Lecture 2

Distributions and Frequentist
Statistics
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Polls for OH times

FAS/In-person Office Hours: https:/doodle.com/poll/
urfmttixbt66f625

DCE/Online Office Hours: https:/doodle.com/poll/
tmvyka2xp/pp5q9c

Please only fill out one poll. This course is difficult to
do remotely and nearly impossible to TF when split
between online and in-person, so we'd like to have
dedicated timeslots for DCE students.
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So far:

e |ntro, Bayes Theorem

Today:

e Probability
e Distributions

* Frequentist Statistics
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Probability

e from symmetry

e from a model, and combining beliefs and data:
Bayesian Probability

e from long run frequency

frequentist probability of heads
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e E isthe event of getting a heads in a first coin toss,
and F is the same for a second coin toss.

e ()is the set of all possibilities that can happen
when you toss two coins: {HH,HT,TH,TT}

E+F(orEuF)
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Fundamental rules of probability:

1. p(X) >= 0; probability must be non-negative
2.0<p(X) <1
3. p(X) + p(X~) =1 either happen or not happen.

4. p(X+Y)=p(X)+p(Y)-pX,Y)
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Random Variables

Definition. A random variable is a mapping

X: 02— R

that assigns a real number X (w) to each outcome w.
- ) is the sample space. Points

- w In ) are called sample outcomes, realizations, or
elements.

- Subsets of €2 are called Events.
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 Sayw = HHTTTTHTT then X(w) = 3 if defined
as number of heads in the sequence w.

e We will assign a real number P(A) to every event A,
called the probability of A.

e We also call P a probability distribution or a
probability measure.
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Bayes Theorem

(z|y)p(y) »(z|y) p(y) p(z | y) p(y)

p(y|z) ==

piz) S py) L, e yv)rY)
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Cumulative distribution Function

The cumulative distribution function, or the CDF, is
a function

Fy :R — [O, ].],
defined by
Fx(z) =p(X < z).

Sometimes also just called distribution.
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Let X be the random variable representing the
number of heads in two coin tosses. Then £ =0, 1 or

2.

CDF:
1 -
15+ O —)
D0+
S G
0 1 2 T
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Probability Mass Function

X is called a discrete random variable if it takes
countably many values {x,, zs,...}.

We define the probability function or the probability
mass function (pmf) for X by:

fx(z) = p(X = x)
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The pmf for the number of heads in two coin tosses:

fX(z) 4

3
DtH

ot

A
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Y
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Probability Density function (pdf)

A random variable is called a continuous random
variable if there exists a function fx such that

fx(x) > 0 forall x, / fx(x)dx = 1 and for every a
< b, :

b
pla < X <b) = / fx(x)dx

Note: p(X = z) = 0 for every z. Confusing!
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CDF for continuous random variables

Fx(@) = [  Fx(t)dt

dFX (CB)

and fx(x) = at all points x at which Fx is

differentiable.

Continuous pdfs can be > 1. cdfs bounded in [0,1].
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A continuous example: the Uniform(0,1) Distribution

pdf:

1 tor0<zx<1
0 otherwise.

fx(z) = {

cdf:
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cdf:

@AM 207



Bernoulli Distribution

Distribution a coin flip represented as X, where
X = 1is heads, and X = 0 is tails. Parameter is
probability of heads ».

X ~ Bernoulli(p)

is to be read as X has distribution Bernoulli(p).
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pmf:

for p in the range O to 1.

flz)=p"(1—p)**
for x in the set {0,1}.
What is the cdf?

@AM 207



from scipy.stats import bernoulli
#bernoullli random variable

brv=bernoulli(p=060.3)
print(brv.rvs(size=20))

[1000100110000011001
9]
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Marginals

Marginal mass functions are defined in analog to
probabilities:

fx(@)=pX=2)=>) flz,9); fr) =pY =y) =Y f(=,v).
Yy T
Marginal densities are defined using integrals:

fx(z) = /dyf(w,y); fr(y) = /dwf(w,y)-
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probability.html

Conditionals

Conditional mass function is a conditional probability:

p(Xzat,Yzy) . fXY(way)

fxy(|y) =pX=2|Y =y)= pY=y)  fr(y)

The same formula holds for densities with some
additional requirements fy (y) > 0 and interpretation:

XAV =9~ [ farl@yde
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Election forecasting

e Each state has a Bernoulli coin.

e p for each state can come from prediction markets,
models, polls

e Many simulations for each state. In each simulation:
o rv = Uniform(0,1) If. rv < p say Obama wins

e ofr rv = Bernoulli(p). 1=Obama.
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Empirical pmf and cdf

Chance of Obama Victory: 99.55%, Spread: 59 votes

0.12
= Actual Outcome 10
— Victory Threshold
I simulations
0.10
0.8
£
0.08 =
£
. g 0.6
£ @)
‘® 0.06 %
8 Zz
T = 04
©
Q9
o
0.04 oY
0.2
0.02
0.0
oo 200 250 300 350
150 200 250 300 350 400 450 500 550
Obama Electoral College Votes votes for Obama

@AM 207




Frequentist Statistics

Answers the question: What is Data? with
"data is a sample from an existing population”
e datais stochastic, variable
e model the sample. The model may have parameters

 find parameters for our sample. The parameters are
considered fixed.
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Data story

e a story of how the data came to be.

e may be a causal story, or a descriptive one
(correlational, associative).

 The story must be sufficient to specify an
algorithm to simulate new data.

e a formal probability model.
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tossing a globe in the air experiment

e toss and catch it. When you catch it, see whats
under index finger

e mark W for water, L for land.
e figure how much of the earth is covered in water

e thus the "data" is the fraction of W tosses
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Probabilistic Model

1. The true proportion of water is p.

2. Bernoulli probability for each globe toss, where p is

thus the probability that you get a W. This
assumption is one of being Identically Distributed.

3. Each globe toss is Independent of the other.

Assumptions 2 and 3 taken together are called 1ID, or
Independent and Identially Distributed Data.
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Likelihood

How likely it is to observe k W given the parameter p?
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Likelihood

How likely it is to observe values =, ..., z, given the
parameters \?

n

HP z;|\)

1=1

How likely are the observations if the model is true?

Or, how likely is it to observe k out of n W
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Maximum Likelihood estimation

5 ——
4 + p(xI1.8)
p(x15.8)
3 -
a
2 4+
1 +
. 0
-3 0 2 4 6 8 10 12
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Example Exponential Distribution Model

de ™ g >0,

f(a”’\):{o z < 0.

Describes the time between events in a
homogeneous Poisson process (events occur at a
constant average rate). Eg time between buses

arriving.
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log-likelihood

Maximize the likelihood, or more often (easier and
more numerically stable), the log-likelihood

Zln (z; | A))

In the case of the exponential distribution we have:

n

{(lambda) = i In(Ae i) = Z (In(A) — Az;) .

1=1
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Maximizing this:

d/l .

n
dx A

and thus:

— E :wza

which is the sample mean of our sample.

)\MLE
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Globe Toss Moael

n

P(X =k|n,p) = <k>pk(1 )t

n

¢ = log( (k)) + klog(p) + (n — k)log(1 — p)

d/ k n—k_

0
dp p 1-p

thus pyre = k
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Point Estimates

If we want to calculate some quantity of the
population, like say the mean, we estimate it on the

sample by applying an estimator F' to the sample data
D,so i = F(D).

Remember, The parameter is viewed as fixed and the
data as random, which is the exact opposite of the
Bayesian approach which you will learn later in this

class.
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True vs estimated

If your model describes the true generating process
for the data, then there is some true u*.

We dont know this. The best we can do is to estimate

A

b

Now, imagine that God gives you some M data sets
drawn from the population, and you can now find p
on each such dataset.

So, we'd have M estimates.
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Sampling distribution

As we let M — oo, the distribution induced on i is
the empirical sampling distribution of the estimator.

1 could be A\, our parameter, or a mean, a variance,
etc

We could use the sampling distribution to get
confidence intervals on \.

But we dont have M samples. What to do?
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Bootstrap

e |f we knew the true parameters of the population,
we could generate M fake datasets.

« we dont, so we use our estimate lambda to
generate the datasets

e this is called the Parametric Bootstrap

e usually best for statistics that are variations around
truth
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data simulated data
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Problems

e simulation error: the number of samples M is finite.
Go large M.

o statistical error: resampling from an estimated
parameter is not the "true" data generating process.
Subtraction helps.

e specification error: the model isnt quite good. Use
the non-parametric bootstrap: sample with
replacement the X from our original sample D,
generating many fake datasets.
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data simulated data
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Linear Regression MLE
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Gaussian Distribution assumption

Each y; is gaussian distributed with mean w - x; (they
predicted by the regression line) and variance o*:

y; ~ N(w - xi,az).

1 2/,
N(p,0%) = 0\/27%6 (y=h)" /20"
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We can then write the likelihood:

L = p(Y|X7 W, J) — Hp(yz"x’iawa 0)

L = (2m0?) /2 g7t Tiluwx)*

The log likelihood ¢ then is given by:
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Maximizing gives:

wyrr = (X' X) ' X'y,
where we stack rows to get:

X = stack({x; })

1
e =7 DU — W %),
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Next time

e Expectation values
e Law of large numbers

e How it enables empirical distributions and the
bootstrap

e And Monte Carlo

e Central Limit theorem for sampling and error on
expectations

@AM 207



