
Lecture 2

Distribu(ons and Frequen(st 
Sta(s(cs



Polls for OH *mes

FAS/In-person Office Hours: h-ps://doodle.com/poll/
urfm5xbt66f625

DCE/Online Office Hours: h4ps://doodle.com/poll/
tmvyka2xp7pp5q9c

Please only fill out one poll. This course is difficult to 
do remotely and nearly impossible to TF when split 
between online and in-person, so we'd like to have 
dedicated =meslots for DCE students.

https://doodle.com/poll/urfmttixbt66f625
https://doodle.com/poll/urfmttixbt66f625
https://doodle.com/poll/tmvyka2xp7pp5q9c
https://doodle.com/poll/tmvyka2xp7pp5q9c


So far:

• Intro, Bayes Theorem

Today:

• Probability

• Distribu.ons

• Frequen.st Sta.s.cs



Probability

• from symmetry

• from a model, and combining beliefs and data: 
Bayesian Probability

• from long run frequency



• E is the event of ge.ng a heads in a first coin toss, 
and F is the same for a second coin toss.

•  is the set of all possibili;es that can happen 
when you toss two coins: {HH,HT,TH,TT}



Fundamental rules of probability:

1. ; probability must be non-nega5ve

2.

3.  either happen or not happen.

4.



Random Variables

Defini&on. A random variable is a mapping

that assigns a real number  to each outcome .
-  is the sample space. Points
-  in  are called sample outcomes, realiza8ons, or 
elements.
- Subsets of  are called Events.



• Say  then  if defined 
as number of heads in the sequence .

• We will assign a real number P(A) to every event A, 
called the probability of A.

• We also call P a probability distribuBon or a 
probability measure.



Bayes Theorem



Cumula&ve distribu&on Func&on

The cumula&ve distribu&on func&on, or the CDF, is 
a func0on

,

 defined by

Some%mes also just called distribu(on.



Let  be the random variable represen2ng the 
number of heads in two coin tosses. Then  = 0, 1 or 
2.

CDF:



Probability Mass Func1on

 is called a discrete random variable if it takes 
countably many values .

We define the probability func/on or the probability 
mass func/on (pmf) for X by:



The pmf for the number of heads in two coin tosses:



Probability Density func2on (pdf)

A random variable is called a con$nuous random 
variable if there exists a func5on  such that 

 for all x,  and for every a 

≤ b,

Note:  for every . Confusing!



CDF for con*nuous random variables

and  at all points x at which  is 

differen2able.

Con$nuous pdfs can be > 1. cdfs bounded in [0,1].



A con&nuous example: the Uniform(0,1) Distribu&on

pdf:

cdf:



cdf:



Bernoulli Distribu.on

Distribu(on a coin flip represented as , where 
 is heads, and  is tails. Parameter is 

probability of heads .

is to be read as  has distribu+on .



pmf:

for p in the range 0 to 1.

for x in the set {0,1}.

What is the cdf?



from scipy.stats import bernoulli
#bernoulli random variable
brv=bernoulli(p=0.3)
print(brv.rvs(size=20))

[1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 
0]



Marginals

Marginal mass func.ons are defined in analog to 
probabili.es:

Marginal densi,es are defined using integrals:

probability.html


Condi&onals

Condi&onal mass func&on is a condi&onal probability:

The same formula holds for densi0es with some 
addi0onal requirements  and interpreta0on:



Elec%on forecas%ng

• Each state has a Bernoulli coin.

•  for each state can come from predic6on markets, 
models, polls

• Many simula6ons for each state. In each simula6on:

•  If.  say Obama wins

• or . 1=Obama.



Empirical pmf and cdf



Frequen'st Sta's'cs

Answers the ques,on: What is Data? with

"data is a sample from an exis/ng popula)on"

• data is stochas+c, variable

• model the sample. The model may have parameters

• find parameters for our sample. The parameters are 
considered fixed.



Data story

• a story of how the data came to be.

• may be a causal story, or a descrip7ve one 
(correla7onal, associa7ve).

• The story must be sufficient to specify an 
algorithm to simulate new data.

• a formal probability model.



tossing a globe in the air experiment

• toss and catch it. When you catch it, see whats 
under index finger

• mark W for water, L for land.

• figure how much of the earth is covered in water

• thus the "data" is the frac=on of W tosses



Probabilis)c Model

1. The true propor,on of water is .

2. Bernoulli probability for each globe toss, where  is 
thus the probability that you get a W. This 
assump,on is one of being Iden%cally Distributed.

3. Each globe toss is Independent of the other.

Assump&ons 2 and 3 taken together are called IID, or 
Independent and Iden*ally Distributed Data.



Likelihood

How likely it is to observe  W given the parameter ?



Likelihood

How likely it is to observe values  given the 
parameters ?

How likely are the observa1ons if the model is true?

Or, how likely is it to observe  out of  W



Maximum Likelihood es0ma0on



Example Exponen+al Distribu+on Model

Describes the +me between events in a 
homogeneous Poisson process (events occur at a 
constant average rate). Eg +me between buses 
arriving.



log-likelihood

Maximize the likelihood, or more o1en (easier and 
more numerically stable), the log-likelihood

In the case of the exponen.al distribu.on we have:



Maximizing this:

and thus:

which is the sample mean of our sample.



Globe Toss Model

thus 



Point Es)mates

If we want to calculate some quan0ty of the 
popula0on, like say the mean, we es0mate it on the 
sample by applying an es0mator  to the sample data 

, so .

Remember, The parameter is viewed as fixed and the 
data as random, which is the exact opposite of the 
Bayesian approach which you will learn later in this 
class.



True vs es(mated

If your model describes the true genera5ng process 
for the data, then there is some true .

We dont know this. The best we can do is to es2mate 
.

Now, imagine that God gives you some M data sets 
drawn from the popula9on, and you can now find  
on each such dataset.

So, we'd have M es.mates.



Sampling distribu0on

As we let , the distribu/on induced on  is 
the empirical sampling distribu/on of the es/mator.

 could be , our parameter, or a mean, a variance, 
etc

We could use the sampling distribu4on to get 
confidence intervals on .

But we dont have M samples. What to do?



Bootstrap

• If we knew the true parameters of the popula3on, 
we could generate M fake datasets.

• we dont, so we use our es3mate  to 
generate the datasets

• this is called the Parametric Bootstrap

• usually best for sta3s3cs that are varia3ons around 
truth



(from Shalizi)



Problems

• simula(on error: the number of samples M is finite. 
Go large M.

• sta(s(cal error: resampling from an es(mated 
parameter is not the "true" data genera(ng process. 
Subtrac/on helps.

• specifica(on error: the model isnt quite good. Use 
the non-parametric bootstrap: sample with 
replacement the X from our original sample D, 
genera(ng many fake datasets.



Use the empirical distribu1on!

(diagram from Shalizi)



Linear Regression MLE



Gaussian Distribu,on assump,on

Each  is gaussian distributed with mean  (the y 
predicted by the regression line) and variance :



We can then write the likelihood:

The log likelihood  then is given by:



Maximizing gives:

where we stack rows to get:



Next &me

• Expecta)on values

• Law of large numbers

• How it enables empirical distribu)ons and the 
bootstrap

• And Monte Carlo

• Central Limit theorem for sampling and error on 
expecta)ons


