Lecture 2

Distributions and Frequentist Statistics

(en 207

Polls for OH times

FAS/In-person Office Hours: https://doodle.com/poll/ urfmttixbt66f625

DCE/Online Office Hours: https://doodle.com/poll/ tmvyka2xp7pp5q9c

Please only fill out one poll. This course is difficult to do remotely and nearly impossible to TF when split between online and in-person, so we'd like to have dedicated timeslots for DCE students.

囀AM 207

So far:

- Intro, Bayes Theorem

Today:

- Probability
- Distributions
- Frequentist Statistics
(1) AM 207

Probability

- from symmetry
- from a model, and combining beliefs and data: Bayesian Probability
- from long run frequency

囀AM 207

- E is the event of getting a heads in a first coin toss, and F is the same for a second coin toss.
- Ω is the set of all possibilities that can happen when you toss two coins: $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Fundamental rules of probability:

1. $p(X)>=0$; probability must be non-negative
2. $0 \leq p(X) \leq 1$
3. $p(X)+p\left(X^{-}\right)=1$ either happen or not happen.
4. $p(X+Y)=p(X)+p(Y)-p(X, Y)$

AM 207

Random Variables

Definition. A random variable is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

that assigns a real number $X(\omega)$ to each outcome ω.
$-\Omega$ is the sample space. Points

- ω in Ω are called sample outcomes, realizations, or elements.
- Subsets of Ω are called Events.
(1)AM 207
- Say $\omega=$ HHTTTTHTT then $X(\omega)=3$ if defined as number of heads in the sequence ω.
- We will assign a real number $\mathrm{P}(\mathrm{A})$ to every event A , called the probability of A.
- We also call Pa probability distribution or a probability measure.

Bayes Theorem

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime}} p\left(x, y^{\prime}\right)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime}} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)}
$$

(1)AM 207

Cumulative distribution Function

The cumulative distribution function, or the CDF, is
a function

$$
F_{X}: \mathbb{R} \rightarrow[0,1]
$$

defined by

$$
F_{X}(x)=p(X \leq x)
$$

Sometimes also just called distribution.
(1)AM 207

Let X be the random variable representing the number of heads in two coin tosses. Then $x=0,1$ or 2.

CDF:

囀AM 207

Probability Mass Function

X is called a discrete random variable if it takes countably many values $\left\{x_{1}, x_{2}, \ldots\right\}$.

We define the probability function or the probability mass function (pmf) for X by:

$$
f_{X}(x)=p(X=x)
$$

(1)AM 207

The pmf for the number of heads in two coin tosses:

(1) AM 207

Probability Density function (pdf)

A random variable is called a continuous random variable if there exists a function f_{X} such that $f_{X}(x) \geq 0$ for all $\mathrm{x}, \int_{-\infty}^{\infty} f_{X}(x) d x=1$ and for every a $\leq b$,

$$
p(a<X<b)=\int_{a}^{b} f_{X}(x) d x
$$

Note: $p(X=x)=0$ for every x. Confusing!
AM 207

CDF for continuous random variables

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

and $f_{X}(x)=\frac{d F_{X}(x)}{d x}$ at all points x at which F_{X} is differentiable.

Continuous pdfs can be > 1 . cdfs bounded in [0,1].
(1e AM 207

A continuous example: the Uniform(0,1) Distribution

pdf:

$$
f_{X}(x)= \begin{cases}1 & \text { for } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

cdf:

$$
F_{X}(x)= \begin{cases}0 & x \leq 0 \\ x & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}
$$

(1) AM 207
cdf:

(AM 207

Bernoulli Distribution

Distribution a coin flip represented as X, where $X=1$ is heads, and $X=0$ is tails. Parameter is probability of heads p.

$$
X \sim \operatorname{Bernoulli}(p)
$$

is to be read as X has distribution $\operatorname{Bernoulli(p).~}$
(WM 207
pmf:

$$
f(x)= \begin{cases}1-p & x=0 \\ p & x=1\end{cases}
$$

for p in the range 0 to 1 .

$$
f(x)=p^{x}(1-p)^{1-x}
$$

for x in the set $\{0,1\}$.
What is the cdf?
(1)AM 207
from scipy.stats import bernoulli
\#bernoulli random variable
brv=bernoulli(p=0.3)
print(brv.rvs(size=20))
$\left[\begin{array}{lllllllllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}\right.$
0]

AM 207

Marginals

Marginal mass functions are defined in analog to probabilities:
$f_{X}(x)=p(X=x)=\sum_{y} f(x, y) ; f_{Y}(y)=p(Y=y)=\sum_{x} f(x, y)$.
Marginal densities are defined using integrals:

$$
f_{X}(x)=\int d y f(x, y) ; f_{Y}(y)=\int d x f(x, y)
$$

: AM 207

Conditionals

Conditional mass function is a conditional probability:

$$
f_{X \mid Y}(x \mid y)=p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

The same formula holds for densities with some additional requirements $f_{Y}(y)>0$ and interpretation:

$$
p(X \in A \mid Y=y)=\int_{x \in A} f_{X \mid Y}(x, y) d x
$$

Election forecasting

- Each state has a Bernoulli coin.
- p for each state can come from prediction markets, models, polls
- Many simulations for each state. In each simulation:
- $r v=\operatorname{Uniform}(0,1)$ If. $r v<p$ say Obama wins
- or $r v=\operatorname{Bernoulli(p).1=Obama.~}$

Empirical pmf and cdf

(AM 207

Frequentist Statistics

Answers the question: What is Data? with
"data is a sample from an existing population"

- data is stochastic, variable
- model the sample. The model may have parameters
- find parameters for our sample. The parameters are considered fixed.

Data story

- a story of how the data came to be.
- may be a causal story, or a descriptive one (correlational, associative).
- The story must be sufficient to specify an algorithm to simulate new data.
- a formal probability model.

匋AM 207

tossing a globe in the air experiment

- toss and catch it. When you catch it, see whats under index finger
- mark W for water, L for land.
- figure how much of the earth is covered in water
- thus the "data" is the fraction of W tosses
(1)AM 207

Probabilistic Model

1. The true proportion of water is p.
2. Bernoulli probability for each globe toss, where p is thus the probability that you get a W. This assumption is one of being Identically Distributed.
3. Each globe toss is Independent of the other.

Assumptions 2 and 3 taken together are called IID, or Independent and Identially Distributed Data.
(1) AM 207

Likelihood

How likely it is to observe $k \mathrm{~W}$ given the parameter p ?

$$
P(X=k \mid n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

(1)AM 207

Likelihood

How likely it is to observe values x_{1}, \ldots, x_{n} given the parameters λ ?

$$
L(\lambda)=\prod_{i=1}^{n} P\left(x_{i} \mid \lambda\right)
$$

How likely are the observations if the model is true?
Or, how likely is it to observe k out of $n \mathrm{~W}$

Maximum Likelihood estimation

(1)AM 207

Example Exponential Distribution Model

$$
f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0, \\ 0 & x<0\end{cases}
$$

Describes the time between events in a
homogeneous Poisson process (events occur at a constant average rate). Eg time between buses arriving.
(1)AM 207

log-likelihood

Maximize the likelihood, or more often (easier and more numerically stable), the log-likelihood

$$
\ell(\lambda)=\sum_{i=1}^{n} \ln \left(P\left(x_{i} \mid \lambda\right)\right)
$$

In the case of the exponential distribution we have:

$$
\ell(l a m b d a)=\sum_{i=1}^{n} \ln \left(\lambda e^{-\lambda x_{i}}\right)=\sum_{i=1}^{n}\left(\ln (\lambda)-\lambda x_{i}\right)
$$

AM 207

Maximizing this:

$$
\frac{d \ell}{d \lambda}=\frac{n}{\lambda}-\sum_{i=1}^{n} x_{i}=0
$$

and thus:

$$
\frac{1}{\lambda_{M L E}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

which is the sample mean of our sample.
(1e AM 207

Globe Toss Model

$$
\begin{gathered}
P(X=k \mid n, p)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\ell=\log \left(\binom{n}{k}\right)+k \log (p)+(n-k) \log (1-p) \\
\frac{d \ell}{d p}=\frac{k}{p}-\frac{n-k}{1-p}=0 \\
\text { thus } p_{M L E}=\frac{k}{n}
\end{gathered}
$$

Point Estimates

If we want to calculate some quantity of the population, like say the mean, we estimate it on the sample by applying an estimator F to the sample data D, so $\hat{\mu}=F(D)$.

Remember, The parameter is viewed as fixed and the data as random, which is the exact opposite of the Bayesian approach which you will learn later in this class.

True vs estimated

If your model describes the true generating process for the data, then there is some true μ^{*}.

We dont know this. The best we can do is to estimate $\hat{\mu}$.

Now, imagine that God gives you some M data sets drawn from the population, and you can now find μ on each such dataset.

So, we'd have M estimates.

AM 207

Sampling distribution

As we let $M \rightarrow \infty$, the distribution induced on $\hat{\mu}$ is the empirical sampling distribution of the estimator.
μ could be λ, our parameter, or a mean, a variance, etc

We could use the sampling distribution to get confidence intervals on λ.

But we dont have M samples. What to do?

囀AM 207

Bootstrap

- If we knew the true parameters of the population, we could generate M fake datasets.
- we dont, so we use our estimate $l \hat{a m b d a}$ to generate the datasets
- this is called the Parametric Bootstrap
- usually best for statistics that are variations around truth

次AM 207
data

.00168
-0.00249
0.0183
-0.00587
0.0139

\downarrow parameter calculation
fitted model

simulated data

.00183
-0.00378
0.00754
-0.00587
-0.00673

\downarrow
re-estimate

Problems

- simulation error: the number of samples M is finite. Go large M.
- statistical error: resampling from an estimated parameter is not the "true" data generating process. Subtraction helps.
- specification error: the model isnt quite good. Use the non-parametric bootstrap: sample with replacement the X from our original sample D, generating many fake datasets.
:AM 207
data

0.00168		0.00183
-0.00249		0.00183
0.0183		-0.00249
-0.00587	re-sampling	-0.00249
0.0139	re-sampling	-0.00587

(diagram from Shalizi)

empirical

 distribution
parameter calculation

*) AM 20.7.0392

Linear Regression MLE

囀AM 207

Gaussian Distribution assumption

Each y_{i} is gaussian distributed with mean $\mathbf{w} \cdot \mathbf{x}_{i}$ (the y predicted by the regression line) and variance σ^{2} :

$$
\begin{aligned}
y_{i} & \sim N\left(\mathbf{w} \cdot \mathbf{x}_{i}, \sigma^{2}\right) \\
N\left(\mu, \sigma^{2}\right) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(y-\mu)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

We can then write the likelihood:

$$
\begin{gathered}
\mathcal{L}=p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \sigma)=\prod_{i} p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma\right) \\
\mathcal{L}=\left(2 \pi \sigma^{2}\right)^{(-n / 2)} e^{\frac{-1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\mathbf{w} \cdot \mathbf{x}_{i}\right)^{2}}
\end{gathered}
$$

The log likelihood ℓ then is given by:

$$
\ell=\frac{-n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\mathbf{w} \cdot \mathbf{x}_{i}\right)^{2}
$$

: AM 207

Maximizing gives:

$$
\mathbf{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

where we stack rows to get:

$$
\begin{gathered}
\mathbf{X}=\operatorname{stack}\left(\left\{\mathbf{x}_{i}\right\}\right) \\
\sigma_{M L E}^{2}=\frac{1}{n} \sum_{i}\left(y_{i}-\mathbf{w} \cdot \mathbf{x}_{i}\right)^{2} .
\end{gathered}
$$

AM 207

Next time

- Expectation values
- Law of large numbers
- How it enables empirical distributions and the bootstrap
- And Monte Carlo
- Central Limit theorem for sampling and error on expectations

包AM 207

