
Lecture 22

From Bayesian Workflow to Mixture 
Models



Last &me:

• Deviance, WAIC, Importance sampling, and LOO

• Model Comparison vs ensembling

• Bayesian Model Averaging: pseudo-BMA vs stacking

• Oceanic Tools: ensembling "regularizes" counterfactuals

• But model is over-dispersed: solve by hierarchical



Today:



Deviance

Using empirical distribu2on on sample (deviance is a stochas2c 
quan2ty)

,



Bayesian deviance

 posterior predic+ve for points  on the 

test set or future data

replace joint posterior predic/ve over new points  by product of 
marginals (exact if using point es/mate):

ELPD: 



Since we do not know the true distribu1on ,

replace elpd: 

by the computed "log pointwise predic5ve density" (lppd) in-
sample



WAIC

where

Once again this can be es-mated by



it is temp(ng to use informa(on criteria to compare models with 
different likelihood func(ons. Is a Gaussian or binomial be;er? Can't we 
just let WAIC sort it out?
Unfortunately, WAIC (or any other informa(on criterion) cannot sort it 
out. The problem is that deviance is part normalizing constant. The 
constant affects the absolute magnitude of the deviance, but it doesn't 
affect fit to data.

--McElreath



LOOCV

• The idea here is that you fit a model on N-1 data points, and use 
the Nth point as a valida9on point. Clearly this can be done in N 
ways.

• the N-point and N-1 point posteriors are likely to be quite 
similar, and one can sample one from the other by using 
importance sampling.

 where .



Fit the full posterior once. Then we have

• the importance sampling weights can be unstable out in the tails.

• importance weights have a long right tail, pymc (pm.loo) fits a 
generalized pareto to the tail (largest 20% importance ra@os) for 
each held out data point i (a MLE fit). This smooths out any large 
varia@ons.



What should you use?

1. LOOCV and WAIC are fine. The former can be used for models 
not having the same likelihood, the laAer can be used with 
models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-
likelihood models (especially nested models where you are really 
performing feature selecEon), it is the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just 
do posterior predicEve checks to see how the predicEons are, 



Bayesian Workflow





Think of the prior genera/vely AND predic/vely

Bias can come from a prior, but do not construct a prior to allow for 
overfi7ng ( draws far away from good place). Too many heavy tails 
can be bad.



Model Calibra,on

Think about the Bayesian Joint distribu0on.

The prior predic+ve:



How to choose priors?

• mild regulariza-on

• un-informa-vity

• sensible parameter space

• should correspond to scales and units of process being modeled

• we should calibrate to them



Drunk Monks: prior selec0on

• specify  instead of the crazy  we had 
earlier

• domain knowledge: A survey of Abbey Heads has told us, that the 
most a monk could produce, ever, was 10 manuscripts in a day.

• , 5+3*np.sqrt(5)=11.7

• halfnorm.ppf(0.99, loc=0,scale=4)=10.3



Generate Ar)ficial data sets

• from fixed params, but even be4er, from priors

•

•

• callibrate inferences or decisions by analysing this data

•



Now fit a posterior to each 
generated dataset

• see Cook et al

• take each 

• get a  posterior

• find the rank of  in "its" posterior

• a histogram of ranks should be uniform-
this tests our sampling so:ware

http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf


Sensi&vity of posterior to 
range allowed by prior

where  and  are generated-posterior 
quan22es and  is a prior one, and n 
indexes the parameters



Drunk Monks pre-obs



Then move to the REAL DATA posterior

• now we do posterior predic.ve checks

• the prior checks have specified possible data distribu.ons that can 
be generated

• the posterior predic.ve ought to be a subset of these. If not our 
model is mis-specified

• this may seem strange as we didnt think priors are data genera.ng

• they are not but are defined with respect to the likelihood



Drunk Monks, post-obs

pp check shows need for 0 infla2on, so do that, rinse+repeat



The Workflow (from Betancourt, and Savage)



Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions



Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison

• usually within a nested model, but you might want to apply a different modeling scheme, in which 
case use loo

• you might want to ensemble instead



Latent
Variables



• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood  vs par2al data likelihood 

• regression/classifica2on "  or " and full is supervised with 
par2al being unsupervised

• observed variables  corresponding to data, and latent variables 



From edwardlib docs: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



Any bayesian parameters can be 
considered as .

