Lecture 22

From Bayesian Workflow to Mixture
Models

@AM 207

Last time:

e Deviance, WAIC, Importance sampling, and LOO

e Model Comparison vs ensembling

e Bayesian Model Averaging: pseudo-BMA vs stacking

e QOceanic Tools: ensembling "regularizes" counterfactuals

e But model is over-dispersed: solve by hierarchical

@AM 207

Today:

@AM 207

Deviance

N

D(q) = - Ejpllog(q)]

Using empirical distribution on sample (deviance is a stochastic
quantity)

D(q) = -2), log(a:).

@AM 207

Bayesian deviance

N

D(q) = > E,[log(pp(y))] posterior predictive for points y on the

test set or future data

replace joint posterior predictive over new points y by product of
marginals (exact if using point estimate):

ELPD: Z E,[log(pp(y;))]

@AM 207

Since we do not know the true distribution p,

replace elpd: Z E,[log(pp(y;))]

by the computed "log pointwise predictive density" (Ippd) in-
sample

Zlog (y510)) = ZZOQ (% Zp(ijs))

@AM 207

WAIC

WAIC = lppd + 2pw

where

pw =2, (10g(Epost [P(y:10)] — Epost [log(p(y:16))))

Once again this can be estimated by

D _ Varyost [log(p(yi|6)))

@AM 207

it is tempting to use information criteria to compare models with
different likelihood functions. Is a Gaussian or binomial better? Can't we
just let WAIC sort it out?

Unfortunately, WAIC (or any other information criterion) cannot sort it
out. The problem is that deviance is part normalizing constant. The
constant affects the absolute magnitude of the deviance, but it doesn't

dffect fit to data.
--McElreath

@AM 207

LOOCV

e The idea here is that you fit a model on N-1 data points, and use

the Nth point as a validation point. Clearly this can be done in N
ways.

 the N-point and N-1 point posteriors are likely to be quite
similar, and one can sample one from the other by using
Importance sampling.

ShS
E¢lh| = 25 W where w;, = f5/gs.

Zs W

@AM 207

Fit the full posterior once. Then we have

_ p(esw—i) ~ 1
© pBsly) T p(vilbs,y—i)

e the importance sampling weights can be unstable out in the tails.

e importance weights have a long right tail, pymc (pm. Loo) fits a
generalized pareto to the tail (largest 20% importance ratios) for
each held out data point i (a MLE fit). This smooths out any large
variations.

@AM 207

What should you use?

1. LOOCV and WAIC are fine. The former can be used for models
not having the same likelihood, the latter can be used with
models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-
likelihood models (especially nested models where you are really
performing feature selection), it is the first line of attack

3. One does not always have to do model selection. Sometimes just
do posterior predictive checks to see how the predictions are,

@AM 207

Bayesian Workflow

p(y)

&AM 207

Bayesian Workflow

Sampling

p(y| X, 0) * p(0) " p(0ly, X)

Fit fake data and
recover
parameters

Fit the model to

Gather Prior Formulate a Simulate fake

Knowledge generative model data real data

ModelComparisen

Evaluate and
criticize the
model

Add Structure to §
the model

Predictive Checking

P(Ynew|y)

Predict for each
decision

p(x|d)

Inference

Maximize Set up a utility
& AR 20 function U(x)

Think of the prior generatively AND predictively

Pp Pp

Bias can come from a prior, but do not construct a prior to allow for
overfitting (draws far away from good place). Too many heavy tails
can be bad.

&AM 207

Model Calibration

Think about the Bayesian Joint distribution.
p(0,y) = p(y | 0)p(0)

The prior predictive:

p(y) = / dip(0,y) = / dfp(y | 0)p(6)

@AM 207

How to choose priors?

e mild regularization

e un-informativity

e sensible parameter space

e should correspond to scales and units of process being modeled

e we should calibrate to them

@AM 207

Drunk Monks: prior selection
o specify A\ ~ HalfN(0,4) instead of the crazy N(0, e!%) we had
earlier

e domain knowledge: A survey of Abbey Heads has told us, that the
most a monk could produce, ever, was 10 manuscripts in a day.

e maz(\+ 3v/A) <10, 5+3*np.sqrt(5)=11.7
e halfnorm.ppf(0.99, loc=0,scale=4)=10.3

@AM 207

Generate Artificial data sets

e from fixed params, but even better, from priors

* 6~ p(6)

* j~ply|0)

e callibrate inferences or decisions by analysing this data

. Ula) = / d6dgp(7, 6)U(a(), 6)

@AM 207

140
|

100
1

60

Frequency

20
|

[I 1 T T |
00 02 04 06 08 10

Posterior Quantiles

Figure 3. An example of posterior quantiles g from software with error. An effective summary for detecting the
error should emphasize quantiles near O or 1, such as h(qg) = (d—1(q))".

@AM 207

Now fit a posterior to each
generated dataset

see Cook et al

take each §

get a @ | g posterior

find the rank of @ in "its" posterior

a histogram of ranks should be uniform-
this tests our sampling software

http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf

4
o Prior/Posterior
g Conflict Overfit
“© 3
~
2
3
2
- Poorly
! Identified Ideal
0
0 02 04 06 08 1
Posterior Shrinkage
(a)
4 .
2 o
@ 3 . ‘
= . P
7 PR
= By

@AM 207

Sensitivity of posterior to
range allowed by prior

Hn (en |g) o én

On (en‘?j)z
o (§)?

S, = 1

where 1 and o are generated-posterior

quantities and 7 is a prior one, and n
iIndexes the parameters

15

10

&AM 207

500

1000

Drunk Monks pre-obs

1500

2000

2.5
2.0
1.5
1.0
0.5
0.0

0.0

0.2

0.4

0.6

0.8

!
i

1.0

Then move to the REAL DATA posterior

e now we do posterior predictive checks

e the prior checks have specified possible data distributions that can
be generated

e the posterior predictive ought to be a subset of these. If not our
model is mis-specified

e this may seem strange as we didnt think priors are data generating
e they are not but are defined with respect to the likelihood

@AM 207

Drunk Monks, post-obs

1y
0.8 —1 pp
0.6
0.4
0.2

0.0
0 1 2 3 - S

pp check shows need for O inflation, so do that, rinse+repeat

&AM 207

The Workflow (from Betancourt, and Savage)

@AM 207

Prior to Observation

1. Define Data and interesting statistics
2. Build Model

3. Analyze the joint, and its data marginal (prior predictive) and its summary statistics
4. fit posteriors to simulated data to calibrate

e check sampler diagnostics, and correlate with simulated data

e use rank statistics to evaluate prior-posterior consistency

e check posterior behaviors and behaviors of decisions

@AM 207

Posterior to Observation

1. Fit the Observed Data and Evaluate the fit

e check sampler diagnostics, poor performance means generative model not consistent with actual data
2. Analyze the Posterior Predictive Distribution

e do posterior predictive checks, now comparing actual data with posterior-predictive simulations

e consider expanding the model
3. Do model comparison

e usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

e you might want to ensemble instead

@AM 207

L atent

Variables

e instead of bayesian vs frequentist, think hidden vs not hidden

» key concept: full data likelihood p(x, z) vs partial data likelihood

p(x) =) p(x|z)p(z)

e regression/classification "z = y or ¢" and full is supervised with
partial being unsupervised

e observed variables x corresponding to data, and latent variables
Z

@AM 207

From edwardlib docs: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.

@AM 207

Any bayesian parameters can be
considered as z.

More generally posit hidden structure —

e.g. Ratings Latent Factor Model:
Y'u,m — K + Hu [O] + Ym [O] + Pum 1 €um

Pum = 0u[1:]" Ym[1]

where €,,, ~ N(0,0) and ~,, is an item-
specific with first element item-specific
bias and remaining latent factors for item
m; @, is ditto for users; u overall ratings

mean and o is residual variance of ratings.

@AM 207

e
Q_
@

a Linear factor

il _

~ N, (0, Ig2)

~p(|wiw)

~ N0, la})

d Hidden Markov model

B
M

v

Q—

O{P

1

b Mixed membership

«@
]
Om Q ~ Dirichlet(a)
]
Zmn Q ~ Discrete(6,,)
Xmn O ~ P('|#z,,m)
A
Hi O ~p(|n)
A
-

~ @, Dirichlet(a)

; ~ Discrete(d,,)

X~ p(*|uz)

te~pln)

€ Matrix factorization

o, .

!

wa() ~ N0, Io2)
¥

Xmn O ~p(Waym)
»

Ym() ~ N(0, l?)
‘ M

€@ Kalman filter

7Y
Q_ Wy~ "\((Wt-ll 0‘2‘)
@

Xe~ p(|wi)

we~ N0, la,)

Figure 3

~ Dirichletx(a)

~ Discrete(6)

~ Mz, 1)

~ N0, 6})

(@) A graphical model for a mixture of two Gaussians. There are three data points. The shaded nodes are
observed variables, the unshaded nodes are hidden variables, and the blue square boxes are fixed
hyperparameters (such as the Dirichlet parameters). () A graphical model for a mixture of K Gaussians with

N data points.

@AM 207

Mixture Models

A distribution p(z|{6}) is a mixture of K
component distributions py, ps, ... px if:

p(x{6r}) =Y Mepr(x|0k)
k

with the)\, being mixing weights, A\, > 0,

Z)\kzl.
k

Example: Zero Inflated Poisson

Generative model
p(z, z) = p(x|2)p(2)

Generative Model: How to simulate from it?

Z ~ Categorical(A1, Ao, ..., Ak)

where Z says which component X is drawn from.

Thus); is the probability that the hidden class variable z = j.

Then: X ~ p,(z|0,) and general structure is:

p(z|{0,}) Zpa:z Zp n(z|z,0,)

@AM 207

035

030

025

020

015

010

005

&AM 207

Gaussian Mixture Model

p(@|{6}) = 3 NN (@|pag, i)
k

Generative:

mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])

n = 10000

Simulate from each distribution according to mixing proportion psi

z = multinomial.rvs(1l, lambda_ true, size=n) #categorical

x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, o, ©],[9, @, 1],...[1, @, @],[1, @, @]])

Old faithful Geyser

0.04
Visualizing Clusters using posterior-mean parameters
0.03 = (Cluster O (using p E! erior-mean paramEters)
0.04 ~—— Cluster 1 (using rior-méan parameters)
[histogram of dat |
0.02 0.03 |
0.02
0.01
0.01
0.00 0.00 ' '
40 60 80 100 20 40 60 80 100 120

&AM 207

Sampling mixture models: 2
Gaussians

assignment o assignment
) 21
@ 1000 >
:
with pm.Model() as ofmodel: = 0 S0
1 = Uniform('p', 0, 1) -0.5 0.0 0.5 1.0 1.5 0 500 1000 1500
P pm. P ’ centers ® centers
'p2 = 1 - 'p]_ > ‘_g 8) ————e
c
p = tt.stack([pl, p2]) g 05 °
. _ . . . 0 3 £ 60
assignment = pm.Categorical("assignment", p, £ 00 5 e
Shape:ofdata . Shape [@]) . 55 60 65 70 75 80 @ 0 500 1000 1500
sds = pm.Uniform("sds", 0, 40, shape=2) P

centers = pm.Normal("centers",
mu=np.array([50, 80]),

sd=np.array([20, 20]), 025 030 035 040 045
shape=2) sds

Frequency
o)
>‘
Sample value
o o
w A~

o

500 1000 1500

observations = pm.Normal("obs",
mu=centers[assignment],
sd=sds[assignment],
observed=ofdata.waiting)

Frequency
o -
(6]
(2}
N
(o0}
Sample value
o ~
o (&)

0 500 1000 1500

&AM 207

Sampling mixture models: 3 Gaussians

with pm.Model() as mot:

p = pm.Dirichlet('p', a=np.array([1l., 1., 1.]), shape=3)

cluster centers

means = pm.Normal('means', mu=[0,20,40], sd=5, shape=3)

sds = pm.Uniform('sds', lower=0, upper=20, shape=3)

latent cluster of each observation

category = pm.Categorical('category',p=p,

shape=data.shape[0])

likelihood for each observed value

points = pm.Normal('obs', mu=means[category],
sd=sds[category]|, observed=data)

&AM 207

Generative Classifier

For a feature vector x, we use Bayes rule to express the posterior
of the class-conditional as:

p(z = c|f)p(z|z = ¢, 6)
2. P(z=c0)p(z|z = c’,0)

p(z = cl|z,0) =

This is a generative classifier, since it specifies how to generate the
data using the class-conditional density p(z|z = ¢,) and the class
prior p(z = c|0).

@AM 207

Directly fit the class posterior, p(z = c|z, 6).

For example, a Gaussian Mixture model vs logistic regression.

75
70

65

55

100

&AM 207

150

200

Discriminative classifier

250

75

70

65

55

100

200

250

Generative vs Discriminative classifiers

e | DA vs logistic respectively.

» Both have "generative" bayesian models: p(c|z, 8) or p(y|x, 6).
Here think of z = 0

* LDA is generative as it models p(z|c) while logistic models p(c|x)
directly. Here think of z = ¢

e we do know c on the training set, so think of the unsupervised
learning counterparts of these models where you dont know ¢

@AM 207

Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yrx) = Y ple)o(xla)

@AM 207

GMM supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)
i=1

m

%i(x“’%)T E_l(x_.u'zz‘)_l_ - [Z’i logA_l_(l_zz)lOg(l_}\)]

1=1 1

@AM 207

@AM 207

Solution to MLE

Ho = Z%}L 00
Zizl 2,0

p1 Z:% 02, 21
Zz’zl Ziy1

Classification

We can use the log likelihood at a given x as a classifier: assign
class depending upon which probability p(z;|A, z, X) is larger.
(JUST z likelihood, as we want to compare probabilities at fixed zs).

m

1 _
logp(a;|A, 2 T) Zlog ()" 2[S[2) = 53 (e — pa)T 27 (@ — pa)
1=1

The first term of the likelihood does not matter since it is
independent of 2.

@AM 207

How many clusters z?

Unsupervised

300

300

250

250

200

o
&

150

150

100

100

75

70

65

55

75

70

65

55

&AM 207

Unsupervised: Soft k-means

responsibility of cluster k for point i, and can be computed as
before using Bayes rule as follows:

_ bz = clf)p(zi|z = c, 0)
2, Pz = c'|0)p(zi| 2 = ¢, 0)

p(Zk — C‘x’ia 0)

Here we never observe z; for any samples, whereas before with
the generative GDA classifier, we did observe z; on the training set.

@AM 207

Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U,)p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.

@AM 207

Semi-supervised learning

We have some labels, but typically very few labels: not enough to
form a good training set. Likelihood a combination.

({zi}, {z;}, {2:}16, %) =) logp(ai, zi|X,6) +) logp(z;|, 6)
— Z logp(z; | \)p(x;|2.0) + Z log Zp(zj\)\)p(mj|zj, 6)

Here 1 ranges over the data points where we have labels, and j over

the data points where we dont.
&AM 207

Semi-supervised learning

Basic Idea: there is structure in p(a) which might help us divine the
conditionals, thus combine full-data and x-likelihood.

Include z on the validation set in the likelihood, and £ and z on the
training set in the likelihood.

Has been very useful for Naive Bayes.

@AM 207

Oceanic Tools

From Mcelreath:

The island societies of Oceania provide a
natural experiment in technologica
evolution. Different historical islanc

populations possessed tool kits of
different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories
predict that larger populations will both
develop and sustain more complex tool
kits. So the natural variation in population
size induced by natural variation in island
size in Oceania provides a natural

&AM 207

Overdispersion for only p

m2c_onlyp: loglam = alpha + betap*df.logpop c

@AM 207

300

250

200

150

100

Varying hierarchical intercepts model

with pm.Model() as ms3c:
betap = pm.Normal("betap", 0, 1)
alpha = pm.Normal("alpha", @, 100)
sigmasoc = pm.HalfCauchy('"sigmasoc", 1)
alphasoc = pm.Normal("alphasoc", @, sigmasoc, shape=df.shape[0])
Loglam = alpha + alphasoc + betap*df.logpop c
y = pm.Poisson('"ntools", mu=t.exp(loglam), observed=df.total tools)

@AM 207

Hierarchical Model Posterior predictive

6 betap
>
o5
c 4
$3
&2
L0
-01 00 01 02 03 04 05 06 07
alpha
4
>3
C o
()] .
=5 4.
o -
9 o
o ‘k
26 28 30 32 34 36 38 40
_25 alphaso .
82'0
3 1.5
1.0
8 05
L 00
20 15 10 -05 00 05 10
sigmasoc
>3 A
[&]
C o
m -
=S5 4-
U‘ -
9_,) o
Lo
00 02 04 06 08 10 12

0.8

42

-
(&)

=
»

Sample value

0 1000 2000 3000 4000 5000

Sample value

0 1000 2000 3000 4000 5000
alphasoc

Sample value
11| |

o

1000 2000 3000 4000 5000
sigmasoc

Sample value
]

o

1000 2000 3000 4000 5000

much wider, includes data areas

&AM 207

300

250

200

150

100

What if we model the correlation between societies based on the
distance between them?

How?
Replace independent intercepts by correlated ones.

Draw from a Multivariate Normal with a modeled covariance
matrix.

The idea sounds familiar!

@AM 207

We can model society specific intercepts

for oceanic tools as draws from a O mean
MVN.

Covariance posteriors:

&AM 207

T; ~ Poisson(\;)
log Ai = & + Ysociery|i] + OplogP;

v ~ MVNormal((0,...,0),K)

Kj= - exp(—PZDizj) + 0;(0.01)
a ~ Normal(0, 10)

Bp ~ Normal(0, 1)

n° ~ HalfCauchy(0, 1)

p* ~ HalfCauchy(0, 1)

Aawalil
70

onga

—
iz

B Al 207

