
Lecture 17

HMC and

The hierarchical gaussian





Recap of Hamiltonian Flow ideas

• start with 

• augment using momentum to 

• the momentum comes from a kine3c enegy which looks 
something like  or more precisely 

• write  as 

• then 



Canonical distribu/on

and thus: 



Phase Space level sets: 
Microcanonical Distribu6on

Typical Set decomposes into level sets of 
constant probability(energy)

The energy Hamiltonian 

with  constants (constant energies) for 
each level-set foliate and where the 
poten&al energy  
replaces the energy term we had earlier in 
simulated annealing.



Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical 
distribu1on and a marginal energy distribu0on:

where  indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the 
typical set.



Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up 
the "glide" (over a level set).

Time independence: , 

.



Reversibility

 from  to a "later" +me . Mapping is 1-1, 
inverse . This can be obtained by simply nega+ng +me:



Superman transform

If we then transform , we have the old equa4ons back:

To reverse , flip the momentum, run Hamiltonian equa5ons un5l you 
get back to the original posi5on and momentum in phase space at 
original 5me t, then flip the momentum again so it is poin5ng in the 
right direc5on.



Volume in phase space is conserved

Jacobian:

As a result of this, the momenta we augment our distribu5on with 
must be dual to our pdf's parameters, transforming in the opposite 
way so that phase space volumes are invariant.



Summary

• Superman transform reversibility: run, flip, run back, flip

• Volume in phase space is conserved, use symplec<c integra<on

• thus momenta are dual, can use covariance as inverse mass 
matrix



Momentum resampling

Draw  from a distribu/on that is 
determined by the distribu/on of 
momentum, i.e.  for 
example, and a9empt to explore the level 
sets.

Firing the thruster moves us between 
level sets!



Resampling Efficiency

Let  as the transi+on distribu+on of 
energies induced by a momentum 
resampling using  at 
a given posi+on .

If  narrow compared to the marginal 
energy distribu7on : random walk 
amongst level sets proceeds slowly.

If  matches : independent 
samples generated from the marginal 
energy distribu7on very efficiently.





HMC/NUTS in pymc3

def clike2(value):
    x = value[0]
    y = value[1]
    val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
    return (val)

with pm.Model() as model:
    banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
    start = pm.find_MAP()
    stepper=pm.Metropolis()
    trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
    stepper_nuts=pm.NUTS()
    trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])



Tuning: choice of Kine.c energy

• Ideal kine+c energy: microcanonical explora+on easy and 
uniform, marginal explora+on matched by the transi+on distrib.

• In prac+ce we o>en use 

• Set  to the covariance of the target distribu+on: maximally 
de-correlate the target. Do in warmup (tune) phase.

• can see this by , Then 



See this for Gaussian:

On transforma+on

 if 

Thus de-correlate target.

Generalize to arbitrary distribu1ons.



Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may 
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH



Tuning: integra,on ,me

• find the point at which the orbital expecta3ons converge to the 
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian 
dynamics, and  which is the (small) length of 3me each itera3on 
is run.

• generally sta3c not good, under-samples tails (high-energy 
micro-canonicals). Es3mate dynamically: NUTS (pymc3 and Stan)



Problems

• discre(za(on to solve differen(al equa(ons and the need for 
symplec(city

• lack of reversibility even with symplec(city (we are marginally off 
the level set)



Prac%cal implementa%on: 
Discre%za%on and our 

problems

•

•

• off-diagonal terms of size  makes 
volume not preserved

• leads to dri7 over 8me



Symple'c Leapfrog

• Only shear transforms allowed, will 
preserve volume.

•

•

•

• s7ll error exists, oscillatory, so 
reversibility not achieved



Acceptance probability

• might choose 

• but small symplec2c errors means this is only forward in 2me

• tack on sign change . Superman to the rescue!

• proposal now: 

• Acceptance: 



• thus: 

• cri+cal thing with HMC is that our !me 
evolu!on is on a level set. So our  
always closer to 1, and we have a very 
efficient sampler. Op+mal acceptance 
can be shown: 65% roughly.

• momentum reversal could be leE out if 
not within a more complex sampling 
scheme



Sta$onarity

• want canonical distribu0on as sta0onary distribu0on

• par00on phase space into small regions  each with small 
volume V. Let the L leapfrog step image of  be 

• Detailed Balance: 

•  is the condi0onal probability of proposing and then 
accep0ng a move to region X if the current state is in
region Y .



Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as 
constant inside the region, and thus the canonical densi9es and 
transi9on probs become constant too:

 

true



Sta$onarity Proof

The probability of the next state being in :



Ergodicity

• as long as we have no cycles we are good, the hamiltonian flow with 
momentum resampling will ensure ergodicity

• but if  (for oscillator) can get into trouble

• near ergodicty can lead to a bad sampler

• having chosen one, choose the other from a fairly small interval to fix

• in prac>ce not a big problem

• dynamic ergodicity important for sampling efficiency



HMC Algorithm

• for i=1:N_samples

• 1. Draw 

• 2. Set  where the subscript  stands for current

• 3. 

• 4. Update momentum before going into LeapFrog stage:  

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step, 

• 6. Complete leapfrog: 



HMC (contd)

• for i=1:N_samples

• 7. 

• 8. 

• 9. 

• 10. 

• 11. if  

• accept 

• otherwise reject



def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
    current_q = q_0
    current_p = p_0
    H = np.zeros(N)
    qall = np.zeros(N)
    accept=0
    for j in range(N):
        q = current_q
        p = current_p
        #draw a new p
        p = np.random.normal(0,1)
        current_p=p
        # leap frog
        # Make a half step for momentum at the beginning
        p = p - epsilon*dUdq(q)/2.0
        # alternate full steps for position and momentum
        for i in range(L):
            q = q + epsilon*p
            if (i != L-1):
                p = p - epsilon*dUdq(q)
        #make a half step at the end
        p = p - epsilon*dUdq(q)/2.
        # negate the momentum
        p= -p;
        current_U = U(current_q)
        current_K = K(current_p)
        proposed_U = U(q)
        proposed_K = K(p)
        A=np.exp( current_U-proposed_U+current_K-proposed_K)
        # accept/reject
        if np.random.rand() < A:
            current_q = q
            qall[j]=q
            accept+=1
        else:
            qall[j] = current_q
        H[j] = U(current_q)+K(current_p)
    print("accept=",accept/np.double(N))
    return H, qall



Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)



L tuning

• in HMC, start  increase if for fixed step size, 
autocorrela8on is too much

• Tails correspond to much higher energies, larger level-set 
surfaces are larger

• fixed length explores a small por8on of this set before a 
momentum resampling takes us off.

• beCer to set dynamically: NUTS termina8on criterion



From HMC to HMC++

• one idea maybe to average over all 
points in orbit of length 

• To autotune  it is be-er to sample 
from orbit rather than get last point 
only: dynamic ergodicity: 9me average 
is orbit average

• NUTS: sample trajectories containing 
ini9al point and then sample point from 
them with trajectory canonical weights

• need a criterion for when to stop doing 
this



NUTS in a nutshell

• termina)on criterion destroys detailed 
balance, must rebuild

• sample from trajectory not just 
endpoint

• sample backwards and forwards in )me 
un)l u-turn

• choose a sample with boltzmann 
weights over the trajectory using 
mul)nomial or slice sampling



Tumors in pymc3 with NUTS

with Model() as tumor_model:
    # Uniform priors on the mean and variance of the Beta distributions
    mu = Uniform("mu",0.00001,1.)
    nu = Uniform("nu",0.00001,1.)
    # Calculate hyperparameters alpha and beta as a function of mu and nu
    alpha = pm.Deterministic('alpha', mu/(nu*nu))
    beta = pm.Deterministic('beta', (1.-mu)/(nu*nu))
    # Priors for each theta
    thetas = Beta('theta', alpha, beta, shape=N)
    # Data likelihood
    obs_deaths = Binomial('obs_deaths', n=tumorn, p=thetas, observed=tumory)

with tumor_model:
    # Use ADVI for initialization
    mu, sds, elbo = pm.variational.advi(n=100000)
    step = pm.NUTS(scaling=tumor_model.dict_to_array(sds)**2,
                   is_cov=True)
    tumor_trace = pm.sample(5000, step, start=mu)



Normal-Normal Hierarchical Model

 independent experiments, experiment  es-ma-ng the 
parameter  from  independent normally distributed data points, 

, each with known error variance ; that is,

Gelman 8-schools problem: es2mated coaching effects  to 
improve SAT scores for school , with sampling variances, .



Sample mean of each group  

 with sampling variance 

.

Likelihood for  using suff-stats, :

Nota%on flexible in allowing a separate 
variance  for the mean of each group . 
Appropriate when the variances differ for 
reasons other than number of data pts.



Centered Hierarchical Model

with pm.Model() as schools1:

    mu = pm.Normal('mu', 0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)

with schools1:
    trace1 = pm.sample(5000, init=None, njobs=2, tune=500)



Small :

{'mu': 101.0,
  'tau': 273.0,
  'tau_log_': 77.0,
  'theta': array([ 169.,  199.,  236.,  193.,  211.,  231.,  139.,  204.])})

• s#ckys are actually trying to drive down 
value of trace

• we are in a region of high curvature



High Curvature Issues



High Curvature Issues

• symplec)c integra)on diverges: good 
diagnos)c. False posi)ves from 
heuris)c.

• sampler needs to have real small steps 
to not diverge, but then becomes s)cky

• regions of high curvature o=en have 
high energy differences, causing trouble 
for microcanonical jump transi)ons.



Diagnosed thus:

divergent = trace1['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace1)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 74
Percentage of Divergent 0.01480

• Not characterizing neck well

• No confidence in postrior in this region



Hierarchical Models have high 
curvature

• characteris*c funnel, also there in MH 
and gibbs

• reflects high correla*on between levels 
in tree

• divergences occur in neck



Step size effect

• lower step size  be.er for symplec3c integrators, especially in 
high curvature regions

• this allows for geometric ergodicity: we go everywhere.

• too small : return of the random walk.



Changing step size

with schools1:
    step = pm.NUTS(target_accept=.85)
    trace1_85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

85: Acceptance 0.804601458758 Step Size 0.203087336483 Divergence 39
90: Acceptance 0.873340820433 Step Size 0.159223726996 Divergence 18
95: Acceptance 0.923346597897 Step Size 0.126824682121 Divergence 9
99: Acceptance 0.990173791609 Step Size 0.0164237997757 Divergence 5

__

divergences persist. Too curved!



Non-centered model

• could change kine/c energy (riemannian HMC) to make mass 
matrix dependent upon posi/on

• simpler: reparametrize to reduce levels in hierarchy



Factor dependency of  on  into a 
determinis1c transforma1on between the 
layers, leaving the ac1vely sampled 
variables uncorrelated.

with pm.Model() as schools2:
    mu = pm.Normal('mu', mu=0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    nu = pm.Normal('nu', mu=0, sd=1, shape=J)
    theta = pm.Deterministic('theta', mu + tau * nu)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
    trace2 = pm.sample(5000, init=None, njobs=2, tune=500)



:

{'mu': 10000.0,
  'nu': array([ 10000.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
          10000.]),
  'tau': 6880.0,
  'tau_log_': 5193.0,
  'theta': array([  9624.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
           9829.])}

divergent = trace2['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace2)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 8
Percentage of Divergent 0.00160



Divergences and true length of funnel



• Divergences infrequent, and all over. 
Mostly false posi9ves.

• Lowering step sizes should make them 
go away

with schools2:
    step = pm.NUTS(target_accept=.95)
    trace2_95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

• lower curvature ensures geometric 
ergodicity deep in our funnel

• see Betancourt for big discussion

http://mc-stan.org/documentation/case-studies/divergences_and_bias.html


Momentum resampling 
Efficiency

• match transi,on  to marginal 

def resample_plot(t):
    sns.distplot(t['energy']-t['energy'].mean(), label="P(E)")
    sns.distplot(np.diff(t['energy']), label = "p(E | q)")
    plt.legend();
    plt.xlabel("E - <E>")

• if marginal has bigger tails we are in 
trouble

• indica5ve here of big energy changes in 
high-curvature regions not possible to 
boost to.



centered, small step size vs Non-centered

On le&, centered, your sampler is not exploring, so make sure what 
you are diagnosing. On right, nice match!


