
Lecture 24

VARIATIONAL INFERENCE



Latent variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• probabilis2c model is a joint distribu,on 

• observed variables  corresponding to data, and latent variables 



From edwardlib: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 where .



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



The EM algorithm, conceptually

• itera've method for maximizing difficult likelihood (or posterior) 
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its 
condi'onal expecta'on given current observed data and 
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).



x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



E-step conceptually

Choose at some (possibly ini1al) value of 
the parameters ,

then KL divergence = 0, and thus  = 
log-likelihood at , maximizing the 
ELBO.

Condi&oned on observed data, and , 
we use  to conceptually compute the 
expecta&on of the missing data.



E-step: what we actually do

Compute the Auxilary func4on, , the expected 
complete(full) data log likelihood, defined by:

or the expecta+on of the ELBO instead of .



M-step

A"er E-step, ELBO touches , any 
maximiza:on wrt  will also “push up” on 
likelihood, thus increasing it.

Thus hold  fixed at the z-posterior 
calculated at , and maximize ELBO 

 or  wrt  to obtain 
new .

In general , hence KL 
. Thus increase in  increase in 

ELBO.



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate 
 which gives 

rise to  or 
(blue curve) whose value equals the 
value of  at .

2. M-step: maximize  or  wrt  
to get .

3. Set 



GMM

E-step: Calculate 

M-step: maximize: 



M-step

Taking deriva,ves yields following upda,ng formulas:



E-step: calculate responsibili2es

We are basically calcula-ng the posterior of the 's given the 's 
and the current es-mate of our parameters. We can use Bayes rule

Where  is the density of the Gaussian with mean 
 and covariance  at  and  is simply .



Compared to supervised classifica2on and k-means

• M-step formulas vs GDA we can see that are very similar except 
that instead of using  func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted 
maximum likelihood and the weights are interpreted as the 
'probability' of coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means 
in the unsupervised case and classifica=on in the supervised 
case).



• kmeans is HARD EM. Instead of 
calcula9ng  in e-step, use mode of  
posterior. Also the case with 
classifica9on

• finite mixture models suffer from 
mul9modality, non-iden9fiability, and 
singularity. They are problema9c but 
useful

• models can be singular if cluster has 
only one data point: overfiIng

• add in prior to regularise and get MAP. 
Add log(prior) in M-step only



VARIATIONAL INFERENCE



Core Idea

 is now all parameters. Dont dis1nguish 
from .

Restric(ng to a family of approximate 
distribu(ons D over , find a member of 
that family that minimizes the KL 
divergence to the exact posterior. An 
op(miza(on problem:



VI vs MCMC

MCMC VI

More computa,onally intensive Less intensive

Guarantees producing asympto,cally exact 
samples from target distribu,on

No such guarantees

Slower Faster, especially for large data sets and 
complex distribu,ons

Best for precise inference Useful to explore many scenarios quickly or 
large data sets



Basic Setup in EM

Recall that , 

EM alternates between compu2ng the expected complete log 
likelihood according to  (the E step) and op2mizing it with 
respect to the model parameters (the M step).

EM assumes the expecta.on under  is computable and uses 
it in otherwise difficult parameter es.ma.on problems.



Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)



Mean Field: Find a  such that:

: KL minimized means ELBO maximized.

Choose a "mean-field"  such that:

Each individual latent factor can take on any paramteric form 
corresponding to the latent variable.



Example

a 2D Gaussian Posterior is approximated 
by a mean-field varia9onal structure with 
independent gaussians in the 2 
dimensions

The varia)onal posterior in green cannot 
capture the strong correla)on in the 
original posterior because of the mean 
field approxima)on.



Op#miza#on: CAVI

Coordinate ascent mean-field varia2onal inference

maximizes ELBO by itera1vely op1mizing each varia1onal factor of 
the mean-field varia1onal distribu1on, while holding the others 
fixed.

Define Complete Condi.onal of 



Algorithm

Input:  with data set , Output: 

Ini(alize: 

while ELBO has not converged (or z have not converged):`
    for each j:

    compute ELBO



where the expecta+ons above are with respect to the varia+onal 
distribu+on over :

Asser%on: 

(because the mean-field family assumes that all the latent variables 
are independent)



Example: "Fake :-) Gaussian"

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and log(sd). So, for e.g.,



For the second term below, we have only retained what depends 
on 

Upto an added constant, . Thus, 
maximizing  same as minimizing KL divergence.

This occurs when . Thus CAVI locally maximizes ELBO.



Example: Gaussian Mixture Model

 ( )



Sampling mixture models: 2 
Gaussians

with pm.Model() as ofmodel:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment = pm.Categorical("assignment", p,
                    shape=ofdata.shape[0])
    sds = pm.Uniform("sds", 0, 40, shape=2)
    centers = pm.Normal("centers",
            mu=np.array([50, 80]),
            sd=np.array([20, 20]),
            shape=2)

    observations = pm.Normal("obs",
        mu=centers[assignment],
        sd=sds[assignment],
        observed=ofdata.waiting)



Full data joint: 

Evidence: 

This integral does not reduce to a product of 1-d integrals for each 
of the s. Evidence as usual hard to compute.

The latent variables are the K class means and the n class 
assignments -  (thats why we marginalize in MCMC)



Mean-field Varia-onal Family

• First factor: Gaussian distribu2on on the th mixture 
component's mean, parameterized by its own mean and variance

• Second factor: th observa2on's mixture assignment with 
assignment probabili2es given by a K-vector , and  being the 
bit-vector (with one 1) associated with data point .



ELBO

 (Q..)

 (..Q)

 (entropy)



CAVI updates: cluster assignment

Since we are talking about the assignment of the th point, we can 
drop all points  and terms for the  means.

, 



where  are constants. Subs0tu0ng back into the first equa0on 
and removing terms that are constant with respect to c_i, we get 
the final CAVI update below.



As is evident, the update is purely a func4on of the other 
varia4onal factors and can thus be easily computed.



CAVI updates: kth mixture component mean

Intui&vely, these posteriors are gaussian as the condi&onal 
distribu&on of  is a gaussian with the data being the data 
"assigned" to the  cluster.

Note that since  is an indicator vector:





CAVI update for the th mixture component takes the form of a 
Gaussian distribu9on parameterized by the above derived mean 
and variance.



3 gaussian mixture in code

n = 1000
# hyperparameters
prior_std = 10

# True parameters
K = 3
mu = []
for i in range(K):
    mu.append(np.random.normal(0, prior_std))

var = 1
var_arr = [1, 1, 1]

# Run the CAVI algorithm
mixture_components, c_est = VI(K, prior_std, n, data)



def VI(K, prior_std, n, data): #VI with CAVI
    # Initialization
    mu_mean = []
    mu_var = []
    for i in range(K):
        mu_mean.append(np.random.normal(0, prior_std))
        mu_var.append(abs(np.random.normal(0, prior_std)))
    c_est = np.zeros((n, K))
    for i in range(n):
        c_est[i, np.random.choice(K)] = 1

    # Initiate CAVI iterations
    while(True):
        mu_mean_old = mu_mean[:] #copy
        # mixture model parameter update step
        for j in range(K):
            nr = 0
            dr = 0
            for i in range(n):
                nr += c_est[i, j]*data[i]
                dr += c_est[i, j]
            mu_mean[j] = nr/((1/prior_std**2) + dr)
            mu_var[j] = 1.0/((1/prior_std**2) + dr)

        # categorical vector update step
        for i in range(n):
            cat_vec = []
            for j in range(K):
                cat_vec.append(math.exp(mu_mean[j]*data[i] - (mu_var[j] + mu_mean[j]**2)/2))
            for k in range(K):
                c_est[i, k] = cat_vec[k]/np.sum(np.array(cat_vec))

        # check for convergence of variational factors
        diff = np.array(mu_mean_old) - np.array(mu_mean)
        if np.dot(diff, diff) < 0.000001:
            break

    # sort in ascending order
    mixture_components = list(zip(mu_mean, mu_var))
    mixture_components.sort()
    return mixture_components, c_est



Prac%cal Considera%ons

1) The output can be sensi1ve to ini1aliza1on values and thus 
itera1ng mul1ple 1mes to find a rela1vely good local op1mum is a 
good strategy 
2) Look out for numerical stability issues - quite common when 
dealing with 1ny probabili1es 
3) Ensure algorithm converges before using the result



ADVI
Core Idea:

• CAVI does not scale

• Use gradient based op6miza6on, do it on less data

• do it automa6cally



ADVI in pymc3

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1, testval=0)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI( model=model)
advifit.fit(n=50000)
elbo = -advifit.hist
plt.plot(elbo[::10]);  

elbo: 



Problem with CAVI

• does not scale

• ELBO must be painstakingly calculated

• op8mized with custom CAVI updates for each new model

• If you choose to use a gradient based op8mizer then you must 
supply gradients.



ADVI solves this problem automa4cally. The user 
specifies the model, expressed as a program, and 
ADVI automa4cally generates a corresponding 

varia4onal algorithm. The idea is to first automa4cally 
transform the inference problem into a common 

space and then to solve the varia4onal op4miza4on. 
Solving the problem in this common space solves 

varia4onal inference for all models in a large class.
 -ADVI Paper

https://arxiv.org/pdf/1603.00788.pdf


What does ADVI do?

1. Transforma+on of latent parameters

2. Standardiza+on transform for posterior to push gradient inside 
expecta+on

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on



Remember:

Need

where  is the first transform and  is the standardiza1on.



(1) S-Transforma/on

• Latent parameters are transformed to representa/ons where the 
'new" parameters are unconstrained on the real-line. Specifically 
the joint  transforms to  where  is un-constrained.

• Minimize the KL-divergence between the transformed densi/es.

• This is done for ALL latent variables.

• Thus use the same varia/onal family for ALL parameters, and 
indeed for ALL models,



• Discrete parameters must be 
marginalized out.

• Op7mizing the KL-divergence implicitly 
assumes that the support of the 
approxima7ng density lies within the 
support of the posterior. These 
transforma7ons make sure that this is 
the case

• First choose as our family of 
approxima7ng densi7es mean-field 
normal distribu7ons. We'll transform 
the always posi7ve  params by simply 
taking their logs.



(2) T-transforma/on

• we must maximize our suitably transformed ELBO.

• we are op;mizing an expecta;on value with respect to the 
transformed approximate posterior. This posterior contains our 
transformed latent parameters so the gradient of this 
expecta;on is not simply defined.

• we want tp push the gradient inside the expecta;on. For this, 
the distribu;on we use to calculate the expecta;on must be free 
of parameters



(3) Compute the expecta0on

As a result of this, we can now compute the integral as a monte-
carlo es6mate over a standard Gaussian--superfast, and we can 
move the gradient inside the expecta6on (integral) to boot. This 
means that our job now becomes the calcula6on of the gradient of 
the full-data joint-distribu6on.



(4) Calculate the gradients

We can replace full  data by just one point (SGD) or mini-batch 
(some- ) and thus use noisy gradients to op=mize the varia=onal 
distribu=on.

An adap'vely tuned step-size is used to provide good convergence.

Example with Mixtures in lab. Also see pymc docs for varia;onal 
ANN and autoencoders.



2D gaussian example

High correla,on gaussian with sampler

cov=np.array([[0,0.8],[0.8,0]], dtype=np.float64)
data = np.random.multivariate_normal([0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
    density = pm.MvNormal('density', mu=[0,0],
    cov=tt.fill_diagonal(cov,1), shape=2)
with mdensity:
    mdtrace=pm.sample(10000)

Trace: 



Sampling with ADVI

mdvar = pm.ADVI(model=mdensity)
mdvar.fit(n=40000)
samps=mdvar.approx.sample(5000)
plt.scatter(samps['density'][:,0],
    samps['density'][:,1], s=5, alpha=0.3)

ADVI cannot find the correla1onal 
structure.

Transform to de-correlate to use ADVI.

You have been doing this for NUTS 
anyways.



Where is the Varia+onal

• varia&onal calculus is the differen&a&on of func&onals (func&ons 
of func&ons) with respect to func&ons

• Principles of least &me in op&cs and least ac&on in Physics are 
great examples. Also basis for path-integral formula&on of 
quantum mechanics

• here we differen&ate KL-divergence (or ELBO) with respect to 

• we do the same thing in the E-step of EM!