More generally posit hidden structure 

e.g. Ra#ngs Latent Factor Model:

where  and  is an item-
specific with first element item-specific 
bias and remaining latent factors for item 

;  is di7o for users;  overall ra:ngs 
mean and  is residual variance of ra:ngs.



Mixture Models

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.

Example: Zero Inflated Poisson



Genera&ve model



Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 .



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



Old faithful Geyser



Sampling mixture models: 2 
Gaussians

with pm.Model() as ofmodel:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment = pm.Categorical("assignment", p,
                    shape=ofdata.shape[0])
    sds = pm.Uniform("sds", 0, 40, shape=2)
    centers = pm.Normal("centers",
            mu=np.array([50, 80]),
            sd=np.array([20, 20]),
            shape=2)

    observations = pm.Normal("obs",
        mu=centers[assignment],
        sd=sds[assignment],
        observed=ofdata.waiting)



Sampling mixture models: 3 Gaussians

with pm.Model() as mof:
    p = pm.Dirichlet('p', a=np.array([1., 1., 1.]), shape=3)
    # cluster centers
    means = pm.Normal('means', mu=[0,20,40], sd=5, shape=3)
    sds = pm.Uniform('sds', lower=0, upper=20, shape=3)
    # latent cluster of each observation
    category = pm.Categorical('category',p=p,
                              shape=data.shape[0])
    # likelihood for each observed value
    points = pm.Normal('obs', mu=means[category],
                       sd=sds[category], observed=data)



Genera&ve Classifier

For a feature vector , we use Bayes rule to express the posterior 
of the class-condi9onal as:

This is a genera&ve classifier, since it specifies how to generate the 
data using the class-condi6onal density  and the class 
prior .



Discrimina)ve classifier

Directly fit the class posterior, .

For example, a Gaussian Mixture model vs logis6c regression.



Genera&ve vs Discrimina&ve classifiers

• LDA vs logis,c respec,vely.

• Both have "genera,ve" bayesian models:  or . 
Here think of 

• LDA is genera,ve as it models  while logis,c models  
directly. Here think of 

• we do know  on the training set, so think of the unsupervised 
learning counterparts of these models where you dont know 



Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:



GMM supervised formula1on

, 

Full-data loglike: 



Solu%on to MLE



Classifica(on

We can use the log likelihood at a given x as a classifier: assign 
class depending upon which probability  is larger. 
(JUST  likelihood, as we want to compare probabiliAes at fixed s).

The first term of the likelihood does not ma2er since it is 
independent of .



Unsupervised: How many clusters ?



Unsupervised: So/ k-means

responsibility of cluster k for point i, and can be computed as 
before using Bayes rule as follows:

Here we never observe  for any samples, whereas before with 
the genera6ve GDA classifier, we did observe  on the training set.



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



Semi-supervised learning

We have some labels, but typically very few labels: not enough to 
form a good training set. Likelihood a combina=on.

Here  ranges over the data points where we have labels, and  over 
the data points where we dont.



Semi-supervised learning

Basic Idea: there is structure in  which might help us divine the 
condi7onals, thus combine full-data and -likelihood.

Include  on the valida/on set in the likelihood, and  and  on the 
training set in the likelihood.

Has been very useful for Naive Bayes.



Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a 
natural experiment in technological 
evolu-on. Different historical island 
popula-ons possessed tool kits of 

different size. These kits include fish 
hooks, axes, boats, hand plows, and many 
other types of tools. A number of theories 

predict that larger popula-ons will both 
develop and sustain more complex tool 

kits. So the natural varia-on in popula-on 
size induced by natural varia-on in island 

size in Oceania provides a natural 



Overdispersion for only p

m2c_onlyp: loglam = alpha + betap*df.logpop_c



Varying hierarchical intercepts model

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)



Hierarchical Model Posterior predic1ve

much wider, includes data areas



What if we model the correla0on between socie0es based on the 
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance 
matrix.

The idea sounds familiar!



We can model society specific intercepts 
for oceanic tools as draws from a 0 mean 
MVN.

Covariance posteriors:




