
Lecture 23

Expecta(on Maximiza(on

Previously

• latent variables

• mixture models

• supervised learning, MCMC

• unsupervised learning, MCMC

• semi-supervised learning, MCMC

• clustering problems with sampling

• fix my marginalizing over discrete variables

• log-sum-exp trick

Latent variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• probabilis2c model is a joint distribu,on

• observed variables corresponding to data, and latent variables

Genera&ve model

From edwardlib:

describes how any data depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data
 are assumed drawn from the likelihood condi5oned on a

par5cular hidden pa7ern described by .

• The prior is a probability distribu5on that describes the
latent variables present in the data. The prior posits a genera1ng
process of the hidden structure.

Any bayesian parameters can be
considered as .

More generally posit hidden structure

A distribu*on is a mixture of
component distribu*ons if:

with the being mixing weights, ,
.

Example: Zero Inflated Poisson

Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
 sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])

Old faithful Geyser

Sampling mixture models: 2
Gaussians

with pm.Model() as ofmodel:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 assignment = pm.Categorical("assignment", p,
 shape=ofdata.shape[0])
 sds = pm.Uniform("sds", 0, 40, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([50, 80]),
 sd=np.array([20, 20]),
 shape=2)

 observations = pm.Normal("obs",
 mu=centers[assignment],
 sd=sds[assignment],
 observed=ofdata.waiting)

Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables are observed.

In other words, we can write the full-data likelihood

In Unsupervised Learning, Latent Variables are hidden.

We can only write the observed data likelihood:

GMM supervised formula1on

,

Full-data loglike:

with pm.Model() as classmodel1:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 #Notice the "observed" below
 assignment_tr = pm.Categorical("assignment_tr", p,
 observed=ztr)
 sds = pm.Uniform("sds", 0, 100, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([130, 170]),
 sd=np.array([20, 20]),
 shape=2)
 p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
 order_centers_potential = pm.Potential('order_centers_potential',
 tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

 # and to combine it with the observations:
 observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)

Solu%on to MLE

Unsupervized Learning. How many ?

Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.

with pm.Model() as classmodel1:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 #Notice NO "observed" below
 assignment_tr = pm.Categorical("assignment_tr", p)
 sds = pm.Uniform("sds", 0, 100, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([130, 170]),
 sd=np.array([20, 20]),
 shape=2)
 p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
 order_centers_potential = pm.Potential('order_centers_potential',
 tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

 # and to combine it with the observations:
 observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)

Semi-supervised learning

We have some labels, but typically very few labels: not enough to
form a good training set. Likelihood a combina=on.

Here ranges over the data points where we have labels, and over
the data points where we dont.

with pm.Model() as classmodel2:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 assignment_tr = pm.Categorical("assignment_tr", p,
 observed=ztr)
 # we do not know the test assignments
 assignment_te = pm.Categorical("assignment_te", p,
 shape=xte.shape[0])
 sds = pm.Uniform("sds", 0, 100, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([130, 170]),
 sd=np.array([20, 20]),
 shape=2)
 p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
 order_centers_potential = pm.Potential('order_centers_potential',
 tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

 # and to combine it with the observations:
 observations_tr = pm.Normal("obs_tr", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)
 observations_te = pm.Normal("obs_te", mu=centers[assignment_te], sd=sds[assignment_te], observed=xte)

EXPECTATION
MAXIMIZATION
calculate MLE es,mates for the incomplete data problem by using the
complete-data likelihood. To create complete data, augment the
observed data with manufactured data

Toy Example: 2D Gaussian

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82
means=np.array([mu1, mu2])
cov = np.array([
 [sig1**2, sig1*sig2*rho],
 [sig2*sig1*rho, sig2**2]
])

Lose z = 20 y-values. Set to 0.

MLE for full data problem

mu1 = lambda s: np.mean(s[:,0])
mu2 = lambda s: np.mean(s[:,1])
s1 = lambda s: np.std(s[:,0])
s2 = lambda s: np.std(s[:,1])
rho = lambda s: np.mean((s[:,0] - mu1(s))*(s[:,1]
 - mu2(s)))/(s1(s)*s2(s))

But we dont have full data.

Use Censored data with ini/al imputa/on

M-step: Maximizing full-data MLE

mu1s.append(mu1(samples_censored))
mu2s.append(mu2(samples_censored))
s1s.append(s1(samples_censored))
s2s.append(s2(samples_censored))
rhos.append(rho(samples_censored))

M-step done. Use these parameters let us calculate new y-values.

Replace the old-missing-y values (0s) with the means of these fixing
the parameters of the mul=-variate normal and the non-missing
data.

E-step

Use expecta*on from hidden-data posterior distrib:

This posterior distribu+on (in the sense of bayes theorem, not
bayesian analysis) for the mul+-variate gaussian is a gaussian..see
wikipedia for the formulae

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions

Iterate

def ynew(x, mu1, mu2, s1, s2, rho):
 return mu2 + rho*(s2/s1)*(x - mu1)

newys=ynew(samples_censored[20:,0], mu1s[0], mu2s[0], s1s[0], s2s[0], rhos[0])

for step in range(1,20):
 samples_censored[20:,1] = newys
 #M-step
 mu1s.append(mu1(samples_censored))
 mu2s.append(mu2(samples_censored))
 s1s.append(s1(samples_censored))
 s2s.append(s2(samples_censored))
 rhos.append(rho(samples_censored))
 #E-step
 newys=ynew(samples_censored[20:,0], mu1s[step], mu2s[step], s1s[step], s2s[step], rhos[step])

Voila. We converge to stable values of our
parameters. Ini7als:

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82

But they may not be the ones we seeded
the samples with. The EM algorithm is
only good upto finding local minima, and a
finite sample size also means that the
minimum found can be slightly different.

The EM algorithm

• itera've method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its
condi'onal expecta'on given current observed data and
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).

Why does it work?

where the and range over the mul0ple points in your data set.

Then x-data log-likelihood .

Hard to maximize for us.

Assume has some normalized distribu2on:

.

We wish to compute condi0onal expecta0ons of the type:

but we dont know this "posterior" (henceforth).

Lets say we somehow know .

Consider KL loss func0on

x-data likelihood

If we define the ELBO or Evidence Lower
bound as:

then = ELBO + KL-divergence

• KL divergence only 0 when exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of :

E-step

Choose at some (possibly ini1al) value of
the parameters ,

then KL divergence = 0, and thus =
log-likelihood at , maximizing the
ELBO.

Condi&oned on observed data, and ,
we use to compute the expecta&on of
the missing data.

M-step

A"er E-step, ELBO touches , any
maximiza:on from ELBO's current value
wrt will also “push up” on likelihood,
thus increasing it.

Thus hold fixed at the z-posterior
calculated at , and maximize
wrt to obtain new .

In general , hence KL
. Thus increase in increase in

ELBO.

Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate
 which gives

rise to ELBO(): (blue
curve) whose value equals the value
of at .

2. M-step: maximize ELBO wrt to get
.

3. Set

An itera)on:

The first equality follows since is a lower bound on , the second
from the M-step's maximiza>on of , and the last from the
vanishing of the KL-divergence aCer the E-step.

As a consequence, you must observe monotonic increase of the
observed-data log likelihood across itera:ons. This is a powerful
debugging tool for your code.

EM is local only!

Note that as shown above, since each EM itera3on can only
improve the likelihood, you are guaranteeing convergence to a local
maximum. Because it IS local , you must try some different ini3al
values of and take the one that gives you the largest .

GMM

E-step: Calculate

M-step: maximize:

M-step

Taking deriva,ves yields following upda,ng formulas:

E-step

We are basically calcula-ng the posterior of the 's given the 's
and the current es-mate of our parameters. We can use Bayes rule

Where is the density of the Gaussian with mean
 and covariance at and is simply .

def Estep(x, mu, sigma, lam):
 a = lam * norm.pdf(x, mu[0], sigma[0])
 b = (1. - lam) * norm.pdf(x, mu[1], sigma[1])
 return b / (a + b)

def Mstep(x, w):
 lam = np.mean(1.-w)

 mu = [np.sum((1-w) * x)/np.sum(1-w), np.sum(w * x)/np.sum(w)]

 sigma = [np.sqrt(np.sum((1-w) * (x - mu[0])**2)/np.sum(1-w)),
 np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w))]

 return mu, sigma, lam

0.4 [2, 5] [0.6, 0.6]
Initials, mu: [-4.85176052 5.51133343]
Initials, sigma: [2.02807915 3.58912888]
Initials, lam: 0.5418931691319009
Iterations 71
A: N(2.0261, 0.5936)
B: N(5.0083, 0.6288)
lam: 0.5884

0.4 [2, 5] [0.6, 0.6]
Initials, mu: [11.09643621 -4.48315085]
Initials, sigma: [4.31750531 0.95518757]
Initials, lam: 0.5767814041950222
Iterations 103
A: N(5.0083, 0.6288)
B: N(2.0261, 0.5936)
lam: 0.4116

Compared to supervised classifica2on

• M-step formulas vs GDA we can see that are very similar except
that instead of using func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted
maximum likelihood and the weights are interpreted as the
'probability' of coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means
in the unsupervised case and classifica=on in the supervised
case).

Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a
natural experiment in technological
evolu-on. Different historical island
popula-ons possessed tool kits of

different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories

predict that larger popula-ons will both
develop and sustain more complex tool

kits. So the natural varia-on in popula-on
size induced by natural varia-on in island

size in Oceania provides a natural

Overdispersion for only p

m2c_onlyp: loglam = alpha + betap*df.logpop_c

Varying hierarchical intercepts model

with pm.Model() as m3c:
 betap = pm.Normal("betap", 0, 1)
 alpha = pm.Normal("alpha", 0, 100)
 sigmasoc = pm.HalfCauchy("sigmasoc", 1)
 alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
 loglam = alpha + alphasoc + betap*df.logpop_c
 y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

Hierarchical Model Posterior predic1ve

much wider, includes data areas

What if we model the correla0on between socie0es based on the
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance
matrix.

The idea sounds familiar!

We can model society specific intercepts
for oceanic tools as draws from a 0 mean
MVN.

Covariance posteriors:

