Lecture 21

Model Comparison, Ensembling and
Bayesian Workflow
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Decision Theory

Predictions (or actions based on predictions) are described by a utility or
loss function, whose values can be computed given the observed data.

Indeed one can consider predictions itself as actions to be
undertaken with respect to a particular utility.
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Process

First define the distribution-averaged utility:
(o) = [ dwu(a,w) pwlD)

We then find the a that maximizes this utility:

d = argmax u(a)
a

This action is called the bayes action.
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The resulting maximized expected utility is given by:
a(@,p) = a(@) = [ dwu(d,w) p(w|D).

sometimes referred to as the entropy function, and an associate
divergence can be defined:

d(a,p) — ﬂ(pap) N ’L_L(a,,p)

Then one can think of minimizing d(a, p) with respect to a to get a,
so that this discrepancy can be thought of as a loss function.
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Example: Bayes action for posterior predictive

(o) = [ dy’ u(a,y") py’ D, M) OR

t(a(x)) = /dy* u(a(x),y”) p(y* |z*, D, M) (supervised)

a(a(z")) = / dy* u(a,y") p(y* |2, D, M)

a(x™) = arg max t(a(x™))
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Back to Poisson GLMs

From Mcelreath:

The island societies of Oceania provide a
natural experiment in technologica
evolution. Different historical islanc

populations possessed tool kits of
different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories
predict that larger populations will both
develop and sustain more complex tool
kits. So the natural variation in population
size induced by natural variation in island
size in Oceania provides a natural
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Were the contacts really needed?

Let us compare models:

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c
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Bayesian Inference works in the small world

Pp

(some times includes the true generating process py)
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Inference in the small world

Pp

we go from prior to posterior
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Bias and Variance: Overfitting

Pp Pp

Overfitting can occur even if the small world includes the true data
generating process py;.
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Which Model to compare against?

 |n model comparison scenario we might use the "true”
distribution:

a1(a) = / dy* u(a, y")p (y°)

Notice that we use u(a, y*). The @ has already been found by
optimizing over our posterior predictive.
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True-belief distribution

e the "p" we used in KL-divergence formulae eons ago

e model M, that has undergone posterior predictive checks and is
very expressive, a model we can use as a reference model.

e often non-parametric or found via bayesian model averaging.

e if the true generating process is outside the hypothesis set of the
models you are using, true belief model never = true. This is
called misfit or bias.
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Model comparison

The key idea in model comparison is that we will sort our average
utilities in some order. The exact values are not important, and may be
computed with respect to some true distribution or true-belief
distribution My,.

Utility is maximized with respect to some model M, € ‘H whereas
the average of the utility is computed with respect to either the
true, or true belief distribution.
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ﬂ(Mk,@k) — /dy*u(&k,y*)P(y*\Da Mtb)

where a;, is the optimal prediction under the model M;.. Now we
compare the actions, that is, we want:

M = arg m]?,X ’U,(Mk, dk)
No calibration, but calculating the standard error of the difference

can be used to see if the difference is significant, as we did with the
WAIC score
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We now maximize this over M;, .

For the squared loss the first step gives us G, = Epp ) Y-
Then:

(@) = [ dy (@ ~ v o571, Ma)
— [y (Bl - ") p(4"|D, Ma) = Vary, ]+ (B, ') - By ')
We have bias if M, is not in our Hypothesis set H.
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Information criteria

e we dont want to go out-of-sample
e use information criteria to decide between models

e these come from the deviance

Dxkr(p,q) = Epllog(p) — log(q)] = Ep[log(p/q)] = Zpilog(%) or / dPlog(%)

Use law or large numbers to replace the true distribution by
empirical estimate
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Deviance

Dk (p,q) = Epllog(p/q)] = % > (log(pi) — log(a;)

1

N
Deviance D(q) = : E,llog(q)| = —22109 q;),

then Dk (p,q) — Dkr(p,7) = - (D(gq) — D(r))
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Key points

e Deviance of a predictive with respect to itself is the "action"” that
minimizes the loss = -utility: —u(a,y™) = —loga(y™),. This is just
the negative entropy.

e But once we have found the predictive that minimizes the loss,
we use this "bayes action" for our model comparison: ie the
deviance with respect to My, (notation: or py or just p as we
have introduced in the information theory lectures).
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Deviance of a predictive

N

D(q) = - Ejpllog(q)]

We want to estimate the "true-belief" average of a predictive:

E, (log(pred(y*))]

where pred(y”) is the predictive for points y* on the test set or
future data.
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Do it pointwise instead

Call the expected log predictive density at a "new" point:
elpd; = Ep|log(pred(y; )]

Then the "expected log pointwise predictive density" is

elppd = Z E,[log(pred(y;))] = ) elpd;

1
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What predictive distribution pred do we use? We start from the

frequentist scenario of using the likelihood at the MLE for the AIC,
then move to using the likelihood at the posterior mean (a sort of

plug in approximation) for the DIC, and finally to the fully Bayesian
WAIC.

Specifically, in the first two cases, we are writing the predictive
distribution conditioned on a point estimate from the posterior:

elpd; = Ey[log(pred(y; | )]
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Bayesian deviance

D(q) = ];pr log(pp(y))] posterior predictive for points y* on

the test set or future data

replace joint pp over new points y by product of marginals:
elpd; = Ep|log(pp(y;)]

elppd = Z E,[log(pp(y}))] = ) _ elpd;

1
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Game is to REPLACE

elppd = Z E,[log(pp(y}))] Where yi are new points

by the computed "log pointwise predictive density" (Ippd) in-
sample

lppd = log (pr(yg ) Zloy (P(Y;10)) 0t Zlog( > p(y;1, )

s~post
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* As we know now, is that the [ppd of observed datay is an
overestimate of the elppd for future data.

 Hence the planis to like to start with the [ipd and then apply

some sort of bias correction to get a reasonable estimate of
elppd.

This gives us the WAIC (Widely Applicable Information Criterion or
Watanable-Akaike Information Criterion)
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WAIC

WAIC = lppd + 2pw

where

pw =2, (10g(Epost [P(y:10)] — Epost [log(p(y:16))))

Once again this can be estimated by

D _ Varyost [log(p(yi|6)))
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..It Is tempting to use information criteria to
compare models with different likelihood functions.
Is a Gaussian or binomial better? Can't we just let
WAIC sort it out?

Unfortunately, WAIC (or any other information
criterion) cannot sort it out. The problem is that
deviance is part normalizing constant. The constant
affects the absolute magnitude of the deviance, but
It doesn't affect fit to data.

— McElreath
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Oceanic tools

Lets use the WAIC to compare models

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c
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Centered

e dWAIC is the difference between each

m2c_nopc
WAIC and the lowest WAIC.
1 .
mie e SE is the standard error of the WAIC

m2¢_onlyp | estimate.
m2¢_onlyic : $ e dSE is the standard error of the

: difference in WAIC between each
m2c_onlyc | —0—§— model and the top-ranked model.

|

75 100 125 150 175 200 1 ,
Deviance w; = exp(—3dWAIC;)

D exp(—3dWAIC;)

read each weight as an estimated
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Uncentered

m2_nopc
WAIC (pWAIC |dWAIC |weight SE dSE warning m1
name
m2_nopc |79.1059 |4.22647 |0 0.61959 11.0612 (0 1
-nop m2_onlyp
m1 80.3046 |5.03686 | 1.19871 | 0.340258 11.3985 (0.571957 |1 1
I
m2_onlyp [84.5787 |3.84888 |5.47276 |0.0401523 |8.98146 |20.1717 |1 m2 onIyic [ _._é_
m2_onlyic [ 141.327 |8.10745 |62.2212 | 1.90956e-14 | 31.6664 | 338.568 |1 I
I
l

75 100 125 150 175
Deviance

interaction is overfit. centering decorrelates
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Counterfactual Posterior predictive
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Bayes Theorem in model space

p(My|D) o< p(D|My,)p(My)

where:

p(D|M;) = / 465 p(y|6x, My )p(6x| M)

Is the marginal likelihood under each model. Can use these "Bayes
Factors" to compare but high sensitivity to prior.
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Bayesian Model Averaging

pema(Y’|z", D) ZP “|z*, D, My )p(Mj|D)

where the averaging is with respect to weights w;, = p(M;|D), the
posterior probabilities of the models M,..

We will use the "Akaike" weights from the WAIC. This is called
pseudo-BMA
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e BMA is appropriate in the M-closed case, which is when the true
generating process is one of the models

 what we will use here is to estimate weights by the WAIC,
following McElreath (pseudo-BMA)

But see Yao et. al. which claims log-score stacking is better.
Implemented in pymc3

w o T

rn K
1
max - Zlogz wep(yily—i, M), st. w20, Zwk = 1.
=1 k=1 ]
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https://arxiv.org/pdf/1704.02030.pdf

WAIC pWAIC

name
m2c_nopc 79.06
mic 84.09
m2c_onlyp 84.43
m2c_onlyic 141.65

m2c_onlyc 150.44

&AM 207

4.24
7.05
3.75
8.38
16.94

dWAIC

0
5.04
5.37
62.6

71.38

Pseudo BMA vs stacking

weight SE

0.87 11.06
0.07 1219
0.06 8.94
0 317
0 4467

dSE

3.77
793
32.84
44.44

warning

name
m2c_nopc
mic
m2c_onlyp
m2c_onlyic

m2c_onlyc

WAIC pWAIC
79.06 4.24
84.09 7.05
84.43 3.75

141.65 8.38

150.44 16.94

dWAIC

0
5.04
5.37
62.6

71.38

weight SE

0.76 11.06
0 1218
0.24 894
0 317
0 4467

dSE

0
3.77
7.93

32.84
44.44

warning



Ensembling

e use WAIC based akaike weights for top
3

e regularizes down the green band at high
population by giving more weight to the
no-interaction model.
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Varying hierarchical intercepts model

with pm.Model() as ms3c:
betap = pm.Normal("betap", 0, 1)
alpha = pm.Normal("alpha", @, 100)
sigmasoc = pm.HalfCauchy('"sigmasoc", 1)
alphasoc = pm.Normal("alphasoc", @, sigmasoc, shape=df.shape[0])
Loglam = alpha + alphasoc + betap*df.logpop c
y = pm.Poisson('"ntools", mu=t.exp(loglam), observed=df.total tools)
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Hierarchical Model Posterior predictive
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cross-validation

e estimate the out-of-sample risk as an average, thus gaining
robustness to odd validation sets

e providing some measure of uncertainty on the out-of-sample
performance.

e |ess data to fit so biased models

e we are not talking here about cross-validation to do
hyperparameter optimization
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hyperparameter fitting

e part of the prior specification, uses entire data set
e Or we can use empirical bayes, and use entire data set.
e faster than cross-val but prone to model mis-specification

e but EB is not a model selection procedure
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LOOCV

e The idea here is that you fit a model on N-1 data points, and use

the Nth point as a validation point. Clearly this can be done in N
ways.

 the N-point and N-1 point posteriors are likely to be quite
similar, and one can sample one from the other by using
Importance sampling.

ShS
E¢lh| = 25 W where w;, = f5/gs.

Zs W
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An aside: Importance sampling

The basic idea behind importance sampling is that we want to draw
more samples where h(z), a function whose integral or expectation

we desire, Is large. In the case we are doing an expectation, it
would indeed be even better to draw more samples where

h(x)f(x) is large, where f(x) is the pdf we are calculating the
integral with respect to.

Unlike rejection sampling we use all samples!!

