Lecture 21
Utility/Risk and Model Comparison

@AM 207

Previously

e posterior predictive checking
e glms

e oceanic tools example and centering

@AM 207

Today

e Decision theory

e point estimates for decisions

e model comparison and ensembling

e oceanic tools and other models model comparison
e poisson over-dispersion and hierarchical modeling

e prosocial chimps in lab

@AM 207

Decision Theory

Predictions (or actions based on predictions) are described by a utility or
loss function, whose values can be computed given the observed data.

Indeed one can consider predictions itself as actions to be
undertaken with respect to a particular utility.

@AM 207

Point Predictions: squared loss

Sometimes we want to make point predictions. In this case a Is a
single number.

squared error loss/utility: I(a, y*) = (a — y*)°

The optimal point prediction that minimizes the expected loss
(negative expected utility):

[(a) = / dy* (a —y")? p(y*| D, M),

@AM 207

Is the posterior predictive mean:
a=FE,y"|.
The expected loss then becomes:

l(a) = /dy* (@ —y*)* p(y*|D, M) = /dy* (Eply*] — v*)’ p(y* | D, M) = Var,[y*]

Squared loss =— we dont care about skewness or kurtosis

@AM 207

Components of Decision problem

1.a € A, available actions
2. w € (), astate in the set of states of the world.

3. p(w|D) which tells us out current beliefs about the world.

4. A utility function u(a,w) : A x @ — R that awards a score/
utility/profit to each action a when the state of the universe is w.
This can be also formulated as a risk/loss.

@AM 207

2 Bayes distributions: posterior and posterior predictive

1. a parameter value or prediction, or action based on prediction

2.1t Q@ = {y* }, then w =y, a future y. If Q is the posterior, then
w = @ is a value of a parameter(s)

3. This is either the posterior distribution (for) or a predictive
distribution like posterior predictive (for y*)

4. A utility for an action based on 6, eg point prediction of median,
or on y*, same idea.

@AM 207

Process

First define the distribution-averaged utility:
(o) = [dwu(a,w) pwlD)

We then find the a that maximizes this utility:

4 = argmax u(a)
a

This action is called the bayes action.

@AM 207

The resulting maximized expected utility is given by:
(@) = a(@) = [dwu(d,w) p(w|D).

sometimes referred to as the entropy function, and an associate
divergence can be defined:

d(a,p) — ﬂ(pap) N ’L_L(a,,p)

Then one can think of minimizing d(a, p) with respect to a to get a,
so that this discrepancy can be thought of as a loss function.

@AM 207

Example: Bayes action for posterior predictive

(o) = [dy’ u(a,y")ply’ I, M) OR

t(a(x)) = /dy* u(a(x),y”) p(y* |z*, D, M) (supervised)

a(a(z")) = / dy* u(a,y") p(y* |, D, M)

a(x™) = arg max t(a(x™))

@AM 207

Custom Loss: Stock Market
Retu rn S 0.25 Stock returns loss if true value = 0.05, -0.02

Loss associated with
prediction if true value = 0.05

Loss associated with
prediction if true value = -0.02

Empirical returns vs trading signal

—— Least-squares line ’ 020

0.15

returns

loss

0.10 .

-0.04 -0.02 0.00 0.02 0.04
trading signal

0.056 N\

def stock_ loss(stock return, pred, alpha = 100.):
if stock_return * pred < 0:
#opposite signs, not good
return alpha*pred**2 - np.sign(stock _return)*pred \ 0.00
+ abs(stock_return)

-0.10 -0.05 0.00 0.05 0.10

olse: prediction

return abs(stock return - pred)

&AM 207

Loss at very X

0.03 Least-squares prediction vs. Bayes action prediction

- | east-squares prediction
- Bayes action prediction

with pm.Model() as model:
std = pm.Uniform("std", @, 100)

0.02
beta = pm.Normal("beta", mu=0, sd=100)

alpha = pm.Normal("alpha", mu=0, sd=100)

mean = pm.Deterministic("mean", alpha + beta*X)

0.01
obs = pm.Normal("obs", mu=mean, sd=std, observed=Y)

c

trace = pm.sample(100000, step=pm.Metropolis()) O
burned_trace = trace[20000:] T 0.00

e

.« e 9

noise = std_samples*np.random.randn(N) Q.
#posterior predictive samples at every X -0.01

possible_outcomes = lambda signal: alpha_samples + beta_samples*signal + noise

opt_predictions np.zeros(50)
trading_signals np.linspace(X.min(), X.max(), 50) -0.02
for i, _signal in enumerate(trading_signals):

_possible_outcomes = possible_outcomes(_signal)

#expected loss over posterior predictive

tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean() -0.03

#bayes action minimizes expected loss -0.04 -0.02 0.00 0.02 0.04
opt_predictions[i] = fmin(tomin, ©, disp = False) trading signal

&AM 207

The two risks

There are two risks in learning that we must consider, one to
estimate probabilities, which we call estimation risk, and one to
make decisions, which we call decision risk.

The decision loss I(y, a) or utility u(l, a) (profit, or benefit) in

making a decision a when the predicted variable has value y. For
example, we must provide all of the losses I(no-cancer, biopsy), [
(cancer, biopsy), [(no-cancer, no-biopsy), and l(cancer, no-biopsy).
One set of choices for these losses may be 20, O, O, 200

@AM 207

Classification Risk

Zl y, a(z))p(y|z)

That is, we calculate the predictive averaged risk over all choices vy,
of making choice a for a given data point.

Overall risk, given all the data points in our set:

R(a) = / dzp(z) Ry ()

@AM 207

Observed

Predicted
TN FP on
O Observed
True Negative False Positive Negative
FN TP o
1 Observed
False Negative True Positive Positive
PN PP
Predicted Predicted
Negative Positive

@AM 207

Two class Classification

R,(z) = U(1,9)p(1|z) + 1(0, g)p(0|z).
Then for the "decision" a = 1 we have:

Ry (z) = U(1,1)p(1|z) + (0, 1)p(0]z),
and for the "decision" a = 0 we have:

Ry(z) = I(1,0)p(1|z) + 1(0,0)p(0]x).

Now, we'd choose 1 for the data point at z If:
R4 (ZB) < Ry (:B)
P(l‘m)(l(la 1) o l(17 0)) < p(O‘iB)(l(O, O) - l(Oa 1))

So, to choose '1’, the Bayes risk can be obtained by setting:

p(llz) > rP(0lz) — r =

P(liz) >t = :
(1z) > t = ——

@AM 207

One can use the prediction cost matrix
corresponding to the consufion matrix

If you assume that True positives and True
negatives have no cost, and the cost of a
false positive is equal to that of a false
positive, then r = 1 and the threshold is
the usual intuitive ¢t = 0.5.

@AM 207

Observed

Predicted

0 1

TNC FPC

True Negative Cost | False Positlive Coslt

FNC TPC

False Negative Cost | True Positive Cost

Log score: probabilistic prediction (estimation risk)

Here we want to find a distribution a.

The utility is defined as:
u(a,y”) = loga(y™),

The expected utility then is
a(a) = [dy’ log(a(y")) oy’ D, M),

@AM 207

The a that maximizes this utility is the predictive itself (in the
bayesian context, the posterior predictive)!

a(y") = p(y*|D, M)
Maximized utility: a(a) — / dy* log(p(y” | D, M)) p(y*| D, M),

This is just the negative entropy of the predictive distribution, and
the associated divergence is our old friend the KL-divergence.

@AM 207

Back to Poisson GLMs

From Mcelreath:

The island societies of Oceania provide a
natural experiment in technologica
evolution. Different historical islanc

populations possessed tool kits of
different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories
predict that larger populations will both
develop and sustain more complex tool
kits. So the natural variation in population
size induced by natural variation in island
size in Oceania provides a natural

&AM 207

culture population | contact | total_tools |mean_TU |logpop clevel
0 |Malekula ([1100 low 13 3.2 7.003065 |0
1 [Tikopia 1500 low 22 4.7 7.313220 |0
2 [Santa Cruz | 3600 low 24 4.0 8.188689 (0
3 |Yap 4791 high 43 5.0 8.474494 |1
4 | Lau Fiji 7400 high 33 5.0 8.909235 |1
S | Trobriand |8000 high 19 4.0 8.987197 |1
6 | Chuuk 9200 high 40 3.8 9.126959 (1
7 |Manus 13000 low 28 6.6 9.472705 |0
8 | Tonga 17500 high 55 5.4 9.769956 (1
9 | Hawalii 275000 low 71 6.6 12.524526 |0

@AM 207

Model M1

T; ~ Poisson(\;)
log(Ai) = o+ Bplog(
a ~ N(0,100)
Bp ~ N(0,1)
Bc ~ N(0,1)
Bpc ~ N(0,1)

with pm.Model() as ml:
betap = pm.Normal('"betap", 0, 1)
betac = pm.Normal('"betac", 0, 1)
betapc = pm.Normal("betapc", @, 1)
alpha = pm.Normal("alpha", @, 100)
loglam = alpha + betap*df.logpop +
betac*df.clevel + betapc*df.clevel*df.logpop
y = pm.Poisson('"ntools"

with ml:
trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100% | || 200000/200000 [00:15<00:00, 13019.16it/s]
100% | || 10000/10000 [01:59<00:00, 83.80it/s]

P;) + BcC; + BpcCilog(

, mu=t.exp(loglam), observed=df.total_tools)

12683.03it/s]

F;)

betap betac
m'4 mean—-|.082
0.10 0.15 0.20 0.25 0.30 0.35 040 -4 -3 -2 -1 0 1 2 3 4
betapc alpha
mean=0.042 meanal. 939
0

-03 -02 01 00 O1 02 03 04 05 -05 0.0 0.5 1.0 1.5 20 2.5

&AM 207

Posteriors for M1

traces and autocorrelations look good

The posterior for g, tightly constrained,

and as expected from theory, shows a
positive effect.

The posteriors for . and g,. both

overlap O substantially, and seem
comparatively poorly constrained.

no substantial effect of contact rate,
directly or through the interaction?

You would be wrong:
counterfactual predictions

A traces for high-contact and low contact,
log(population) of 8.

Llamlow = lambda logpop: trace['alpha']+trace['betap']*logpop

lamhigh = lambda logpop: trace['alpha']+(trace['betap'] +
trace['betapc'])*logpop + trace['betac']

sns.distplot(lamhigh(8) - Llamlow(8));

A new kind of model checking.

&AM 207

3.0

1.0

alpha

betapc

betac
|
'% ..;..‘.;’f%,’%
w-i 3
ik
s

[
.-‘.‘5.@."3.—‘.—‘!\>!\>.°o
oOaNwh CUoLoUnoOUOo

BPWON=_2O-_2NWA
it
o s
: (5’":'- 0
s
By
;E}gﬂh
)

0.
0.
0.
0.
0.
-0.
-0.
-0.
-0.

-19.6.0.5.0.2.2.8.0

WA 207

-54-3-2-1012 34 0.1012202530334045 -0-4-6-20.0.0.2.9.94.5
betac betap betapc

What happened?

very strong negative correlations
between o and 3,

very strong negative correlations
between B, and g,..

The latter is the cause for the O-
overlaps.

When g3, is high, 8,. must be low, and

vice-versa. Look at the joint uncertainty
of the correlated variables rather than
just marginals

Fix by centering

* you would have seen the problem in n¢:

{'alpha': 8110.0, 'betac': 4600.0, 'betap': 8016.0, 'betapc': 459/.0}

with pm.Model() as mlc:
betap = pm.Normal("betap", 0, 1)
betac pm.Normal("betac", 0, 1)
betapc = pm.Normal('"betapc", 0, 1)
alpha pm.Normal("alpha', @, 100)
Loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop c
y = pm.Poisson('"ntools", mu=t.exp(loglam), observed=df.total tools)

{'alpha': /97/8.0, 'betac': /7/898.0, 'betap': 13621.0, 'betapc': 1/7/03.0}

@AM 207

e better constrained, less correlated,
sampling faster and better

e clear effect of contact, effect of
interaction not clear yet

e will use model comparison next time for
this!

betap betac

0.

0.

010 015 020 025 030 035 040 045 -0.2 0.0 0.2 04 0.6 0.8 1.0
betapc

meapz0.066

0
-08 06 -04 -02 00 02 04 06 08 29 30 31 32 33 34 35 36 37

betapc
Soobo0000:

COBNONAO®

2.38.8.8.3.3.8.8.68.7 -04.2.00.20.40.60.81.0 0.0510D162D2bIN3B4D45 -0-8-6-020.2.9.6.8.0

ww 207 betac betap betapc

Were the contacts really needed?

Let us compare models:

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c

@AM 207

Which Model to compare against?

 |n model comparison scenario we might use the "true”
distribution:

a1(a) = / dy* u(a, y")p (y°)

Notice that we use u(a, y*). The @ has already been found by
optimizing over our posterior predictive.

@AM 207

True-belief distribution

e the "p" we used in KL-divergence formulae eons ago

e model M, that has undergone posterior predictive checks and is
very expressive, a model we can use as a reference model.

e often non-parametric or found via bayesian model averaging.

e if the true generating process is outside the hypothesis set of the
models you are using, true belief model never = true. This is
called misfit or bias.

@AM 207

Model comparison

The key idea in model comparison is that we will sort our average
utilities in some order. The exact values are not important, and may be
computed with respect to some true distribution or true-belief
distribution My,.

Utility is maximized with respect to some model M, € H whereas
the average of the utility is computed with respect to either the
true, or true belief distribution.

@AM 207

ﬂ(Mk,@k) — /dy*u(&k,y*)P(y*\Da Mtb)

where a;, is the optimal prediction under the model M;.. Now we
compare the actions, that is, we want:

M = arg m]?,X ’U,(Mk, dk)
No calibration, but calculating the standard error of the difference

can be used to see if the difference is significant, as we did with the
WAIC score

@AM 207

We now maximize this over M;, .

For the squared loss the first step gives us G, = Ep,p) 1Y]-
Then:

(@) = [dy’ (@ ~ v o571, M)
— [y (Bl ") (6" |D, Ma) = Vary,] + (B, ') - By ')
We have bias if M, is not in our Hypothesis set H.

@AM 207

Information criteria

e we dont want to go out-of-sample
e use information criteria to decide between models

e these come from the deviance

Dk1(p,q) = Epllog(p) — log(q)] = Epllog(p/q)] szlog / dPlog(g)

Use law or large numbers to replace the true distribution by

@AM 207

its empirical estimate, then we have:

1

Dk1(p,q) = Epllog(p/9)| = + Z(log(pz-) — log(q;)

Thus minimizing the KL-divergence involves maximizing Z log(q;)

justifies the maximum likelihood principle.

Dkr(p,q) — Dxr(p,7) = Epllog(r) — log(q)| = E, [log(g)]

@AM 207

Deviance
D(q) = —22109(%')’

then

Dict(p,q) ~ Dict(p.7) = 2+(D(g) ~ D(r))

N

More generally: D(q) = :

E,|log(q)]

@AM 207

Key points

e Deviance of a predictive with respect to itself is the "action"” that
minimizes the loss = -utility: —u(a,y™) = —loga(y™),. This is just
the negative entropy.

e But once we have found the predictive that minimizes the loss,
we use this "bayes action" for our model comparison: ie the
deviance with respect to My, (notation: or py or just p as we
have introduced in the information theory lectures).

@AM 207

Deviance of a predictive

N

D(q) = - Ejpllog(q)]

We want to estimate the "true-belief" average of a predictive:

E, (log(pred(y*))]

where $pred(y”*)$ is the predictive for points $y*$ on the test set or
future data.

@AM 207

Do it pointwise instead

Call the expected log predictive density at a "new" point:
elpd; = Ep|log(pred(y;)]

Then the "expected log pointwise predictive density" is

elppd = Z E,[log(pred(y;))] =) elpd;

1

@AM 207

What predictive distribution pred do we use? We start from the

frequentist scenario of using the likelihood at the MLE for the AIC,
then move to using the likelihood at the posterior mean (a sort of

plug in approximation) for the DIC, and finally to the fully Bayesian
WAIC.

Specifically, in the first two cases, we are writing the predictive
distribution conditioned on a point estimate from the posterior:

elpd; = Ey[log(pred(y; |)]

@AM 207

The game we will play in these first two cases is:

(1) Conditional on fixed @, the full predictive splits into a product

per point so the writing of elppd as a sum over pointwise elpd is
exact

(2) However we dont know p,, (or just p), so we use the empirical
distribution on the training set

(3) this underestimates the test set deviance as we learnt in the
case of the AIC, so we must apply a correction factor.

@AM 207

deviance
48 50 52 54 56 58 60

AIC

Akaike Information Criterion, or AIC:

N =20 N =100
2 i AIC = Dyrgin + 2p
e - e . e ‘Q{4.1
2 \\\\’ ke 8 | *\
j Hoo w0 \ Dirain = —2 % log(p(y|9mle)
’ sa |16 [o7| & \
SE - A om=g=""C
N ol T ‘1 multivariate gaussian posterior
Wl 9 a9 |71 |85
2] - a e flat priors
1 2 3 4 5 1 2 3 4 5
number of parameters number of parameters

e data >> parameters

&AM 207

DIC

Uses the posterior distribution, calculable from MCMC, and assumes
multivariate gaussian posterior distribution.

Dirgin = —2 % lOg(p(ywpostmean), DIC = Dy, + 2DDpIC where
ppric = 2 * (log(p(y|Opostmean) — Epost [log(p(y|6)]) (by monte carlo)

alternative fomulation for pp, guaranteed to be positive, is

PDic = 2 * Va'rpost [lOQ (p (y| epostmean))]

@AM 207

Bayesian deviance

D(q) =];pr [log(pp(y))] posterior predictive for points y* on

the test set or future data

replace joint pp over new points y by product of marginals:
elpd; = Ep|log(pp(y;)]

elppd = Z E,[log(pp(y}))] =) _ elpd;

1

@AM 207

Game is to REPLACE

elppd = Z E,[log(pp(y}))] Where yi are new points

by the computed "log pointwise predictive density" (Ippd) in-
sample

lppd = log (pr(yg) Zloy (P(Y;10)) 0t Zlog(> p(y;1,)

s~post

@AM 207

* As we know now, is that the [ppd of observed datay is an
overestimate of the elppd for future data.

 Hence the planis to like to start with the [ipd and then apply

some sort of bias correction to get a reasonable estimate of
elppd.

This gives us the WAIC (Widely Applicable Information Criterion or
Watanable-Akaike Information Criterion)

@AM 207

WAIC

WAIC = lppd + 2pw

where

pw =2, (10g(Epost [P(y:10)] — Epost [log(p(y:16))))

Once again this can be estimated by

D _ Varyost [log(p(yi|6)))

@AM 207

..It Is tempting to use information criteria to
compare models with different likelihood functions.
Is a Gaussian or binomial better? Can't we just let
WAIC sort it out?

Unfortunately, WAIC (or any other information
criterion) cannot sort it out. The problem is that
deviance is part normalizing constant. The constant
affects the absolute magnitude of the deviance, but
It doesn't affect fit to data.

— McElreath

@AM 207

Oceanic tools

Lets use the WAIC to compare models

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c

@AM 207

Centered

e dWAIC is the difference between each

m2c_nopc
WAIC and the lowest WAIC.
1 .
mie e SE is the standard error of the WAIC

m2¢_onlyp | estimate.
m2¢_onlyic : $ e dSE is the standard error of the

: difference in WAIC between each
m2c_onlyc | —0—§— model and the top-ranked model.

|

75 100 125 150 175 200 1 ,
Deviance w; = exp(—3dWAIC;)

D exp(—3dWAIC;)

read each weight as an estimated
¥ AM 207

Uncentered

m2_nopc
WAIC (pWAIC |dWAIC |weight SE dSE warning m1
name
m2_nopc |79.1059 |4.22647 |0 0.61959 11.0612 (0 1
-nop m2_onlyp
m1 80.3046 |5.03686 | 1.19871 | 0.340258 11.3985 (0.571957 |1 1
I
m2_onlyp [84.5787 |3.84888 |5.47276 |0.0401523 |8.98146 |20.1717 |1 m2 onIyic [_._é_
m2_onlyic [141.327 |8.10745 |62.2212 | 1.90956e-14 | 31.6664 | 338.568 |1 I
I
l

75 100 125 150 175
Deviance

interaction is overfit. centering decorrelates

@AM 207

Counterfactual Posterior predictive

300
250
200
150

100

6 7 8 9 10 11 12 13

@AM 207

Bayesian Model Averaging

pema(Y’|z", D) ZP “|z*, D, My)p(Mj|D)

where the averaging is with repect to weights w, = p(M}|D), the
posterior probabilities of the models M,..

We will use the "Akaike" weights from the WAIC.

@AM 207

Ensembling

e use WAIC based akaike weights for top
3

e regularizes down the green band at high
population by giving more weight to the
no-interaction model.

@AM 207

140

120

100

10

1

12

13

@AM 207

300

250

200

150

100

Overdispersion for only p

Varying hierarchical intercepts model

with pm.Model() as ms3c:
betap = pm.Normal("betap", 0, 1)
alpha = pm.Normal("alpha", @, 100)
sigmasoc = pm.HalfCauchy('"sigmasoc", 1)
alphasoc = pm.Normal("alphasoc", @, sigmasoc, shape=df.shape[0])
Loglam = alpha + alphasoc + betap*df.logpop c
y = pm.Poisson('"ntools", mu=t.exp(loglam), observed=df.total tools)

@AM 207

Hierarchical Model Posterior predictive

6 betap
>
o5
c 4
$3
&2
L0
-01 00 01 02 03 04 05 06 07
alpha
4
>3
C o
()] .
=5 4.
o -
9 o
o ‘k
26 28 30 32 34 36 38 40
_25 alphaso .
82'0
3 1.5
1.0
8 05
L 00
20 15 10 -05 00 05 10
sigmasoc
>3 A
[&]
C o
m -
=S5 4-
U‘ -
9_,) o
Lo
00 02 04 06 08 10 12

0.8

42

-
(&)

=
»

Sample value

0 1000 2000 3000 4000 5000

Sample value

0 1000 2000 3000 4000 5000
alphasoc

Sample value
11| |

o

1000 2000 3000 4000 5000
sigmasoc

Sample value
]

o

1000 2000 3000 4000 5000

much wider, includes data areas

&AM 207

300

250

200

150

100

