
Lecture 21

Model Comparison, Ensembling and 
Bayesian Workflow



Decision Theory
Predic'ons (or ac'ons based on predic'ons) are described by a u'lity or 
loss func'on, whose values can be computed given the observed data.

Indeed one can consider predic-ons itself as ac-ons to be 
undertaken with respect to a par-cular u-lity.



Process

First define the distribu.on-averaged u.lity:

We then find the  that maximizes this u0lity:

This ac(on is called the bayes ac(on.



The resul)ng maximized expected u)lity is given by:

some%mes referred to as the entropy func%on, and an associate 
divergence can be defined:

Then one can think of minimizing  with respect to  to get , 
so that this discrepancy can be thought of as a loss func:on.



Example: Bayes ac.on for posterior predic.ve

 OR 

 (supervised)



Back to Poisson GLMs

From Mcelreath:

The island socie-es of Oceania provide a 
natural experiment in technological 
evolu-on. Different historical island 
popula-ons possessed tool kits of 

different size. These kits include fish 
hooks, axes, boats, hand plows, and many 
other types of tools. A number of theories 

predict that larger popula-ons will both 
develop and sustain more complex tool 

kits. So the natural varia-on in popula-on 
size induced by natural varia-on in island 

size in Oceania provides a natural 



Were the contacts really needed?

Let us compare models:

m2c_onlyic: loglam = alpha
m2c_onlyc: loglam = alpha +  betac*df.clevel
m2c_onlyp: loglam = alpha + betap*df.logpop_c
m2c_nopc: loglam = alpha + betap*df.logpop_c + betac*df.clevel
m1c: loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c



Bayesian Inference works in the small world

(some 'mes includes the true genera'ng process )



Inference in the small world

we go from prior to posterior



Bias and Variance: Overfi0ng

Overfi&ng can occur even if the small world includes the true data 
genera7ng process .



Which Model to compare against?

• In model comparison scenario we might use the "true" 
distribu7on:

No#ce that we use . The  has already been found by 
op#mizing over our posterior predic#ve.



True-belief distribu.on

• the "p" we used in KL-divergence formulae eons ago

• model  that has undergone posterior predic:ve checks and is 
very expressive, a model we can use as a reference model.

• o@en non-parametric or found via bayesian model averaging.

• if the true genera:ng process is outside the hypothesis set of the 
models you are using, true belief model never = true. This is 
called misfit or bias.



Model comparison
The key idea in model comparison is that we will sort our average 
u7li7es in some order. The exact values are not important, and may be 
computed with respect to some true distribu7on or true-belief 
distribu7on .

U"lity is maximized with respect to some model  whereas 
the average of the u"lity is computed with respect to either the 
true, or true belief distribu"on.



where  is the op+mal predic+on under the model . Now we 
compare the ac+ons, that is, we want:

No calibra*on, but calcula*ng the standard error of the difference 
can be used to see if the difference is significant, as we did with the 
WAIC score



We now maximize this over  .

For the squared loss the first step gives us . 
Then:

We have bias if  is not in our Hypothesis set .



Informa(on criteria

• we dont want to go out-of-sample

• use informa4on criteria to decide between models

• these come from the deviance

Use law or large numbers to replace the true distribu1on by 
empirical es1mate



Deviance

Deviance ,

then 



Key points

• Deviance of a predic/ve with respect to itself is the "ac/on" that 
minimizes the loss = -u/lity: . This is just 
the nega/ve entropy.

• But once we have found the predic/ve that minimizes the loss, 
we use this "bayes ac/on" for our model comparison: ie the 
deviance with respect to  (nota/on: or  or just  as we 
have introduced in the informa/on theory lectures).



Deviance of a predic.ve

We want to es*mate the "true-belief" average of a predic*ve:

where  is the predic,ve for points  on the test set or 
future data.



Do it pointwise instead

Call the expected log predic0ve density at a "new" point:

Then the "expected log pointwise predic3ve density" is



What predic,ve distribu,on  do we use? We start from the 
frequen,st scenario of using the likelihood at the MLE for the AIC, 
then move to using the likelihood at the posterior mean (a sort of 
plug in approxima,on) for the DIC, and finally to the fully Bayesian 
WAIC.

Specifically, in the first two cases, we are wri3ng the predic3ve 
distribu3on condi3oned on a point es3mate from the posterior:



Bayesian deviance

 posterior predic+ve for points  on 

the test set or future data

replace joint pp over new points  by product of marginals:



Game is to REPLACE

 where  are new points

by the computed "log pointwise predic5ve density" (lppd) in-
sample



• As we know now, is that the  of observed data y is an 
overes0mate of the  for future data.

• Hence the plan is to like to start with the  and then apply 
some sort of bias correc:on to get a reasonable es:mate of 

.

This gives us the WAIC (Widely Applicable Informa<on Criterion or 
Watanable-Akaike Informa<on Criterion)



WAIC

where

Once again this can be es-mated by



...it is temp)ng to use informa)on criteria to 
compare models with different likelihood func)ons. 
Is a Gaussian or binomial be;er? Can't we just let 

WAIC sort it out?
Unfortunately, WAIC (or any other informa)on 
criterion) cannot sort it out. The problem is that 

deviance is part normalizing constant. The constant 
affects the absolute magnitude of the deviance, but 

it doesn't affect fit to data.
— McElreath



Oceanic tools

Lets use the WAIC to compare models

m2c_onlyic: loglam = alpha
m2c_onlyc: loglam = alpha +  betac*df.clevel
m2c_onlyp: loglam = alpha + betap*df.logpop_c
m2c_nopc: loglam = alpha + betap*df.logpop_c + betac*df.clevel
m1c: loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c



Centered

• dWAIC is the difference between each 
WAIC and the lowest WAIC.

• SE is the standard error of the WAIC 
es:mate.

• dSE is the standard error of the 
difference in WAIC between each 
model and the top-ranked model.

read each weight as an es.mated 



Uncentered

interac(on is overfit. centering decorrelates



Counterfactual Posterior predic2ve



Bayes Theorem in model space

where:

is the marginal likelihood under each model. Can use these "Bayes 
Factors" to compare but high sensi:vity to prior.



Bayesian Model Averaging

where the averaging is with respect to weights , the 
posterior probabili3es of the models .

We will use the "Akaike" weights from the WAIC. This is called 
pseudo-BMA



• BMA is appropriate in the M-closed case, which is when the true 
genera8ng process is one of the models

• what we will use here is to es8mate weights by the WAIC, 
following McElreath (pseudo-BMA)

• But see Yao et. al. which claims log-score stacking is beFer. 
Implemented in pymc3

https://arxiv.org/pdf/1704.02030.pdf


Pseudo BMA vs stacking



Ensembling

• use WAIC based akaike weights for top 
3

• regularizes down the green band at high 
popula;on by giving more weight to the 
no-interac;on model.



Overdispersion for only p



Varying hierarchical intercepts model

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)



Hierarchical Model Posterior predic1ve

much wider, includes data areas



cross-valida+on

• es$mate the out-of-sample risk as an average, thus gaining 
robustness to odd valida$on sets

• providing some measure of uncertainty on the out-of-sample 
performance.

• less data to fit so biased models

• we are not talking here about cross-valida$on to do 
hyperparameter op$miza$on



hyperparameter fi+ng

• part of the prior specifica/on, uses en/re data set

• or we can use empirical bayes, and use en/re data set.

• faster than cross-val but prone to model mis-specifica/on

• but EB is not a model selec/on procedure



LOOCV

• The idea here is that you fit a model on N-1 data points, and use 
the Nth point as a valida9on point. Clearly this can be done in N 
ways.

• the N-point and N-1 point posteriors are likely to be quite 
similar, and one can sample one from the other by using 
importance sampling.

 where .



An aside: Importance sampling

The basic idea behind importance sampling is that we want to draw 
more samples where , a func7on whose integral or expecta7on 
we desire, is large. In the case we are doing an expecta7on, it 
would indeed be even be<er to draw more samples where 

 is large, where  is the pdf we are calcula7ng the 
integral with respect to.

Unlike rejec+on sampling we use all samples!!



Choosing a proposal distribu1on :

If :



Variance reduc+on

Usually: 

Importance Sampling: 

Minimize  (make 0), if:

...



Gives us 

To get low variance, we must have  large where the product 
 is large.

Or,  ought to be large where  is large. This means that, as 

we said earlier, choose more samples near the peak.



Example: integral of x sin(x)

mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x:  norm.cdf(x-mu, scale=sig)
# range of integraion
xmax =np.pi
xmin =0
N =1000 # Number of draws

# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.plot(x, f(x), 'b', label=u'Original  $x\sin(x)$')
plt.plot( x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.plot(x, np.ones(1000)/np.pi,'k')
xis = mu + sig*np.random.randn(N,1);
plt.plot(xis, 1/(np.pi*p(xis)),'.', alpha=0.1)

# IMPORTANCE SAMPLING
Iis = np.zeros(1000)
for k in np.arange(0,1000):
    # DRAW FROM THE GAUSSIAN mean =2 std = sqrt(0.4)
    xis = mu + sig*np.random.randn(N,1);
    xis = xis[ (xis<xmax) & (xis>xmin)] ;
    # normalization for gaussian from 0..pi
    normal = normfun(np.pi)-normfun(0);
    Iis[k] =np.mean(f(xis)/p(xis))*normal;

Exact solution is:  3.14159265359
Mean basic MC estimate:  3.14068341144
Standard deviation of our estimates:  0.0617743877206
Mean importance sampling MC estimate:  3.14197268362
Standard deviation of our estimates:  0.0161935244302



Fit the full posterior once. Then we have

• the importance sampling weights can be unstable out in the tails.

• importance weights have a long right tail, pymc (pm.loo) fits a 
generalized pareto to the tail (largest 20% importance ra@os) for 
each held out data point i (a MLE fit). This smooths out any large 
varia@ons.



over the training sample.



Oceanic tools LOOCV



What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the 
same likelihood, the laAer can be used with models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-likelihood models 
(especially nested models where you are really performing feature selecEon), it is 
the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just do posterior 
predicEve checks to see how the predicEons are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predicEve performance within an exisEng 
cluster or group. Cross validaEon is best for new observaEons from new groups



Bayesian Workflow



Think of the prior genera/vely AND predic/vely

Bias can come from a prior, but do not construct a prior to allow for 
overfi7ng ( draws far away from good place). Too many heavy tails 
caqn be bad.



Model Calibra,on

Think about the Bayesian Joint distribu0on.

The prior predic+ve:



How to choose priors?

• mild regulariza-on

• un-informa-vity

• sensible parameter space

• should correspond to scales and units of process being modeled

• we should calibrate to them



Generate Ar)ficial data sets

• from fixed params, but even be4er, from priors

•

•

• callibrate inferences or decisions by analysing this data

•



Now fit a posterior to each 
generated dataset

• see Cook et al

• take each 

• get a  posterior

• find the rank of  in "its" posterior

• a histogram of ranks should be uniform-
this tests our sampling so:ware

http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf


Sensi&vity of posterior to 
range allowed by prior

where  and  are generated-posterior 
quan22es and  is a prior one, and n 
indexes the parameters



Then move to the REAL DATA posterior

• now we do posterior predic.ve checks

• the prior checks have specified possible data distribu.ons that can 
be generated

• the posterior predic.ve ought to be a subset of these. If not our 
model is mis-specified

• this may seem strange as we didnt think priors are data genera.ng

• they are not but are defined with respect to the likelihood



The Workflow (from Betancourt, and Savage)



Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions



Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison

• usually within a nested model, but you might want to apply a different modeling scheme, in which 
case use loo

• you might want to ensemble instead



Drunk Monks example part 1, pre-obs



Drunk Monks, post-obs

• specify  instead of the 
crazy  we had earlier

• domain knowledge: A survey of Abbey Heads 
has told us, that the most a monk could 
produce, ever, was 10 manuscripts in a day.

• , 
5+3*np.sqrt(5)=11.7

• halfnorm.ppf(0.99, 
loc=0,scale=4)=10.3

• pp check shows need for 0 infla;on



WHEN BAYES
from Jim Savage

https://twitter.com/jim_savage_/status/983371427226308609