@AM 207



Byt = | f@h@)dz

Choosing a proposal distribution g(x):

E;[h] = / h(z)g(z)

E¢lh| = lim — Z hiL'z )

N—>oo N

Byl = Jim 37 3 w(eh
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Variance reduction

Usually: V = Vilh()

Volw(z)h(z)

Importance Sampling: V = 5

Minimize V, [w(z)h(z)] (make 0), if:
w(z)h(z) =C = f(x)h(z) = Cg(x),..
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Gives us g(x) = ‘;(;[)h}z(;;;

To get low variance, we must have g(x) large where the product
f(x)h(x) is large.

ought to be large where h(x) is large. This means that, as

we said earlier, choose more samples near the peak.
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Example: integral of x sin(x

mu = 2;

sig =.7;

f = lambda x: np.sin(x)*x

infun = lambda x: np.sin(x)-x*np.cos(x)

p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0%sig**2))
normfun = lambda x: mnorm.cdf(x-mu, scale=sig)

# range of integraion

Xxmax =np.pi

xmin =0

N =1000 # Number of draws

# Just want to plot the function

x=np.linspace(xmin, xmax, 1000)

plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$"')

plt.plot( x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.plot(x, np.ones(1000)/np.pi, 'k')

xis = mu + sig*np.random.randn(N,1);

plt.plot(xis, 1/(np.pi*p(xis)),'."', alpha=0.1)

# IMPORTANCE SAMPLING
Tis = np.zeros(1000)
for k in np.arange(9,1000):
# DRAW FROM THE GAUSSIAN mean =2 std = sqrt(9.4)
xis = mu + sig*np.random.randn(N,1);
xis = xis[ (xis<xmax) & (xis>xmin)] ;
# normalization for gaussian from 0. .pi
normal = normfun(np.pi)-normfun(0);
Tis[k] =np.mean(f(xis)/p(xis))*normal;

Exact solution is: 3.14159265359

Mean basic MC estimate: 3.14068341144

Standard deviation of our estimates: ©.0617743877206
Mean importance sampling MC estimate: 3.14197268362

Standard deviation of our estimates: 0.0161935244302
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Fit the full posterior once. Then we have

_ p(esw—i) ~ 1
© pBsly) T p(vilbs,y—i)

e the importance sampling weights can be unstable out in the tails.

e importance weights have a long right tail, pymc (pm. Loo) fits a
generalized pareto to the tail (largest 20% importance ratios) for
each held out data point i (a MLE fit). This smooths out any large
variations.
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elpdloo — Z log(p(y’t |y—’& ))

over the training sample.
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Oceanic tools LOOCV

m2c_nopc
m2c_onlyp
mic
m2c_onlyic

m2c_onlyc

100

125 150 175 200
Deviance



What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the
same likelihood, the latter can be used with models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-likelihood models

(especially nested models where you are really performing feature selection), it is
the first line of attack

3. One does not always have to do model selection. Sometimes just do posterior
predictive checks to see how the predictions are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predictive performance within an existing
cluster or group. Cross validation is best for new observations from new groups
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Bayesian Workflow
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Think of the prior generatively AND predictively

Pp Pp

Bias can come from a prior, but do not construct a prior to allow for
overfitting ( draws far away from good place). Too many heavy tails
cagn be bad.
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Model Calibration

Think about the Bayesian Joint distribution.
p(0,y) = p(y | 0)p(0)

The prior predictive:

p(y) = / dip(0,y) = / dfp(y | 0)p(6)
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How to choose priors?

e mild regularization

e un-informativity

e sensible parameter space

e should correspond to scales and units of process being modeled

e we should calibrate to them
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Generate Artificial data sets

e from fixed params, but even better, from priors

* 6~ p(6)

* j~ply|0)

e callibrate inferences or decisions by analysing this data

. Ula) = / d6dgp(7, 6)U(a(), 6)

@AM 207



140
|

100
1

60

Frequency

20
|

[ I 1 T T |
00 02 04 06 08 10

Posterior Quantiles

Figure 3. An example of posterior quantiles g from software with error. An effective summary for detecting the
error should emphasize quantiles near O or 1, such as h(qg) = (d—1(q))".
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Now fit a posterior to each
generated dataset

see Cook et al

take each §

get a @ | g posterior

find the rank of @ in "its" posterior

a histogram of ranks should be uniform-
this tests our sampling software


http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf
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Then move to the REAL DATA posterior

e now we do posterior predictive checks

e the prior checks have specified possible data distributions that can
be generated

e the posterior predictive ought to be a subset of these. If not our
model is mis-specified

e this may seem strange as we didnt think priors are data generating
e they are not but are defined with respect to the likelihood
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The Workflow (from Betancourt, and Savage)
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Prior to Observation

