
Lecture 21

U"lity/Risk and Model Comparison



Previously

• posterior predic,ve checking

• glms

• oceanic tools example and centering



Today

• Decision theory

• point es/mates for decisions

• model comparison and ensembling

• oceanic tools and other models model comparison

• poisson over-dispersion and hierarchical modeling

• prosocial chimps in lab



Decision Theory
Predic'ons (or ac'ons based on predic'ons) are described by a u'lity or 
loss func'on, whose values can be computed given the observed data.

Indeed one can consider predic-ons itself as ac-ons to be 
undertaken with respect to a par-cular u-lity.



Point Predic+ons: squared loss

Some%mes we want to make point predic%ons. In this case  is a 
single number.

squared error loss/u,lity: 

The op'mal point predic'on that minimizes the expected loss 
(nega've expected u'lity):



is the posterior predic,ve mean:

The expected loss then becomes:

Squared loss  we dont care about skewness or kurtosis



Components of Decision problem

1. , available ac,ons

2. , a state in the set of states of the world.

3.  which tells us out current beliefs about the world.

4. A u,lity func,on  that awards a score/
u,lity/profit to each ac,on  when the state of the universe is . 
This can be also formulated as a risk/loss.



2 Bayes distribu.ons: posterior and posterior predic.ve

1. a parameter value or predic1on, or ac1on based on predic1on

2. If , then , a future . If  is the posterior, then 
 is a value of a parameter(s)

3. This is either the posterior distribu1on (for ) or a predic1ve 
distribu1on like posterior predic1ve (for )

4. A u1lity for an ac1on based on , eg point predic1on of median, 
or on , same idea.



Process

First define the distribu.on-averaged u.lity:

We then find the  that maximizes this u0lity:

This ac(on is called the bayes ac(on.



The resul)ng maximized expected u)lity is given by:

some%mes referred to as the entropy func%on, and an associate 
divergence can be defined:

Then one can think of minimizing  with respect to  to get , 
so that this discrepancy can be thought of as a loss func:on.



Example: Bayes ac.on for posterior predic.ve

 OR 

 (supervised)



Custom Loss: Stock Market 
Returns

def stock_loss(stock_return, pred, alpha = 100.):
    if stock_return * pred < 0:
        #opposite signs, not good
        return alpha*pred**2 - np.sign(stock_return)*pred \
                        + abs(stock_return)
    else:
        return abs(stock_return - pred)



Loss at very x

with pm.Model() as model:
    std = pm.Uniform("std", 0, 100)

    beta = pm.Normal("beta", mu=0, sd=100)
    alpha = pm.Normal("alpha", mu=0, sd=100)

    mean = pm.Deterministic("mean", alpha + beta*X)

    obs = pm.Normal("obs", mu=mean, sd=std, observed=Y)

    trace = pm.sample(100000, step=pm.Metropolis())
    burned_trace = trace[20000:]
    ...
noise = std_samples*np.random.randn(N)

#posterior predictive samples at every x
possible_outcomes = lambda signal: alpha_samples + beta_samples*signal + noise

opt_predictions = np.zeros(50)
trading_signals =  np.linspace(X.min(), X.max(), 50)
for i, _signal in enumerate(trading_signals):
        _possible_outcomes = possible_outcomes(_signal)
        #expected loss over posterior predictive
        tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean()
        #bayes action minimizes expected loss
        opt_predictions[i] = fmin(tomin, 0, disp = False)



The two risks

There are two risks in learning that we must consider, one to 
es.mate probabili.es, which we call es#ma#on risk, and one to 
make decisions, which we call decision risk.

The decision loss  or u+lity  (profit, or benefit) in 
making a decision  when the predicted variable has value . For 
example, we must provide all of the losses (no-cancer, biopsy), 
(cancer, biopsy), (no-cancer, no-biopsy), and (cancer, no-biopsy). 
One set of choices for these losses may be 20, 0, 0, 200 



Classifica(on Risk

That is, we calculate the predic've averaged risk over all choices y, 
of making choice a for a given data point.

Overall risk, given all the data points in our set:



Two class Classifica,on

Then for the "decision"  we have:

and for the "decision"  we have:



Now, we'd choose  for the data point at  if:

So, to choose '1', the Bayes risk can be obtained by se5ng:

.



One can use the predic/on cost matrix 
corresponding to the consufion matrix

If you assume that True posi1ves and True 
nega1ves have no cost, and the cost of a 
false posi1ve is equal to that of a false 
posi1ve, then  and the threshold is 
the usual intui1ve .



Log score: probabilis/c predic/on (es/ma/on risk)

Here we want to find a distribu0on .

The u&lity is defined as:

The expected u+lity then is



The  that maximizes this u-lity is the predic-ve itself (in the 
bayesian context, the posterior predic-ve)!

Maximized u+lity: 

This is just the nega-ve entropy of the predic-ve distribu-on, and 
the associated divergence is our old friend the KL-divergence.



Back to Poisson GLMs

From Mcelreath:

The island socie-es of Oceania provide a 
natural experiment in technological 
evolu-on. Different historical island 
popula-ons possessed tool kits of 

different size. These kits include fish 
hooks, axes, boats, hand plows, and many 
other types of tools. A number of theories 

predict that larger popula-ons will both 
develop and sustain more complex tool 

kits. So the natural varia-on in popula-on 
size induced by natural varia-on in island 

size in Oceania provides a natural 



Model M1

with pm.Model() as m1:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop +
        betac*df.clevel + betapc*df.clevel*df.logpop
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

with m1:
    trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100%|██████████| 200000/200000 [00:15<00:00, 13019.16it/s]   12683.03it/s]
100%|██████████| 10000/10000 [01:59<00:00, 83.80it/s]



Posteriors for M1

• traces and autocorrela.ons look good

• The posterior for  .ghtly constrained, 
and as expected from theory, shows a 
posi.ve effect.

• The posteriors for  and  both 
overlap 0 substan.ally, and seem 
compara.vely poorly constrained.

• no substan.al effect of contact rate, 
directly or through the interac.on?



You would be wrong: 
counterfactual predic4ons

 traces for high-contact and low contact, 
log(popula6on) of 8.

lamlow = lambda logpop: trace['alpha']+trace['betap']*logpop
lamhigh = lambda logpop: trace['alpha']+(trace['betap'] +
    trace['betapc'])*logpop + trace['betac']
sns.distplot(lamhigh(8) - lamlow(8));

A new kind of model checking.



What happened?

• very strong nega-ve correla-ons 
between  and 

• very strong nega-ve correla-ons 
between  and .

• The la6er is the cause for the 0-
overlaps.

• When  is high,  must be low, and 
vice-versa. Look at the joint uncertainty 
of the correlated variables rather than 
just marginals



Fix by centering

• you would have seen the problem in :

{'alpha': 8110.0, 'betac': 4600.0, 'betap': 8016.0, 'betapc': 4597.0}

with pm.Model() as m1c:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}



• be$er constrained, less correlated, 
sampling faster and be$er

• clear effect of contact, effect of 
interac6on not clear yet

• will use model comparison next 6me for 
this!



Were the contacts really needed?

Let us compare models:

m2c_onlyic: loglam = alpha
m2c_onlyc: loglam = alpha +  betac*df.clevel
m2c_onlyp: loglam = alpha + betap*df.logpop_c
m2c_nopc: loglam = alpha + betap*df.logpop_c + betac*df.clevel
m1c: loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c



Which Model to compare against?

• In model comparison scenario we might use the "true" 
distribu7on:

No#ce that we use . The  has already been found by 
op#mizing over our posterior predic#ve.



True-belief distribu.on

• the "p" we used in KL-divergence formulae eons ago

• model  that has undergone posterior predic:ve checks and is 
very expressive, a model we can use as a reference model.

• o@en non-parametric or found via bayesian model averaging.

• if the true genera:ng process is outside the hypothesis set of the 
models you are using, true belief model never = true. This is 
called misfit or bias.



Model comparison
The key idea in model comparison is that we will sort our average 
u7li7es in some order. The exact values are not important, and may be 
computed with respect to some true distribu7on or true-belief 
distribu7on .

U"lity is maximized with respect to some model  whereas 
the average of the u"lity is computed with respect to either the 
true, or true belief distribu"on.



where  is the op+mal predic+on under the model . Now we 
compare the ac+ons, that is, we want:

No calibra*on, but calcula*ng the standard error of the difference 
can be used to see if the difference is significant, as we did with the 
WAIC score



We now maximize this over  . 

For the squared loss the first step gives us . 
Then:

We have bias if  is not in our Hypothesis set .



Informa(on criteria

• we dont want to go out-of-sample

• use informa4on criteria to decide between models

• these come from the deviance

Use law or large numbers to replace the true distribu1on by



its empirical es,mate, then we have:

Thus minimizing the KL-divergence involves maximizing , 

jus:fies the maximum likelihood principle.



Deviance

,

then

More generally: 



Key points

• Deviance of a predic/ve with respect to itself is the "ac/on" that 
minimizes the loss = -u/lity: . This is just 
the nega/ve entropy.

• But once we have found the predic/ve that minimizes the loss, 
we use this "bayes ac/on" for our model comparison: ie the 
deviance with respect to  (nota/on: or  or just  as we 
have introduced in the informa/on theory lectures).



Deviance of a predic.ve

We want to es*mate the "true-belief" average of a predic*ve:

where $pred(y^)$ is the predic-ve for points $y^$ on the test set or 
future data.



Do it pointwise instead

Call the expected log predic0ve density at a "new" point:

Then the "expected log pointwise predic3ve density" is



What predic,ve distribu,on  do we use? We start from the 
frequen,st scenario of using the likelihood at the MLE for the AIC, 
then move to using the likelihood at the posterior mean (a sort of 
plug in approxima,on) for the DIC, and finally to the fully Bayesian 
WAIC.

Specifically, in the first two cases, we are wri3ng the predic3ve 
distribu3on condi3oned on a point es3mate from the posterior:



The game we will play in these first two cases is:

(1) Condi*onal on fixed , the full predic*ve splits into a product 
per point so the wri*ng of elppd as a sum over pointwise elpd is 
exact
(2) However we dont know  (or just ), so we use the empirical 
distribu*on on the training set
(3) this underes*mates the test set deviance as we learnt in the 
case of the AIC, so we must apply a correc*on factor.



AIC

Akaike Informa-on Criterion, or AIC:

• mul%variate gaussian posterior

• flat priors

• data >> parameters



DIC

Uses the posterior distribu.on, calculable from MCMC, and assumes 
mul.variate gaussian posterior distribu.on.

,  where

 (by monte carlo)

alterna've fomula'on for , guaranteed to be posi've, is



Bayesian deviance

 posterior predic+ve for points  on 

the test set or future data

replace joint pp over new points  by product of marginals:



Game is to REPLACE

 where  are new points

by the computed "log pointwise predic5ve density" (lppd) in-
sample



• As we know now, is that the  of observed data y is an 
overes0mate of the  for future data. 

• Hence the plan is to like to start with the  and then apply 
some sort of bias correc:on to get a reasonable es:mate of 

.

This gives us the WAIC (Widely Applicable Informa<on Criterion or 
Watanable-Akaike Informa<on Criterion)



WAIC

where

Once again this can be es-mated by



...it is temp)ng to use informa)on criteria to 
compare models with different likelihood func)ons. 
Is a Gaussian or binomial be;er? Can't we just let 

WAIC sort it out?
Unfortunately, WAIC (or any other informa)on 
criterion) cannot sort it out. The problem is that 

deviance is part normalizing constant. The constant 
affects the absolute magnitude of the deviance, but 

it doesn't affect fit to data.
— McElreath



Oceanic tools

Lets use the WAIC to compare models

m2c_onlyic: loglam = alpha
m2c_onlyc: loglam = alpha +  betac*df.clevel
m2c_onlyp: loglam = alpha + betap*df.logpop_c
m2c_nopc: loglam = alpha + betap*df.logpop_c + betac*df.clevel
m1c: loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c



Centered

• dWAIC is the difference between each 
WAIC and the lowest WAIC.

• SE is the standard error of the WAIC 
es:mate.

• dSE is the standard error of the 
difference in WAIC between each 
model and the top-ranked model.

read each weight as an es.mated 



Uncentered

interac(on is overfit. centering decorrelates



Counterfactual Posterior predic2ve



Bayesian Model Averaging

where the averaging is with repect to weights , the 
posterior probabili3es of the models .

We will use the "Akaike" weights from the WAIC.



Ensembling

• use WAIC based akaike weights for top 
3

• regularizes down the green band at high 
popula;on by giving more weight to the 
no-interac;on model.



Overdispersion for only p



Varying hierarchical intercepts model

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)



Hierarchical Model Posterior predic1ve

much wider, includes data areas


