
Lecture 22

From Bayesian Workflow to Mixture
Models

Last &me:

• Deviance, WAIC, Importance sampling, and LOO

• Model Comparison vs ensembling

• Bayesian Model Averaging: pseudo-BMA vs stacking

• Oceanic Tools: ensembling "regularizes" counterfactuals

• But model is over-dispersed: solve by hierarchical

Today:

Deviance

Using empirical distribu2on on sample (deviance is a stochas2c
quan2ty)

,

Bayesian deviance

 posterior predic+ve for points on the

test set or future data

replace joint posterior predic/ve over new points by product of
marginals (exact if using point es/mate):

ELPD:

Since we do not know the true distribu1on ,

replace elpd:

by the computed "log pointwise predic5ve density" (lppd) in-
sample

WAIC

where

Once again this can be es-mated by

it is temp(ng to use informa(on criteria to compare models with
different likelihood func(ons. Is a Gaussian or binomial be;er? Can't we
just let WAIC sort it out?
Unfortunately, WAIC (or any other informa(on criterion) cannot sort it
out. The problem is that deviance is part normalizing constant. The
constant affects the absolute magnitude of the deviance, but it doesn't
affect fit to data.

--McElreath

LOOCV

• The idea here is that you fit a model on N-1 data points, and use
the Nth point as a valida9on point. Clearly this can be done in N
ways.

• the N-point and N-1 point posteriors are likely to be quite
similar, and one can sample one from the other by using
importance sampling.

 where .

Fit the full posterior once. Then we have

• the importance sampling weights can be unstable out in the tails.

• importance weights have a long right tail, pymc (pm.loo) fits a
generalized pareto to the tail (largest 20% importance ra@os) for
each held out data point i (a MLE fit). This smooths out any large
varia@ons.

What should you use?

1. LOOCV and WAIC are fine. The former can be used for models
not having the same likelihood, the laAer can be used with
models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-
likelihood models (especially nested models where you are really
performing feature selecEon), it is the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just
do posterior predicEve checks to see how the predicEons are,

Bayesian Workflow

Think of the prior genera/vely AND predic/vely

Bias can come from a prior, but do not construct a prior to allow for
overfi7ng (draws far away from good place). Too many heavy tails
can be bad.

Model Calibra,on

Think about the Bayesian Joint distribu0on.

The prior predic+ve:

How to choose priors?

• mild regulariza-on

• un-informa-vity

• sensible parameter space

• should correspond to scales and units of process being modeled

• we should calibrate to them

Drunk Monks: prior selec0on

• specify instead of the crazy we had
earlier

• domain knowledge: A survey of Abbey Heads has told us, that the
most a monk could produce, ever, was 10 manuscripts in a day.

• , 5+3*np.sqrt(5)=11.7

• halfnorm.ppf(0.99, loc=0,scale=4)=10.3

Generate Ar)ficial data sets

• from fixed params, but even be4er, from priors

•

•

• callibrate inferences or decisions by analysing this data

•

Now fit a posterior to each
generated dataset

• see Cook et al

• take each

• get a posterior

• find the rank of in "its" posterior

• a histogram of ranks should be uniform-
this tests our sampling so:ware

http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf

Sensi&vity of posterior to
range allowed by prior

where and are generated-posterior
quan22es and is a prior one, and n
indexes the parameters

Drunk Monks pre-obs

Then move to the REAL DATA posterior

• now we do posterior predic.ve checks

• the prior checks have specified possible data distribu.ons that can
be generated

• the posterior predic.ve ought to be a subset of these. If not our
model is mis-specified

• this may seem strange as we didnt think priors are data genera.ng

• they are not but are defined with respect to the likelihood

Drunk Monks, post-obs

pp check shows need for 0 infla2on, so do that, rinse+repeat

The Workflow (from Betancourt, and Savage)

Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions

Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison

• usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

• you might want to ensemble instead

Latent
Variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• regression/classifica2on " or " and full is supervised with
par2al being unsupervised

• observed variables corresponding to data, and latent variables

From edwardlib docs:

describes how any data depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data
 are assumed drawn from the likelihood condi5oned on a

par5cular hidden pa7ern described by .

• The prior is a probability distribu5on that describes the
latent variables present in the data. The prior posits a genera1ng
process of the hidden structure.

Any bayesian parameters can be
considered as .

More generally posit hidden structure

e.g. Ra#ngs Latent Factor Model:

where and is an item-
specific with first element item-specific
bias and remaining latent factors for item

; is di7o for users; overall ra:ngs
mean and is residual variance of ra:ngs.

Mixture Models

A distribu*on is a mixture of
component distribu*ons if:

with the being mixing weights, ,
.

Example: Zero Inflated Poisson

Genera&ve model

Genera&ve Model: How to simulate from it?

where says which component X is drawn from.

Thus is the probability that the hidden class variable .

Then: and general structure is:

 .

Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
 sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])

Old faithful Geyser

Sampling mixture models: 2
Gaussians

with pm.Model() as ofmodel:
 p1 = pm.Uniform('p', 0, 1)
 p2 = 1 - p1
 p = tt.stack([p1, p2])
 assignment = pm.Categorical("assignment", p,
 shape=ofdata.shape[0])
 sds = pm.Uniform("sds", 0, 40, shape=2)
 centers = pm.Normal("centers",
 mu=np.array([50, 80]),
 sd=np.array([20, 20]),
 shape=2)

 observations = pm.Normal("obs",
 mu=centers[assignment],
 sd=sds[assignment],
 observed=ofdata.waiting)

Sampling mixture models: 3 Gaussians

with pm.Model() as mof:
 p = pm.Dirichlet('p', a=np.array([1., 1., 1.]), shape=3)
 # cluster centers
 means = pm.Normal('means', mu=[0,20,40], sd=5, shape=3)
 sds = pm.Uniform('sds', lower=0, upper=20, shape=3)
 # latent cluster of each observation
 category = pm.Categorical('category',p=p,
 shape=data.shape[0])
 # likelihood for each observed value
 points = pm.Normal('obs', mu=means[category],
 sd=sds[category], observed=data)

Genera&ve Classifier

For a feature vector , we use Bayes rule to express the posterior
of the class-condi9onal as:

This is a genera&ve classifier, since it specifies how to generate the
data using the class-condi6onal density and the class
prior .

Discrimina)ve classifier

Directly fit the class posterior, .

For example, a Gaussian Mixture model vs logis6c regression.

Genera&ve vs Discrimina&ve classifiers

• LDA vs logis,c respec,vely.

• Both have "genera,ve" bayesian models: or .
Here think of

• LDA is genera,ve as it models while logis,c models
directly. Here think of

• we do know on the training set, so think of the unsupervised
learning counterparts of these models where you dont know

Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables are observed.

In other words, we can write the full-data likelihood

In Unsupervised Learning, Latent Variables are hidden.

We can only write the observed data likelihood:

GMM supervised formula1on

,

Full-data loglike:

Solu%on to MLE

Classifica(on

We can use the log likelihood at a given x as a classifier: assign
class depending upon which probability is larger.
(JUST likelihood, as we want to compare probabiliAes at fixed s).

The first term of the likelihood does not ma2er since it is
independent of .

Unsupervised: How many clusters ?

Unsupervised: So/ k-means

responsibility of cluster k for point i, and can be computed as
before using Bayes rule as follows:

Here we never observe for any samples, whereas before with
the genera6ve GDA classifier, we did observe on the training set.

Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.

Semi-supervised learning

We have some labels, but typically very few labels: not enough to
form a good training set. Likelihood a combina=on.

Here ranges over the data points where we have labels, and over
the data points where we dont.

Semi-supervised learning

Basic Idea: there is structure in which might help us divine the
condi7onals, thus combine full-data and -likelihood.

Include on the valida/on set in the likelihood, and and on the
training set in the likelihood.

Has been very useful for Naive Bayes.

Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a
natural experiment in technological
evolu-on. Different historical island
popula-ons possessed tool kits of

different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories

predict that larger popula-ons will both
develop and sustain more complex tool

kits. So the natural varia-on in popula-on
size induced by natural varia-on in island

size in Oceania provides a natural

Overdispersion for only p

m2c_onlyp: loglam = alpha + betap*df.logpop_c

Varying hierarchical intercepts model

with pm.Model() as m3c:
 betap = pm.Normal("betap", 0, 1)
 alpha = pm.Normal("alpha", 0, 100)
 sigmasoc = pm.HalfCauchy("sigmasoc", 1)
 alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
 loglam = alpha + alphasoc + betap*df.logpop_c
 y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

Hierarchical Model Posterior predic1ve

much wider, includes data areas

What if we model the correla0on between socie0es based on the
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance
matrix.

The idea sounds familiar!

We can model society specific intercepts
for oceanic tools as draws from a 0 mean
MVN.

Covariance posteriors:

