
Lecture 24

VARIATIONAL INFERENCE

Latent variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• probabilis2c model is a joint distribu,on

• observed variables corresponding to data, and latent variables

From edwardlib:

describes how any data depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data
 are assumed drawn from the likelihood condi5oned on a

par5cular hidden pa7ern described by .

• The prior is a probability distribu5on that describes the
latent variables present in the data. The prior posits a genera1ng
process of the hidden structure.

Genera&ve Model: How to simulate from it?

where says which component X is drawn from.

Thus is the probability that the hidden class variable .

Then: and general structure is:

 where .

Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.

The EM algorithm, conceptually

• itera've method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its
condi'onal expecta'on given current observed data and
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).

x-data likelihood

If we define the ELBO or Evidence Lower
bound as:

then = ELBO + KL-divergence

• KL divergence only 0 when exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of :

E-step conceptually

Choose at some (possibly ini1al) value of
the parameters ,

then KL divergence = 0, and thus =
log-likelihood at , maximizing the
ELBO.

Condi&oned on observed data, and ,
we use to conceptually compute the
expecta&on of the missing data.

E-step: what we actually do

Compute the Auxilary func4on, , the expected
complete(full) data log likelihood, defined by:

or the expecta+on of the ELBO instead of .

M-step

A"er E-step, ELBO touches , any
maximiza:on wrt will also “push up” on
likelihood, thus increasing it.

Thus hold fixed at the z-posterior
calculated at , and maximize ELBO

 or wrt to obtain
new .

In general , hence KL
. Thus increase in increase in

ELBO.

Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate
 which gives

rise to or
(blue curve) whose value equals the
value of at .

2. M-step: maximize or wrt
to get .

3. Set

GMM

E-step: Calculate

M-step: maximize:

M-step

Taking deriva,ves yields following upda,ng formulas:

E-step: calculate responsibili2es

We are basically calcula-ng the posterior of the 's given the 's
and the current es-mate of our parameters. We can use Bayes rule

Where is the density of the Gaussian with mean
 and covariance at and is simply .

Compared to supervised classifica2on and k-means

• M-step formulas vs GDA we can see that are very similar except
that instead of using func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted
maximum likelihood and the weights are interpreted as the
'probability' of coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means
in the unsupervised case and classifica=on in the supervised
case).

• kmeans is HARD EM. Instead of
calcula9ng in e-step, use mode of
posterior. Also the case with
classifica9on

• finite mixture models suffer from
mul9modality, non-iden9fiability, and
singularity. They are problema9c but
useful

• models can be singular if cluster has
only one data point: overfiIng

• add in prior to regularise and get MAP.
Add log(prior) in M-step only

VARIATIONAL INFERENCE

Core Idea

 is now all parameters. Dont dis1nguish
from .

Restric(ng to a family of approximate
distribu(ons D over , find a member of
that family that minimizes the KL
divergence to the exact posterior. An
op(miza(on problem:

VI vs MCMC

MCMC VI

More computa,onally intensive Less intensive

Guarantees producing asympto,cally exact
samples from target distribu,on

No such guarantees

Slower Faster, especially for large data sets and
complex distribu,ons

Best for precise inference Useful to explore many scenarios quickly or
large data sets

Basic Setup in EM

Recall that ,

EM alternates between compu2ng the expected complete log
likelihood according to (the E step) and op2mizing it with
respect to the model parameters (the M step).

EM assumes the expecta.on under is computable and uses
it in otherwise difficult parameter es.ma.on problems.

Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)

Mean Field: Find a such that:

: KL minimized means ELBO maximized.

Choose a "mean-field" such that:

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.

Example

a 2D Gaussian Posterior is approximated
by a mean-field varia9onal structure with
independent gaussians in the 2
dimensions

The varia)onal posterior in green cannot
capture the strong correla)on in the
original posterior because of the mean
field approxima)on.

Op#miza#on: CAVI

Coordinate ascent mean-field varia2onal inference

maximizes ELBO by itera1vely op1mizing each varia1onal factor of
the mean-field varia1onal distribu1on, while holding the others
fixed.

Define Complete Condi.onal of

Algorithm

Input: with data set , Output:

Ini(alize:

while ELBO has not converged (or z have not converged):`
 for each j:

 compute ELBO

where the expecta+ons above are with respect to the varia+onal
distribu+on over :

Asser%on:

(because the mean-field family assumes that all the latent variables
are independent)

Example: "Fake :-) Gaussian"

data = np.random.randn(100)
with pm.Model() as model:
 mu = pm.Normal('mu', mu=0, sd=1)
 sd = pm.HalfNormal('sd', sd=1)
 n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and log(sd). So, for e.g.,

For the second term below, we have only retained what depends
on

Upto an added constant, . Thus,
maximizing same as minimizing KL divergence.

This occurs when . Thus CAVI locally maximizes ELBO.

Example: Gaussian Mixture Model

 ()

Sampling mixture models: 2
Gaussians

with pm.Model() as ofmodel:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 assignment = pm.Categorical("assignment", p,
 shape=ofdata.shape[0])
 sds = pm.Uniform("sds", 0, 40, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([50, 80]),
 sd=np.array([20, 20]),
 shape=2)

 observations = pm.Normal("obs",
 mu=centers[assignment],
 sd=sds[assignment],
 observed=ofdata.waiting)

Full data joint:

Evidence:

This integral does not reduce to a product of 1-d integrals for each
of the s. Evidence as usual hard to compute.

The latent variables are the K class means and the n class
assignments - (thats why we marginalize in MCMC)

Mean-field Varia-onal Family

• First factor: Gaussian distribu2on on the th mixture
component's mean, parameterized by its own mean and variance

• Second factor: th observa2on's mixture assignment with
assignment probabili2es given by a K-vector , and being the
bit-vector (with one 1) associated with data point .

ELBO

 (Q..)

 (..Q)

 (entropy)

CAVI updates: cluster assignment

Since we are talking about the assignment of the th point, we can
drop all points and terms for the means.

,

where are constants. Subs0tu0ng back into the first equa0on
and removing terms that are constant with respect to c_i, we get
the final CAVI update below.

As is evident, the update is purely a func4on of the other
varia4onal factors and can thus be easily computed.

CAVI updates: kth mixture component mean

Intui&vely, these posteriors are gaussian as the condi&onal
distribu&on of is a gaussian with the data being the data
"assigned" to the cluster.

Note that since is an indicator vector:

CAVI update for the th mixture component takes the form of a
Gaussian distribu9on parameterized by the above derived mean
and variance.

3 gaussian mixture in code

n = 1000
hyperparameters
prior_std = 10

True parameters
K = 3
mu = []
for i in range(K):
 mu.append(np.random.normal(0, prior_std))

var = 1
var_arr = [1, 1, 1]

Run the CAVI algorithm
mixture_components, c_est = VI(K, prior_std, n, data)

def VI(K, prior_std, n, data): #VI with CAVI
 # Initialization
 mu_mean = []
 mu_var = []
 for i in range(K):
 mu_mean.append(np.random.normal(0, prior_std))
 mu_var.append(abs(np.random.normal(0, prior_std)))
 c_est = np.zeros((n, K))
 for i in range(n):
 c_est[i, np.random.choice(K)] = 1

 # Initiate CAVI iterations
 while(True):
 mu_mean_old = mu_mean[:] #copy
 # mixture model parameter update step
 for j in range(K):
 nr = 0
 dr = 0
 for i in range(n):
 nr += c_est[i, j]*data[i]
 dr += c_est[i, j]
 mu_mean[j] = nr/((1/prior_std**2) + dr)
 mu_var[j] = 1.0/((1/prior_std**2) + dr)

 # categorical vector update step
 for i in range(n):
 cat_vec = []
 for j in range(K):
 cat_vec.append(math.exp(mu_mean[j]*data[i] - (mu_var[j] + mu_mean[j]**2)/2))
 for k in range(K):
 c_est[i, k] = cat_vec[k]/np.sum(np.array(cat_vec))

 # check for convergence of variational factors
 diff = np.array(mu_mean_old) - np.array(mu_mean)
 if np.dot(diff, diff) < 0.000001:
 break

 # sort in ascending order
 mixture_components = list(zip(mu_mean, mu_var))
 mixture_components.sort()
 return mixture_components, c_est

Prac%cal Considera%ons

1) The output can be sensi1ve to ini1aliza1on values and thus
itera1ng mul1ple 1mes to find a rela1vely good local op1mum is a
good strategy
2) Look out for numerical stability issues - quite common when
dealing with 1ny probabili1es
3) Ensure algorithm converges before using the result

ADVI
Core Idea:

• CAVI does not scale

• Use gradient based op6miza6on, do it on less data

• do it automa6cally

ADVI in pymc3

data = np.random.randn(100)
with pm.Model() as model:
 mu = pm.Normal('mu', mu=0, sd=1, testval=0)
 sd = pm.HalfNormal('sd', sd=1)
 n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI(model=model)
advifit.fit(n=50000)
elbo = -advifit.hist
plt.plot(elbo[::10]);

elbo:

Problem with CAVI

• does not scale

• ELBO must be painstakingly calculated

• op8mized with custom CAVI updates for each new model

• If you choose to use a gradient based op8mizer then you must
supply gradients.

ADVI solves this problem automa4cally. The user
specifies the model, expressed as a program, and
ADVI automa4cally generates a corresponding

varia4onal algorithm. The idea is to first automa4cally
transform the inference problem into a common

space and then to solve the varia4onal op4miza4on.
Solving the problem in this common space solves

varia4onal inference for all models in a large class.
 -ADVI Paper

https://arxiv.org/pdf/1603.00788.pdf

What does ADVI do?

1. Transforma+on of latent parameters

2. Standardiza+on transform for posterior to push gradient inside
expecta+on

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on

Remember:

Need

where is the first transform and is the standardiza1on.

(1) S-Transforma/on

• Latent parameters are transformed to representa/ons where the
'new" parameters are unconstrained on the real-line. Specifically
the joint transforms to where is un-constrained.

• Minimize the KL-divergence between the transformed densi/es.

• This is done for ALL latent variables.

• Thus use the same varia/onal family for ALL parameters, and
indeed for ALL models,

• Discrete parameters must be
marginalized out.

• Op7mizing the KL-divergence implicitly
assumes that the support of the
approxima7ng density lies within the
support of the posterior. These
transforma7ons make sure that this is
the case

• First choose as our family of
approxima7ng densi7es mean-field
normal distribu7ons. We'll transform
the always posi7ve params by simply
taking their logs.

(2) T-transforma/on

• we must maximize our suitably transformed ELBO.

• we are op;mizing an expecta;on value with respect to the
transformed approximate posterior. This posterior contains our
transformed latent parameters so the gradient of this
expecta;on is not simply defined.

• we want tp push the gradient inside the expecta;on. For this,
the distribu;on we use to calculate the expecta;on must be free
of parameters

(3) Compute the expecta0on

As a result of this, we can now compute the integral as a monte-
carlo es6mate over a standard Gaussian--superfast, and we can
move the gradient inside the expecta6on (integral) to boot. This
means that our job now becomes the calcula6on of the gradient of
the full-data joint-distribu6on.

(4) Calculate the gradients

We can replace full data by just one point (SGD) or mini-batch
(some-) and thus use noisy gradients to op=mize the varia=onal
distribu=on.

An adap'vely tuned step-size is used to provide good convergence.

Example with Mixtures in lab. Also see pymc docs for varia;onal
ANN and autoencoders.

2D gaussian example

High correla,on gaussian with sampler

cov=np.array([[0,0.8],[0.8,0]], dtype=np.float64)
data = np.random.multivariate_normal([0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
 density = pm.MvNormal('density', mu=[0,0],
 cov=tt.fill_diagonal(cov,1), shape=2)
with mdensity:
 mdtrace=pm.sample(10000)

Trace:

Sampling with ADVI

mdvar = pm.ADVI(model=mdensity)
mdvar.fit(n=40000)
samps=mdvar.approx.sample(5000)
plt.scatter(samps['density'][:,0],
 samps['density'][:,1], s=5, alpha=0.3)

ADVI cannot find the correla1onal
structure.

Transform to de-correlate to use ADVI.

You have been doing this for NUTS
anyways.

Where is the Varia+onal

• varia&onal calculus is the differen&a&on of func&onals (func&ons
of func&ons) with respect to func&ons

• Principles of least &me in op&cs and least ac&on in Physics are
great examples. Also basis for path-integral formula&on of
quantum mechanics

• here we differen&ate KL-divergence (or ELBO) with respect to

• we do the same thing in the E-step of EM!

