
Lecture 19

Model Checking and glms



Previously

• HMC

• Hierarchical modelling, divergences

• step sizes, tuning L, NUTS



Today and Thursday

• glms

• model checking

• oceanic tools example and centering

• model comparison

• oceanic tools and other models model comparison

• Theory and prac6ce of NUTS



Posterior Predic+ve Checking





Ba#ery of tests

• Visual Inspec.on

• Gewecke, Gelman Rubin, Effec.ve N, posteriors from various 
starts

• posterior plots, pairwise posterior plots

• Divergences, enerygyplots





Parallel Co-ordinates for divergences

see paper on bayesian viz

https://arxiv.org/pdf/1709.01449.pdf


Speed of light experiment

• Simon Newcomb, 1882, 1mes required for light to travel 7442 
metres, recorded as devia1ons from 24,800 nanoseconds

light_speed = np.array([28, 26, 33, 24, 34, -44, 27, 16, 40, -2, 29, 22, 24, 21, 25,
                        30, 23, 29, 31, 19, 24, 20, 36, 32, 36, 28, 25, 21, 28, 29,
                        37, 25, 28, 26, 30, 32, 36, 26, 30, 22, 36, 23, 27, 27, 28,
                        27, 31, 27, 26, 33, 26, 32, 32, 24, 39, 28, 24, 25, 32, 25,
                        29, 27, 28, 29, 16, 23])

Use Normal model with weakly informa4ve priors to model



with pm.Model() as light_model:
    mu = pm.Uniform('mu', lower=-1000,
                    upper=1000.0)
    sigma = pm.Uniform('sigma', lower=0.1, upper=1000.0)
    obsv = pm.Normal('obsv', mu=mu, sd=sigma, observed=light_speed)

with light_model:
    trace = pm.sample(10000)

Average ELBO = -408.66:  19%|█         | 37486/200000 [00:03<00:14, 11046.99it/s]16, 11779.39it/s]

100%|██████████| 10000/10000 [00:07<00:00, 1384.39it/s]

Some big outliers in data



Mul$ple replica$ons of the posterior predic$ve

, observed data:  

Replicated Data: : data seen tomorrow if experiment replicated 
with same model and value of  producing todays data .

 comes from posterior predic-ve, and if there are covariates 
, then  is calculated at those covariates only 

(sample_ppc).



Another way to sample

indices=np.random.choice(range(len(trace)), size=200, replace=True)
mus = trace['mu'][indices]
sigmas = trace['sigma'][indices]
ppc2=np.empty((66,200))
for i in range(66):
    ppc2[i,:] = np.random.normal(loc=mus, scale=sigmas)

For each data point, sample using the likelihood(sampling 
distribu7on) from  samples of the posterior. Gives an  sized 
posterior predic7ve at each "data point".

You can then slice the other way to get a dataset sized posterior-
predic6ve





Departure from usual 
predic1ve sampling

Sample an en)re  at each  from 
trace.

This allows to compute distribu3ons from 
the posterior predic3ve replica3ons.

For example the minimum value of speed 
of light in 20 predic8ve replica8ons.

An informal test sta.s.c.



Visual Checking

Do these even look similar??



Discrepancy

Gelman: A test quan*ty, or discrepancy measure, , is a scalar 
summary of parameters and data that is used as a standard when 
comparing data to predic*ve simula*ons.

The classical p-value for the test sta2s2c  is given by

 where probability is over distrib of  with  fixed (bootstrap).



Bayesian p-values

 

 probability over the posterior and posterior predic2ve
 (that is, the joint distribu2on, .

 

using .



Appropriate usage

Gelman: Finding an extreme p-value and thus ‘rejec7ng’ a model is 
never the end of an analysis; the departures of the test quan7ty in 
ques7on from its posterior predic7ve distribu7on will o@en suggest 
improvements of the model or places to check the data, as in the speed 
of light example. Moreover, even when the current model seems 
appropriate for drawing inferences (in that no unusual devia7ons 
between the model and the data are found), the next scien7fic step will 
o@en be a more rigorous experiment incorpora7ng addi7onal factors, 
thereby providing beHer data.



p-value of sampling variance

ppvars2=np.var(ppc2, ddof=1, axis=0)
plt.hist(ppvars2, bins=20);
plt.axvline(np.var(light_speed, ddof=1));
np.mean(ppvars2>=np.var(light_speed, ddof=1))

0.48999999999999999

Gelman:

The sample variance...is a sufficient sta3s3c 
of the model and thus the posterior 

distribu3on will automa3cally be centered 
near the observed value.



p-value of a measure of 
symmetry

Is the model adequate but for extreme 
tails?

Reflects the middle 80% of the mass.
tee_ppc=[]
tee_data=[]
data_sort=np.sort(light_speed)
for i in range(200):
    sortarray = np.sort(ppc2[:,i])
    tee_data.append(np.abs(data_sort[60] - mus[i]) - np.abs(data_sort[5] - mus[i]))
    tee_ppc.append(np.abs(sortarray[60] - mus[i]) - np.abs(sortarray[5] - mus[i]))
np.mean(np.array(tee_ppc) >= np.array(tee_data))
0.17999999999999999

Any asymmetry can be simply explained 
by sampling varia4on.



A Caveat on Posterior Predic0ve Checking

• you ARE using the data twice

• thus dont use checks which do the jobs of parameters (use mean 
as a sta<s<c when you have a loca<on parameter)



Conclusion from Checking
Model is adequate for some purposes but not 

others.



glms: MAXENT and LINK

• MAXENT: use all the informa7on we have about the constraints 
on an outcome variable to choose a likelihood, typically in the 
exponen7al family, that is a maxent distribu7on.

• LINK:  where  is the parameter at the ith data 
point.

•  common links we use are the logit link and the log link.



MAXENT

• gaussian likelihood for linear regression maxent choice

• poor choice for constraints such as the outcome being counts, or 
being only posi9ve.

• use all the informa9on we have about the constraints on an 
outcome variable to choose a likelihood, typically in the 
exponen9al family, that is a maxent distribu9on.



LINK

 where  is the parameter at the ith data point.

Bioassay:  is the logit, and the parameter  is the probability in 
the ith experiment, so that we have

And where the likelihood used is .



For most GLMs, the common links we use are the logit link, already 
used by you in the bioassay Binomial GLM to model the space of 
probabili<es, and the log link which you will use here to enforce 
posi<veness on a parameter in poisson regression.



Poisson GLM

 is rate,  is counts,  is exposure.

 or  constrained to be posi.ve.

import theano.tensor as t
with pm.Model() as model1:
    alpha=pm.Normal("alpha", 0,100)
    beta=pm.Normal("beta", 0,1)
    logmu = t.log(df.days)+alpha+beta*df.monastery
    y = pm.Poisson("obsv", mu=t.exp(logmu), observed=df.y)
    lambda0 = pm.Deterministic("lambda0", t.exp(alpha))
    lambda1 = pm.Deterministic("lambda1", t.exp(alpha + beta))



lambda0:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  1.243            0.199            0.004            [0.869, 1.635]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.889          1.100          1.234          1.365          1.671

lambda1:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.669            0.155            0.003            [0.394, 0.988]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.407          0.561          0.655          0.765          1.008



Zero Inflated Poisson Mixture 
model

• (A) Monks take a break on some days, 
drink, produce no manuscripts

• (B) looks the same like other 
unproduc;ve days

• (B) some days are produc;ve and 
produce manuscripts

• a mixture of (A) and (B)



Data

0 manuscripts can come from both driniking and slacking...



Likelihood

(A) : 

(B) : 

Can also split this as



Fit the model

with pm.Model() as model2:
    alphalam=pm.Normal("alphalam", 0,10)
    alphap=pm.Normal("alphap", 0,1)
    #regression models with intercept only
    logmu = alphalam
    logitp = alphap
    y = pm.ZeroInflatedPoisson("obsv", theta=t.exp(logmu),        
        psi=tinvlogit(logitp), observed=y)
    lam = pm.Deterministic("lam", t.exp(logmu))
    p = pm.Deterministic("p", tinvlogit(logitp))

no#ce one level of indirec#on to introduce 
intercepts

with model2:
    trace2=pm.sample(2000)

8%|          | 16735/200000 [00:01<00:16, 11183.71it/s]| 1103/200000 [00:00<00:18, 11026.25it/s]

100%|██████████| 2000/2000 [00:01<00:00, 1256.31it/s]



Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a natural 
experiment in technological evolu-on. Different 

historical island popula-ons possessed tool kits of 
different size. These kits include fish hooks, axes, boats, 
hand plows, and many other types of tools. A number 

of theories predict that larger popula-ons will both 
develop and sustain more complex tool kits. So the 

natural varia-on in popula-on size induced by natural 
varia-on in island size in Oceania provides a natural 

experiment to test these ideas. It's also suggested that 
contact rates among popula-ons effec-vely increase 

popula-on size, as it's relevant to technological 
evolu-on. So varia-on in contact rates among Oceanic 

socie-es is also relevant. (McElreath 313)



Model M1

with pm.Model() as m1:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop +
        betac*df.clevel + betapc*df.clevel*df.logpop
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

with m1:
    trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100%|██████████| 200000/200000 [00:15<00:00, 13019.16it/s]   12683.03it/s]
100%|██████████| 10000/10000 [01:59<00:00, 83.80it/s]



Posteriors for M1

• traces and autocorrela.ons look good

• The posterior for  .ghtly constrained, 
and as expected from theory, shows a 
posi.ve effect.

• The posteriors for  and  both 
overlap 0 substan.ally, and seem 
compara.vely poorly constrained.

• no substan.al effect of contact rate, 
directly or through the interac.on?



You would be wrong: 
counterfactual predic4ons

 traces for high-contact and low contact, 
log(popula6on) of 8.

lamlow = lambda logpop: trace['alpha']+trace['betap']*logpop
lamhigh = lambda logpop: trace['alpha']+(trace['betap'] +
    trace['betapc'])*logpop + trace['betac']
sns.distplot(lamhigh(8) - lamlow(8));

A new kind of model checking.



What happened?

• very strong nega-ve correla-ons 
between  and 

• very strong nega-ve correla-ons 
between  and .

• The la6er is the cause for the 0-
overlaps.

• When  is high,  must be low, and 
vice-versa. Look at the joint uncertainty 
of the correlated variables rather than 
just marginals



Fix by centering

• you would have seen the problem in :

{'alpha': 8110.0, 'betac': 4600.0, 'betap': 8016.0, 'betapc': 4597.0}

with pm.Model() as m1c:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}



• be$er constrained, less correlated, 
sampling faster and be$er

• clear effect of contact, effect of 
interac6on not clear yet

• will use model comparison next 6me for 
this!


