
Lecture 23

Expecta(on Maximiza(on



Previously

• latent variables

• mixture models

• supervised learning, MCMC

• unsupervised learning, MCMC



• semi-supervised learning, MCMC

• clustering problems with sampling

• fix my marginalizing over discrete variables

• log-sum-exp trick



Latent variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• probabilis2c model is a joint distribu,on 

• observed variables  corresponding to data, and latent variables 



Genera&ve model



From edwardlib: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



Any bayesian parameters can be 
considered as .

More generally posit hidden structure 

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.

Example: Zero Inflated Poisson



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



Old faithful Geyser



Sampling mixture models: 2 
Gaussians

with pm.Model() as ofmodel:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment = pm.Categorical("assignment", p,
                    shape=ofdata.shape[0])
    sds = pm.Uniform("sds", 0, 40, shape=2)
    centers = pm.Normal("centers",
            mu=np.array([50, 80]),
            sd=np.array([20, 20]),
            shape=2)

    observations = pm.Normal("obs",
        mu=centers[assignment],
        sd=sds[assignment],
        observed=ofdata.waiting)



Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:



GMM supervised formula1on

, 

Full-data loglike: 



with pm.Model() as classmodel1:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    #Notice the "observed" below
    assignment_tr = pm.Categorical("assignment_tr", p,
                                observed=ztr)
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)
    p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
    order_centers_potential = pm.Potential('order_centers_potential',
                                         tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

    # and to combine it with the observations:
    observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)



Solu%on to MLE



Unsupervized Learning. How many ?



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



with pm.Model() as classmodel1:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    #Notice NO "observed" below
    assignment_tr = pm.Categorical("assignment_tr", p)
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)
    p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
    order_centers_potential = pm.Potential('order_centers_potential',
                                         tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

    # and to combine it with the observations:
    observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)



Semi-supervised learning

We have some labels, but typically very few labels: not enough to 
form a good training set. Likelihood a combina=on.

Here  ranges over the data points where we have labels, and  over 
the data points where we dont.



with pm.Model() as classmodel2:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment_tr = pm.Categorical("assignment_tr", p,
                                observed=ztr)
    # we do not know the test assignments
    assignment_te = pm.Categorical("assignment_te", p,
                                shape=xte.shape[0])
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)
    p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
    order_centers_potential = pm.Potential('order_centers_potential',
                                         tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

    # and to combine it with the observations:
    observations_tr = pm.Normal("obs_tr", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)
    observations_te = pm.Normal("obs_te", mu=centers[assignment_te], sd=sds[assignment_te], observed=xte)



EXPECTATION
MAXIMIZATION
calculate MLE es,mates for the incomplete data problem by using the 
complete-data likelihood. To create complete data, augment the 
observed data with manufactured data



Toy Example: 2D Gaussian

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82
means=np.array([mu1, mu2])
cov = np.array([
    [sig1**2, sig1*sig2*rho],
    [sig2*sig1*rho, sig2**2]
])

Lose z = 20 y-values. Set to 0.



MLE for full data problem

mu1 = lambda s: np.mean(s[:,0])
mu2 = lambda s: np.mean(s[:,1])
s1 = lambda s: np.std(s[:,0])
s2 = lambda s: np.std(s[:,1])
rho = lambda s: np.mean((s[:,0] - mu1(s))*(s[:,1]
    - mu2(s)))/(s1(s)*s2(s))

But we dont have full data.

Use Censored data with ini/al imputa/on



M-step: Maximizing full-data MLE

mu1s.append(mu1(samples_censored))
mu2s.append(mu2(samples_censored))
s1s.append(s1(samples_censored))
s2s.append(s2(samples_censored))
rhos.append(rho(samples_censored))

M-step done. Use these parameters let us calculate new y-values.

Replace the old-missing-y values (0s) with the means of these fixing 
the parameters of the mul=-variate normal and the non-missing 
data.



E-step

Use expecta*on from hidden-data posterior distrib: 

This posterior distribu+on (in the sense of bayes theorem, not 
bayesian analysis) for the mul+-variate gaussian is a gaussian..see 
wikipedia for the formulae

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions


Iterate

def ynew(x, mu1, mu2, s1, s2, rho):
    return mu2 + rho*(s2/s1)*(x - mu1)

newys=ynew(samples_censored[20:,0], mu1s[0], mu2s[0], s1s[0], s2s[0], rhos[0])

for step in range(1,20):
    samples_censored[20:,1] = newys
    #M-step
    mu1s.append(mu1(samples_censored))
    mu2s.append(mu2(samples_censored))
    s1s.append(s1(samples_censored))
    s2s.append(s2(samples_censored))
    rhos.append(rho(samples_censored))
    #E-step
    newys=ynew(samples_censored[20:,0], mu1s[step], mu2s[step], s1s[step], s2s[step], rhos[step])



Voila. We converge to stable values of our 
parameters. Ini7als:

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82

But they may not be the ones we seeded 
the samples with. The EM algorithm is 
only good upto finding local minima, and a 
finite sample size also means that the 
minimum found can be slightly different.



The EM algorithm

• itera've method for maximizing difficult likelihood (or posterior) 
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its 
condi'onal expecta'on given current observed data and 
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).



Why does it work?

where the  and  range over the mul0ple points in your data set.

Then x-data log-likelihood .

Hard to maximize for us.



Assume  has some normalized distribu2on:

.

We wish to compute condi0onal expecta0ons of the type:

but we dont know this "posterior" (henceforth ).

Lets say we somehow know .



Consider KL loss func0on



x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



E-step

Choose at some (possibly ini1al) value of 
the parameters ,

then KL divergence = 0, and thus  = 
log-likelihood at , maximizing the 
ELBO.

Condi&oned on observed data, and , 
we use  to compute the expecta&on of 
the missing data.



M-step

A"er E-step, ELBO touches , any 
maximiza:on from ELBO's current value 
wrt  will also “push up” on likelihood, 
thus increasing it.

Thus hold  fixed at the z-posterior 
calculated at , and maximize  
wrt  to obtain new .

In general , hence KL 
. Thus increase in  increase in 

ELBO.



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate 
 which gives 

rise to ELBO( ): (blue 
curve) whose value equals the value 
of  at .

2. M-step: maximize ELBO wrt  to get 
.

3. Set 



An itera)on:

The first equality follows since  is a lower bound on , the second 
from the M-step's maximiza>on of , and the last from the 
vanishing of the KL-divergence aCer the E-step.

As a consequence, you must observe monotonic increase of the 
observed-data log likelihood  across itera:ons. This is a powerful 
debugging tool for your code.



EM is local only!

Note that as shown above, since each EM itera3on can only 
improve the likelihood, you are guaranteeing convergence to a local 
maximum. Because it IS local , you must try some different ini3al 
values of  and take the one that gives you the largest .



GMM

E-step: Calculate 

M-step: maximize: 



M-step

Taking deriva,ves yields following upda,ng formulas:



E-step

We are basically calcula-ng the posterior of the 's given the 's 
and the current es-mate of our parameters. We can use Bayes rule

Where  is the density of the Gaussian with mean 
 and covariance  at  and  is simply .



def Estep(x, mu, sigma, lam):
    a = lam * norm.pdf(x, mu[0], sigma[0])
    b = (1. - lam) * norm.pdf(x, mu[1], sigma[1])
    return b / (a + b)

def Mstep(x, w):
    lam = np.mean(1.-w)

    mu = [np.sum((1-w) * x)/np.sum(1-w), np.sum(w * x)/np.sum(w)]

    sigma = [np.sqrt(np.sum((1-w) * (x - mu[0])**2)/np.sum(1-w)),
             np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w))]

    return mu, sigma, lam



0.4 [2, 5] [0.6, 0.6]
Initials, mu: [-4.85176052  5.51133343]
Initials, sigma: [ 2.02807915  3.58912888]
Initials, lam: 0.5418931691319009
Iterations 71
A: N(2.0261, 0.5936)
B: N(5.0083, 0.6288)
lam: 0.5884

0.4 [2, 5] [0.6, 0.6]
Initials, mu: [ 11.09643621  -4.48315085]
Initials, sigma: [ 4.31750531  0.95518757]
Initials, lam: 0.5767814041950222
Iterations 103
A: N(5.0083, 0.6288)
B: N(2.0261, 0.5936)
lam: 0.4116



Compared to supervised classifica2on

• M-step formulas vs GDA we can see that are very similar except 
that instead of using  func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted 
maximum likelihood and the weights are interpreted as the 
'probability' of coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means 
in the unsupervised case and classifica=on in the supervised 
case).



Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a 
natural experiment in technological 
evolu-on. Different historical island 
popula-ons possessed tool kits of 

different size. These kits include fish 
hooks, axes, boats, hand plows, and many 
other types of tools. A number of theories 

predict that larger popula-ons will both 
develop and sustain more complex tool 

kits. So the natural varia-on in popula-on 
size induced by natural varia-on in island 

size in Oceania provides a natural 



Overdispersion for only p

m2c_onlyp: loglam = alpha + betap*df.logpop_c



Varying hierarchical intercepts model

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)



Hierarchical Model Posterior predic1ve

much wider, includes data areas



What if we model the correla0on between socie0es based on the 
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance 
matrix.

The idea sounds familiar!



We can model society specific intercepts 
for oceanic tools as draws from a 0 mean 
MVN.

Covariance posteriors:




