
Lecture 17

HMC and

The hierarchical gaussian

Recap of Hamiltonian Flow ideas

• start with

• augment using momentum to

• the momentum comes from a kine3c enegy which looks
something like or more precisely

• write as

• then

Canonical distribu/on

and thus:

Phase Space level sets:
Microcanonical Distribu6on

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian

with constants (constant energies) for
each level-set foliate and where the
poten&al energy
replaces the energy term we had earlier in
simulated annealing.

Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical
distribu1on and a marginal energy distribu0on:

where indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.

Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up
the "glide" (over a level set).

Time independence: ,

.

Reversibility

 from to a "later" +me . Mapping is 1-1,
inverse . This can be obtained by simply nega+ng +me:

Superman transform

If we then transform , we have the old equa4ons back:

To reverse , flip the momentum, run Hamiltonian equa5ons un5l you
get back to the original posi5on and momentum in phase space at
original 5me t, then flip the momentum again so it is poin5ng in the
right direc5on.

Volume in phase space is conserved

Jacobian:

As a result of this, the momenta we augment our distribu5on with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.

Summary

• Superman transform reversibility: run, flip, run back, flip

• Volume in phase space is conserved, use symplec<c integra<on

• thus momenta are dual, can use covariance as inverse mass
matrix

Momentum resampling

Draw from a distribu/on that is
determined by the distribu/on of
momentum, i.e. for
example, and a9empt to explore the level
sets.

Firing the thruster moves us between
level sets!

Resampling Efficiency

Let as the transi+on distribu+on of
energies induced by a momentum
resampling using at
a given posi+on .

If narrow compared to the marginal
energy distribu7on : random walk
amongst level sets proceeds slowly.

If matches : independent
samples generated from the marginal
energy distribu7on very efficiently.

HMC/NUTS in pymc3

def clike2(value):
 x = value[0]
 y = value[1]
 val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
 return (val)

with pm.Model() as model:
 banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
 start = pm.find_MAP()
 stepper=pm.Metropolis()
 trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
 stepper_nuts=pm.NUTS()
 trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])

Tuning: choice of Kine.c energy

• Ideal kine+c energy: microcanonical explora+on easy and
uniform, marginal explora+on matched by the transi+on distrib.

• In prac+ce we o>en use

• Set to the covariance of the target distribu+on: maximally
de-correlate the target. Do in warmup (tune) phase.

• can see this by , Then

See this for Gaussian:

On transforma+on

 if

Thus de-correlate target.

Generalize to arbitrary distribu1ons.

Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH

Tuning: integra,on ,me

• find the point at which the orbital expecta3ons converge to the
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian
dynamics, and which is the (small) length of 3me each itera3on
is run.

• generally sta3c not good, under-samples tails (high-energy
micro-canonicals). Es3mate dynamically: NUTS (pymc3 and Stan)

Problems

• discre(za(on to solve differen(al equa(ons and the need for
symplec(city

• lack of reversibility even with symplec(city (we are marginally off
the level set)

Prac%cal implementa%on:
Discre%za%on and our

problems

•

•

• off-diagonal terms of size makes
volume not preserved

• leads to dri7 over 8me

Symple'c Leapfrog

• Only shear transforms allowed, will
preserve volume.

•

•

•

• s7ll error exists, oscillatory, so
reversibility not achieved

Acceptance probability

• might choose

• but small symplec2c errors means this is only forward in 2me

• tack on sign change . Superman to the rescue!

• proposal now:

• Acceptance:

• thus:

• cri+cal thing with HMC is that our !me
evolu!on is on a level set. So our
always closer to 1, and we have a very
efficient sampler. Op+mal acceptance
can be shown: 65% roughly.

• momentum reversal could be leE out if
not within a more complex sampling
scheme

Sta$onarity

• want canonical distribu0on as sta0onary distribu0on

• par00on phase space into small regions each with small
volume V. Let the L leapfrog step image of be

• Detailed Balance:

• is the condi0onal probability of proposing and then
accep0ng a move to region X if the current state is in
region Y .

Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as
constant inside the region, and thus the canonical densi9es and
transi9on probs become constant too:

true

Sta$onarity Proof

The probability of the next state being in :

Ergodicity

• as long as we have no cycles we are good, the hamiltonian flow with
momentum resampling will ensure ergodicity

• but if (for oscillator) can get into trouble

• near ergodicty can lead to a bad sampler

• having chosen one, choose the other from a fairly small interval to fix

• in prac>ce not a big problem

• dynamic ergodicity important for sampling efficiency

HMC Algorithm

• for i=1:N_samples

• 1. Draw

• 2. Set where the subscript stands for current

• 3.

• 4. Update momentum before going into LeapFrog stage:

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step,

• 6. Complete leapfrog:

HMC (contd)

• for i=1:N_samples

• 7.

• 8.

• 9.

• 10.

• 11. if

• accept

• otherwise reject

def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
 current_q = q_0
 current_p = p_0
 H = np.zeros(N)
 qall = np.zeros(N)
 accept=0
 for j in range(N):
 q = current_q
 p = current_p
 #draw a new p
 p = np.random.normal(0,1)
 current_p=p
 # leap frog
 # Make a half step for momentum at the beginning
 p = p - epsilon*dUdq(q)/2.0
 # alternate full steps for position and momentum
 for i in range(L):
 q = q + epsilon*p
 if (i != L-1):
 p = p - epsilon*dUdq(q)
 #make a half step at the end
 p = p - epsilon*dUdq(q)/2.
 # negate the momentum
 p= -p;
 current_U = U(current_q)
 current_K = K(current_p)
 proposed_U = U(q)
 proposed_K = K(p)
 A=np.exp(current_U-proposed_U+current_K-proposed_K)
 # accept/reject
 if np.random.rand() < A:
 current_q = q
 qall[j]=q
 accept+=1
 else:
 qall[j] = current_q
 H[j] = U(current_q)+K(current_p)
 print("accept=",accept/np.double(N))
 return H, qall

Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

L tuning

• in HMC, start increase if for fixed step size,
autocorrela8on is too much

• Tails correspond to much higher energies, larger level-set
surfaces are larger

• fixed length explores a small por8on of this set before a
momentum resampling takes us off.

• beCer to set dynamically: NUTS termina8on criterion

From HMC to HMC++

• one idea maybe to average over all
points in orbit of length

• To autotune it is be-er to sample
from orbit rather than get last point
only: dynamic ergodicity: 9me average
is orbit average

• NUTS: sample trajectories containing
ini9al point and then sample point from
them with trajectory canonical weights

• need a criterion for when to stop doing
this

NUTS in a nutshell

• termina)on criterion destroys detailed
balance, must rebuild

• sample from trajectory not just
endpoint

• sample backwards and forwards in)me
un)l u-turn

• choose a sample with boltzmann
weights over the trajectory using
mul)nomial or slice sampling

Tumors in pymc3 with NUTS

with Model() as tumor_model:
 # Uniform priors on the mean and variance of the Beta distributions
 mu = Uniform("mu",0.00001,1.)
 nu = Uniform("nu",0.00001,1.)
 # Calculate hyperparameters alpha and beta as a function of mu and nu
 alpha = pm.Deterministic('alpha', mu/(nu*nu))
 beta = pm.Deterministic('beta', (1.-mu)/(nu*nu))
 # Priors for each theta
 thetas = Beta('theta', alpha, beta, shape=N)
 # Data likelihood
 obs_deaths = Binomial('obs_deaths', n=tumorn, p=thetas, observed=tumory)

with tumor_model:
 # Use ADVI for initialization
 mu, sds, elbo = pm.variational.advi(n=100000)
 step = pm.NUTS(scaling=tumor_model.dict_to_array(sds)**2,
 is_cov=True)
 tumor_trace = pm.sample(5000, step, start=mu)

Normal-Normal Hierarchical Model

 independent experiments, experiment es-ma-ng the
parameter from independent normally distributed data points,

, each with known error variance ; that is,

Gelman 8-schools problem: es2mated coaching effects to
improve SAT scores for school , with sampling variances, .

Sample mean of each group

 with sampling variance

.

Likelihood for using suff-stats, :

Nota%on flexible in allowing a separate
variance for the mean of each group .
Appropriate when the variances differ for
reasons other than number of data pts.

Centered Hierarchical Model

with pm.Model() as schools1:

 mu = pm.Normal('mu', 0, sd=5)
 tau = pm.HalfCauchy('tau', beta=5)
 theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
 obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)

with schools1:
 trace1 = pm.sample(5000, init=None, njobs=2, tune=500)

Small :

{'mu': 101.0,
 'tau': 273.0,
 'tau_log_': 77.0,
 'theta': array([169., 199., 236., 193., 211., 231., 139., 204.])})

• s#ckys are actually trying to drive down
value of trace

• we are in a region of high curvature

High Curvature Issues

High Curvature Issues

• symplec)c integra)on diverges: good
diagnos)c. False posi)ves from
heuris)c.

• sampler needs to have real small steps
to not diverge, but then becomes s)cky

• regions of high curvature o=en have
high energy differences, causing trouble
for microcanonical jump transi)ons.

Diagnosed thus:

divergent = trace1['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace1)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 74
Percentage of Divergent 0.01480

• Not characterizing neck well

• No confidence in postrior in this region

Hierarchical Models have high
curvature

• characteris*c funnel, also there in MH
and gibbs

• reflects high correla*on between levels
in tree

• divergences occur in neck

Step size effect

• lower step size be.er for symplec3c integrators, especially in
high curvature regions

• this allows for geometric ergodicity: we go everywhere.

• too small : return of the random walk.

Changing step size

with schools1:
 step = pm.NUTS(target_accept=.85)
 trace1_85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

85: Acceptance 0.804601458758 Step Size 0.203087336483 Divergence 39
90: Acceptance 0.873340820433 Step Size 0.159223726996 Divergence 18
95: Acceptance 0.923346597897 Step Size 0.126824682121 Divergence 9
99: Acceptance 0.990173791609 Step Size 0.0164237997757 Divergence 5

__

divergences persist. Too curved!

Non-centered model

• could change kine/c energy (riemannian HMC) to make mass
matrix dependent upon posi/on

• simpler: reparametrize to reduce levels in hierarchy

Factor dependency of on into a
determinis1c transforma1on between the
layers, leaving the ac1vely sampled
variables uncorrelated.

with pm.Model() as schools2:
 mu = pm.Normal('mu', mu=0, sd=5)
 tau = pm.HalfCauchy('tau', beta=5)
 nu = pm.Normal('nu', mu=0, sd=1, shape=J)
 theta = pm.Deterministic('theta', mu + tau * nu)
 obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
 trace2 = pm.sample(5000, init=None, njobs=2, tune=500)

:

{'mu': 10000.0,
 'nu': array([10000., 10000., 10000., 10000., 10000., 10000., 10000.,
 10000.]),
 'tau': 6880.0,
 'tau_log_': 5193.0,
 'theta': array([9624., 10000., 10000., 10000., 10000., 10000., 10000.,
 9829.])}

divergent = trace2['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace2)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 8
Percentage of Divergent 0.00160

Divergences and true length of funnel

• Divergences infrequent, and all over.
Mostly false posi9ves.

• Lowering step sizes should make them
go away

with schools2:
 step = pm.NUTS(target_accept=.95)
 trace2_95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

• lower curvature ensures geometric
ergodicity deep in our funnel

• see Betancourt for big discussion

http://mc-stan.org/documentation/case-studies/divergences_and_bias.html

Momentum resampling
Efficiency

• match transi,on to marginal

def resample_plot(t):
 sns.distplot(t['energy']-t['energy'].mean(), label="P(E)")
 sns.distplot(np.diff(t['energy']), label = "p(E | q)")
 plt.legend();
 plt.xlabel("E - <E>")

• if marginal has bigger tails we are in
trouble

• indica5ve here of big energy changes in
high-curvature regions not possible to
boost to.

centered, small step size vs Non-centered

On le&, centered, your sampler is not exploring, so make sure what
you are diagnosing. On right, nice match!

