

Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U,)p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.

@AM 207

The EM algorithm, conceptually

e jterative method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

e Sorta like, just assign points to clusters to start with and iterate.

e Then, at each iteration, replace the augmented data by its
conditional expectation given current observed data and
parameter estimates. (E-step)

 Maximize the full-data likelihood (M-step).

@AM 207

x-data likelihood

(, 2|0)
q

logp(z|0) = E, [logp | + Dkr(q,p)

If we define the ELBO or Evidence Lower
bound as:

x, z|0)
q

£(q,6) = E,llog? =2,

then log p(z|#) = ELBO + KL-divergence

@AM 207

KL(q||p)

e KL divergence only O when p = g exactly everywhere
e minimizing KL means maximizing ELBO
 ELBO L(q,0) is a lower bound on the log-likelihood.

 ELBO is average full-data likelihood minus entropy of g:

L(q,0) = E, [logp(x’qz‘e)] = E,[logp(z, z|0)] — E,[log q]

@AM 207

E-step conceptually

Choose at some (possibly initial) value of

KL(g||p) =0

the parameters 6,4, f
q(2) = p(z|z,004),
then KL divergence = O, and thus L(q, 6) =
log-likelihood at 8,;;, maximizing the
ELBO. £(g,6°) In p(X|6°)
Conditioned on observed data, and 6,4, ¥ ¥

we use g to conceptually compute the
expectation of the missing data.

@AM 207

E-step: what we actually do

Compute the Auxilary function, Q (6, ot—1)), the expected
complete(full) data log likelihood, defined by:

Q(0, H(t_l)) — EZ\Y:y,e)zet—l logp(z, 2|0)]

or the expectation of the ELBO instead of Q).

@AM 207

@AM 207

M-step

After E-step, ELBO touches £(z|8), any

maximization wrt 8 will also “push up” on
likelihood, thus increasing it.

Thus hold ¢(z) fixed at the z-posterior

calculated at 6,7, and maximize ELBO
E(q, 9, Hold) or Q(q, 9, Hold) wrt 6 to obtain
new 0,,cy -

In general ¢(0,,40 # p(z|x, Orew), hence KL
0. Thus increase in £(x|#) > increase in
ELBO.

Process

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate
q(z,004) = p(z|x, 0,4) Which gives |
rise to Q(O, Hold) or ELBO(H, Hold)
(blue curve) whose value equals the
value of p(x|0) at 0,4.

2. M-step: maximize Q or ELBO wrt 6
to get ey T

3. Set Ovida = Orew
@AM 207

GMM

E-step: Calculate w; ; = ¢;(2z; = j) = p(z; = jlzi, A, 1,)

Tesl T\ 19 i)‘a 72
M-step: maximize: £ = LLQi(Zi)IOg P(%s, 2i | A, 1, 1)

q; (Zz)
k . .
N P(xilz = gy p, X)p(2 = §IA)
L= gi(2; = j)log :
2.2 (=) o =9
L — Z Z 'wi,j log J »
=1 j—i 1]

@AM 207

M-step

Taking derivatives yields following updating formulas:

@AM 207

E-step: calculate responsibilities

We are basically calculating the posterior of the z's given the z's
and the current estimate of our parameters. We can use Bayes rule

: pxizi:j, ,szzzj)\
w; ;= P(2i = J|Ti, A\, 1, 2) = k(‘ iy 33) p(A)
Yy p(xilz = 1,5, 2) p(z = 1|A)

Where p(z;|z; = j, u,) is the density of the Gaussian with mean
w; and covariance X; at z; and p(z; = j|\) is simply A,.

@AM 207

Compared to supervised classification and k-means

e M-step formulas vs GDA we can see that are very similar except
that instead of using ¢ functions we use the w's.

e Thus the EM algorithm corresponds here to a weighted
maximum likelihood and the weights are interpreted as the
'probability' of coming from that Gaussian

 Thus we have achieved a soft clustering (as opposed to k-means
in the unsupervised case and classification in the supervised
case).

@AM 207

e kmeans is HARD EM. Instead of
calculating Q) in e-step, use mode of z
posterior. Also the case with
classification

e finite mixture models suffer from
multimodality, non-identifiability, and plz)
singularity. They are problematic but
useful

e models can be singular if cluster has
only one data point: overfitting

e add in prior to regularise and get MAP.
Add log(prior) in M-step only

@AM 207

VARIATIONAL INFERENCE

Core ldea

z is now all parameters. Dont distinguish
from 6.

Restricting to a family of approximate

d
t

istributions D over z, find a member of
nat family that minimizes the KL

C

lvergence to the exact posterior. An

optimization problem:

q (2) = ar(g)r;l;n KL(q(z)||p(z|z))

@AM 207

0.8}

0.6

04}

0.2}

VI vs MCMC

MCMC Vi

More computationally intensive Less intensive

Guarantees producing asymptotically exact No such guarantees
samples from target distribution

Slower Faster, especially for large data sets and
complex distributions

Best for precise inference Useful to explore many scenarios quickly or
large data sets

@AM 207

Basic Setup in EM

Recall that KL + FLBO = log(p(x)),
ELBO(q) = E,[(log(p(2,x))] — E,[log(q(z))]

EM alternates between computing the expected complete log
likelihood according to p(z|x) (the E step) and optimizing it with

respect to the model parameters (the M step).

EM assumes the expectation under p(z|x) is computable and uses
it in otherwise difficult parameter estimation problems.

@AM 207

Basic Setup in VI

KL + ELBO = log(p(x)): ELBO bounds log(evidence)

2,2), _ o palDp(e)
az) |~ Pallos =y

—> ELBO(q) = E,)|(log(p(z|2))] — KL(q(2)||p(2))

p(2) |

ELBO(q) = E,llog q(z)

= FE,|logp(x|z)| + E,|log

(likelihood-prior balance)

@AM 207

Mean Field: Find a ¢ such that:

KL + ELBO = log(p(x)): KL minimized means ELBO maximized.

Choose a "mean-field" ¢ such that:

m

q(2) = || 9i(2))

j=1

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.

@AM 207

Exact Posterior

Mean-field Approximation

@AM 207

a(2) = | | 4i(=)

j=1

a 2D Gaussian Posterior is approximated
by a mean-field variational structure with
independent gaussians in the 2
dimensions

The variational posterior in green cannot
capture the strong correlation in the
original posterior because of the mean
field approximation.

Optimization: CAVI

Coordinate ascent mean-field variational inference

maximizes ELBO by iteratively optimizing each variational factor of
the mean-field variational distribution, while holding the others

fixed.

Define Complete Conditional of z; = p(z;|z2_;, x)

@AM 207

Algorithm

Input: p(z, z) with data set z, Output: ¢(z) = H q; (%)
J
Initialize: ¢;(z;)

while ELBO has not converged (or z have not converged):
for each j:

q; x exp(E_;|logp(z;|z—;,x])
compute ELBO

@AM 207

where the expectations above are with respect to the variational
distribution over z_;:

H(Jl(zl)

1]

Assertion: ¢} (z;) o« exp{E_;[log(p(z;|z—j,))]}
— q;(2;) x exp{E_;|log(p(z;, z—j,x))|}

(because the mean-field family assumes that all the latent variables
are independent)

@AM 207

Example: "Fake :-) Gaussian®"

data = np.random.randn(100)
with pm.Model() as model:
mu = pm.Normal('mu', mu=0, sd=1)
sd = pm.HalftNormal('sd', sd=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and Log(sd). So, for e.g.,

u~ N(uu,02),log(c) ~ N(ps,02)

@AM 207

For the second term below, we have only retained what depends
on g;(z;)

ELBO(q) = Ey|[(log(p(2,z))] — Ey[log(g(2))]
—> ELBO(q;) = E;|E_;log(p(2j, 2—j,®))|] — Ej|log(g;(2;))| + constants
—> ELBO(q;) = E;[A] — E;[log(q;(z;))] + constants

Upto an added constant, RHS = —Dkr.(q;,exp(A)). Thus,
maximizing ELBO(q;) same as minimizing KL divergence.

This occurs when ¢; = exp(A). Thus CAVI locally maximizes ELBO.

@AM 207

@AM 207

Example: Gaussian Mixture Model

p={p1,...,pux}
,LLkNN(O,O'z), k=1,..., K

1 1
C; ~ Categorical(E, e E)’ i=1,...,n(c)

zilci,p ~N(cfp,1), i=1,...,n

Sampling mixture models: 2
Gaussians

assignment o assignment
) 21
@ 1000 >
:
with pm.Model() as ofmodel: = 0 S0
1 = Uniform('p', 0, 1) -0.5 0.0 0.5 1.0 1.5 0 500 1000 1500
P pm. P ’ centers ® centers
'p2 = 1 - 'p]_ > ‘_g 8) ————e
c
p = tt.stack([pl, p2]) g 05 °
. _ . . . 0 3 £ 60
assignment = pm.Categorical("assignment", p, £ 00 5 e
Shape:ofdata . Shape [@]) . 55 60 65 70 75 80 @ 0 500 1000 1500
sds = pm.Uniform("sds", 0, 40, shape=2) P

centers = pm.Normal("centers",
mu=np.array([50, 80]),

sd=np.array([20, 20]), 025 030 035 040 045
shape=2) sds

Frequency
o)
>‘
Sample value
o o
w A~

o

500 1000 1500

observations = pm.Normal("obs",
mu=centers[assignment],
sd=sds[assignment],
observed=ofdata.waiting)

Frequency
o -
(6]
(2}
N
(o0}
Sample value
o ~
o (&)

0 500 1000 1500

&AM 207

n

Full data joint: p(p, e,) = p(p) | | p(ci)p(wilci,)
1=1

Evidence: p(x) = /dup HZp c;)p(xilc;, p)

This integral does not reduce to a product of 1-d integrals for each
of the us. Evidence as usual hard to compute.

The latent variables are the K class means and the n class
assignments - z = {, ¢} (thats why we marginalize in MCMC)

@AM 207

Mean-field Variational Family

K n

a(pye) = | [alprs s s2) || ales; wi)

k=1 =1

e First factor: Gaussian distribution on the kth mixture
component's mean, parameterized by its own mean and variance

e Second factor: ith observation's mixture assignment with
assignment probabilities given by a K-vector w;, and ¢; being the
bit-vector (with one 1) associated with data point s.

@AM 207

ELBO

ELBO(q) = [(log(p(z z))| — Eyllog(q(2))]

— ELBO(m,s*,w) = ZE‘J log(p(pr)); ms, s3] (Q..)
+ Z [log(p(c;)); wi] + E,[log(p(zi|c;, p)); wi, m, 8%]) (.Q)

— 3" By llogla(esswi))] — 3 By llog(a(ies mi, 52))] entropy
1=1 k=1

@AM 207

CAVI updates: cluster assignment

q; (zj) o exp{E_, [log(p(zj, z—j,®))|}

Since we are talking about the assignment of the ith point, we can
drop all points 5 # ¢ and terms for the k means.

= ¢"(c;;w;) o exp{log(p(c;)) + E_,, [log(p(:vz- ci, p)); m, 8%}

1 \e
log(p(ci)) = ZOQ(K) p(zilci, u) = Hp i |)

@AM 207

E_, |log(p(z;|c;,)] = Z cin B2 [log(p(i|ur)); ma, s7]
k

E_Zi [log(p(a:i|cz-, ”’))] — ZCikE—Zz‘ [_O 5(:U’k) y T 52] +C
k

E_, [log(p(zilei,)] = Y cin(B—s [1n; mus, s ws — B_y, [udsmy, 52]/2) +
k

where C are constants. Substituting back into the first equation
and removing terms that are constant with respect to c_i, we get
the final CAVI update below.

@AM 207

Wik — q*(k) X eXp{E—z [:u’ka myg, Sk] E—z [:u’ka mg, Sk]/z}

As Is evident, the update is purely a function of the other
variational factors and can thus be easily computed.

@AM 207

CAVI updates: kth mixture component mean

Intuitively, these posteriors are gaussian as the conditional
distribution of u; Is a gaussian with the data being the data
"assigned" to the kth cluster.

Note that since ¢; is an indicator vector:

wir, = E_, [cik; wi]

@AM 207

log(q(px)) = log(p(pr)) + Z E_,, [log(p(zilci, p)); wi,m_, 8%,] +C

— log(q(px)) = log(p(uzk)) + Z E_u, lciklog(p(zi|pe)); wi] + C

— log(q(px)) = —p3 /20" + Z E_, lcir; willog(p(zi|uk)) + C
— log(q(ur)) = —p/20° + > wie(—(zi — m)*/2) + C
—> log(q(pr)) = —p3/20° + E::(wz-kwmk — wipp /2) + C

= log(q(m)) = (D wikwi)ue — (1/20° +) wir/2)u + C

@AM 207

—> q(ux) = Gaussian

Zi Wik Ly
myp —
1
S}

B 1/0’2 —+ Zz Wi

CAVI update for the kth mixture component takes the form of a
Gaussian distribution parameterized by the above derived mean
and variance.

@AM 207

35

25

15

10

&AM 207

3 gaussian mixture in code

n = 1000
hyperparameters
prior_std = 10

True parameters

K= 3

mu = []

for i in range(K):
mu.append(np.random.normal(@, prior_std))

var = 1
var_arr = [1, 1, 1]

Run the CAVI algorithm
mixture components, c_est = VI(K, prior std, n, data)

def VI(K, prior_std, n, data): #VI with CAVI

Initialization

mu_mean = []

mu_var = []

for i in range(K):
mu_mean.append(np.random.normal(@, prior_std))
mu_var.append(abs(np.random.normal(@, prior_std)))

c_est = np.zeros((n, K))

for i in range(n):
c_est[i, np.random.choice(K)] =1

Initiate CAVI iterations
while(True):
mu_mean_old = mu_mean[:] #copy
mixture model parameter update step
for j in range(K):
nr = 0
dr = 0
for i in range(n):
nr += c_est[i, j]*data[i]
dr += c_est[i, j]
mu_mean[j] = nr/((1l/prior_std**2) + dr)
mu_var[j] = 1.0/((1/prior_std**2) + dr)

categorical vector update step
for i in range(n):
cat_vec = []
for j in range(K):
cat_vec.append(math.exp(mu_mean[j]*data[i] - (mu_var[j] + mu_mean[j]**2)/2))
for k in range(K):
c_est[i, k] = cat_vec[k]/np.sum(np.array(cat_vec))

check for convergence of variational factors
diff = np.array(mu_mean_old) - np.array(mu_mean)
if np.dot(diff, diff) < 0.000001:

break

sort in ascending order

mixture_components = list(zip(mu_mean, mu_var))
mixture_components.sort()

return mixture_components, c_est

&AM 207

0.7

0.6

0.5

04

0.3

0.2

0.1

0.0

)

Practical Considerations

1) The output can be sensitive to initialization values and thus
iterating multiple times to find a relatively good local optimum is a

good strategy
2) Look out for numerical stability issues - quite common when

dealing with tiny probabilities
3) Ensure algorithm converges before using the result

@AM 207

ADVI

e CAVI does not scale

Core ldea:

e Use gradient based optimization, do it on less data

e do it automatically

@AM 207

ADVI in pymc3

5 mu
—— ADVI
data = np.random.randn(1600) 0 NUTS
with pm.Model() as model:
mu = pm.Normal('mu', mu=0, sd=1, testval=0) 4
sd = pm.HalfNormal('sd', sd=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI(model=model)
advifit.fit(n=50000) 3
elbo = -advifit.hist
plt.plot(elbo[::10]);
2
1
elbo: =" 0
-0.8 0.2

&AM 207

Problem with CAVI

e does not scale
e ELBO must be painstakingly calculated
e optimized with custom CAVI updates for each new model

e |fyou choose to use a gradient based optimizer then you must
supply gradients.

@AM 207

ADVI solves this problem automatically. The user
specifies the model, expressed as a program, and
ADVI automatically generates a corresponding
variational algorithm. The idea is to first automatically
transform the inference problem into a common
space and then to solve the variational optimization.
Solving the problem in this common space solves

variational inference for all models in a large class.
-ADVI Paper

@AM 207

https://arxiv.org/pdf/1603.00788.pdf

What does ADVI do?

1. Transformation of latent parameters

2. Standardization transform for posterior to push gradient inside
expectation

3. Monte-Carlo estimate of expectation

4. Hill-climb using automatic differentiation

@AM 207

Remember:

ELBO(q) = E4[(log(p(z,z))] — E,llog(q(2))]

Need

VoL = E[V,llogp(z, T~ (57 (n))) + log(det(Jp1 (S~ (n))))]

where S is the first transform and 7' is the standardization.

@AM 207

(1) S-Transformation

e |[atent parameters are transformed to representations where the
'new" parameters are unconstrained on the real-line. Specifically
the joint p(«, §) transforms to p(z,n) where 5 is un-constrained.

e Minimize the KL-divergence between the transformed densities.
e This is done for ALL latent variables.

e Thus use the same variational family for ALL parameters, and
indeed for ALL models,

@AM 207

e Discrete parameters must be
marginalized out.

e Optimizing the KL-divergence implicitly
assumes that the support of the
approximating density lies within the

support of the posterior. These ! T A oo Prior
. . > ’uk ‘.| e Posterior
transformations make sure that this is g . \ — Ll s
the case 2 ! 'v,
e First choose as our family of 0o 1 2 3 6 -1 0 1 2%¢
approximat—ing densit—ies mean_ﬁeld (a) Latent variable space (b) Real coordinate space

normal distributions. We'll transform
the always positive o params by simply
taking their logs.

@AM 207

(2) T-transformation

e we must maximize our suitably transformed ELBO.

e we are optimizing an expectation value with respect to the
transformed approximate posterior. This posterior contains our
transformed latent parameters so the gradient of this
expectation is not simply defined.

 we want tp push the gradient inside the expectation. For this,
the distribution we use to calculate the expectation must be free
of parameters

@AM 207

(3) Compute the expectation

As a result of this, we can now compute the integral as a monte-
carlo estimate over a standard Gaussian--superfast, and we can
move the gradient inside the expectation (integral) to boot. This

means that our job now becomes the calculation of the gradient of
the full-data joint-distribution.

@AM 207

(4) Calculate the gradients

We can replace full z data by just one point (SGD) or mini-batch
(some-z) and thus use noisy gradients to optimize the variational
distribution.

An adaptively tuned step-size is used to provide good convergence.

Example with Mixtures in lab. Also see pymc docs for variational
ANN and autoencoders.

@AM 207

2D gaussian example

High correlation gaussian with sampler

cov=np.array([[0,0.8],[0.8,0]], dtype=np.floaté4)
data = np.random.multivariate normal([©0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
density = pm.MvNormal('density', mu=[0,0],
cov=tt.fill_diagonal(cov,1l), shape=2)
with mdensity:
mdtrace=pm.sample(10000)

&AM 207

Sampling with ADVI

mdvar = pm.ADVI(model=mdensity)
mdvar. fit(n=40000)
samps=mdvar.approx.sample(5000)
plt.scatter(samps|['density'][:,0],

samps['density'][:,1], s=5, alpha=0.3)

ADVI cannot find the correlational
structure.

Transform to de-correlate to use ADVI.

You have been doing this for NUTS
anyways.

@AM 207

Where is the Variational

e variational calculus is the differentiation of functionals (functions
of functions) with respect to functions

* Principles of least time in optics and least action in Physics are
great examples. Also basis for path-integral formulation of
guantum mechanics

e here we differentiate KL-divergence (or ELBO) with respect to ¢

e we do the same thing in the E-step of EM!

@AM 207