1. Define Data and interesting statistics
2. Build Model

3. Analyze the joint, and its data marginal (prior predictive) and its summary statistics
4. fit posteriors to simulated data to calibrate

e check sampler diagnostics, and correlate with simulated data

e use rank statistics to evaluate prior-posterior consistency

e check posterior behaviors and behaviors of decisions
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Posterior to Observation

1. Fit the Observed Data and Evaluate the fit

e check sampler diagnostics, poor performance means generative model not consistent with actual data
2. Analyze the Posterior Predictive Distribution

e do posterior predictive checks, now comparing actual data with posterior-predictive simulations

e consider expanding the model
3. Do model comparison

e usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

e you might want to ensemble instead
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Drunk Monks example part 1, pre-obs
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Drunk Monks, post-obs

specify A ~ HalfN(0,4) instead of the
crazy N(0, e!%’) we had earlier

domain knowledge: A survey of Abbey Heads
has told us, that the most a monk could
produce, ever, was 10 manuscripts in a day.

maz(X + 3v/A) < 10,
5+3*np.sqrt(5)=11.7/

halfnorm.ppf(0.99,
Loc=0,scale=4)=10.3

pp check shows need for O inflation



WHEN BAYES


https://twitter.com/jim_savage_/status/983371427226308609

Jake Mortenson @m0Ort - 19h v
That was part of my point, the other part being (perhaps out of my depth): with

2 Jim Savage y
@jim_savage_
. large data the benefits from incorporating pricrs may not be large (fixed effects
A test for whether a prOblem requires may be sufficient, depending on parameters of interest), and also computation

Bayesian methods: might be time-expensive. Sound right?
1. Is there information that is not in your data O 1 N > =
about population-level unknowns?

2. Do you need coherent uncertainty?

3. Are you combining complex models and

Jim Savage @jim_savage_ - 19h v
See rule 1 though: if there is informaticn your enormous data doesn't contain
about the unknown of interest (in the pcpulation--which for most purposes is a

want uncertainty to percolate th rough? future population) then there might still be value in having priors. Turkey before
thanksgiving story.
Yes to any? Bayes it. ® " M 1 S

11:49 AM - 9 Apr 2018

11 Retweets 90 Likes @W‘QOG@‘.

Q 3 1 11 ¥ % &

. Tweet your reply

4 Jake Mortenson @jmOrt - 20h v
| Replying to .

Have been locking for an excuse to dc Bayesian stuff in a tax policy research O + >
setting. But isn’t there also 4, do you have some sparsely populated (and : - v/ 4 —
interesting) bins? The answer tc 1 and 2 are virtually always yes, but have

Noah Motion @statmodcitizen - 22h v
Replying to

My intuition is that the answer to (2) is always "yes", but | may be
misunderstanding what you mean by the question...

O 1 [ \/ &

Jim Savage @jim_savage_ - 22h v
Strictly yes, if computation and analyst time has ne cost. Business maximize
profit, not correctness.

avoided so far because our data are typically yuge. Frank Harrell @f2harrell - 18h v
O 1 0 v, & e Replying to
la Jim Savage @jim_savage._ - 20h » Nice. I'd simply say "Does your problem require statistical inference?". If yes,
“ | couldn't add 4) You want to generalize to new populations (post-strat) & so Bayes it. Among other things this solves is that inference is exact. Most
want to estimate sub-group effects, but your sample has small N in those sub- frequentist analyses are approximations, other than the ordinary linear model
@ AI\/Pﬂ?@f?re's a lot of value in hierarchical priors. and a few others.
Are we saying the same thing? Q () ' 1 cz
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