Lecture 1/

Data Augmentation to
The theory of HMC

via Slice
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Last week

e the normal model to regression

e identifiability and regression

e posterior and posterior predictive for regression, vith theano shareds

e gaussian processes as picking functions from a covariance matrix compatible prior

e its something where any finite set of points sampled from it is a multivariate-normal
* GP(post) x G(likelihood)xG P(prior)

e with data marginal not caring about the size of the other block

e but posterior-predictive conditional caring about the data block size
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Homework
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Levels of Bayes

Method Definition

Maximum Likelihood f = argmazyp(D)6)

MAP estimation 6 = argmazyp(D|6)p(6|n)

ML-2 (Empirical Bayes) = 7 = argmaz, [dfp(D|0)p(8|n) = argmaz,p(D|n)

MAP-2 il = argmaz, [ d6p(D|0)p(0|n)p(n) = argmaz,p(D|n)p(n)

Full Bayes p(0,n|D) o< p(D|0)p(6|n)p(n)
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This week

 Back to Gibbs
e Data Augmentation
e Slice Sampling as augmentation

e HMC as augmentation

e Back to hierarchical model with HMC and NUTS
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Back to Gibbs

e Back to the Gibbs Sampling structure
e we sample from the conditionals of the true pdf
e gjves us a non-local proposal

e we have a DAG, with observations at the bottom of a tree, next
layer intermediate parameters, upper layers hyper-parameters

e sample conditionals from parents up the tree.
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The idea of Gibbs
f(z) = / F(z, y)dy = / F(zly)(y)dy = / dyf (zly) / iz’ f(yl2') £ (')

Thus: f(z) = /h(w,x')f(x’)dw’ integral fixed point equation

where h(z, ') = / dyf (zly) £ (yl').
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lterative scheme in which the "transition kernel" h(z, z") is used to
create a proposal for metropolis-hastings moves:

flx:) = /h(mt,mt_l)f(mt_l)dmt_l, a Stationary distribution.

h(z,z') = /dyf(m\y)f(y\w').: Sample alternately to get

transitions.

Can sample & marginal and x|y so can sample the joint z, y.
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Data

Augmentation




want to sample a p(x)

The difference from Gibbs Sampling: the other variable, say v, is to
be treated as latent.

The game is to construct a joint p(x, y) such that we can sample
from p(x|y) and p(y|x), and then find the marginal

p(z) = / dyp(z,y).
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Where we are going: Latent Variables

e critical to our subsequent understanding
e dont think of bayes/frequentist, think of observed/Latent

e anything unobserved is latent (this is the posterior predictive
point of view)

e standard bayesian viewpoint: nuisance parameters are latent

e |atent factors in matrix factorization, mixtures,
recommendations...
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Simplest form of a DA algo:

1.Draw Y ~ pyx (. |z) and call the observed value y

2. Draw X, 11 ~ pxy (- |v)

3. Histo the X
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Usual "Fake News" Example
Sample from p(z) = e‘a’z/z/\/Zw.

Take p(w,y) - 1/(\/%) €Xp {—(332 - \/§$y‘|‘ y2)}

Y| X=z ~ N(z/v2,1/2) and X|Y =y ~ N(y/v2,1/2)

The x-marginal is o e % /2 / e~ (W=2/V2)’ dy
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Example (contd)

N=100000

x=np.zeros(N)

x[@] = np.random.rand() # INITIALIZE

for i in np.arange(1,N):
Y=sp.stats.norm.rvs(x[1i-1]/np.sqrt(2), 0.5)
X[1]=sp.stats.norm.rvs(Y/np.sqrt(2), 0.5)
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Transition kernel

h(z',z) = h(z'|z) = /Yp(a:'\y) p(y|z) dy has stationarity by

construction from Gibbs.

Itsaprobablllty/ z'|z)dx’ _// p(y|lz) dy dz’
— [ swlo) | [ s/ w)de’| dy= [ plole)dy =1
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h(z'|z) p(z) is symmetricin (z, z'):

/

,y) p(z,y)
p(y) x4

h(a'l2) (@) = p(@) | p(e'l0) pyle) dy = [ B

The rhs is symmetric in (z,z') and so is h(z'|z)p(z).

The Markov chain generated with transition probability h(z'|z) is
REVERSIBLE and thus supports detailed balance.
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|E[g2] — q2| |E[g2] — ¢2|

|E[g2] — ¢2|

Problems with MCMC

overshoot and oscillate at pinches
need to specify step step sizes

large steps go outside typical set and
are not accepted

small steps accepted but go nowhere

large correrlations



to the rescue
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e Pick an initial point zy from our posterior
e Draw y, from U(O, f(z))
e Repeat for N samples
e Select the interval (e.g. stepping out, etc)

e Sample z; from that interval (e.g. shrinkage)

e Draw y; from U(O, f(z;))
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Unimodal Case
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Multimodal Case
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Stepping Out

e set w width and draw u ~ Unif(0,1)
e setL=20 — wu, R =L + w(so 20 liesin [L, R])
e whiley < f(L) (here's where we extend left interval) L=L-w

e whiley < f(R) ( here's where we extend the right interval) R = R +
W

The final interval will be larger than S.
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Shrinkage

o start with interval I = (L, R)
e current sample is z'*) and y®

e repeat until loop exits

e sample z* uniformly from (L, R)

e ify® < f(z*)
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w=1.0
L=0; R=0;
x_prev = np.random.uniform(low=0, high=17)
iters=10000
trace=[ ]
kmax=1
for k in range(iters):
y_samp = np.random.uniform(low=0, high=fun(x_prev))
# widen left
U = np.random.rand()
L=x_prev-U*w
R=x_prev+w*(1.0-U)
while fun(L)>y_samp:

L = L-w
while fun(R)>y_samp:
R = R+w

#now propose new x on L,R

while 1:
X_prop= np.random.uniform(low=L, high=R)
if k <= kmax:
print("L,R, xprop", L, R, x_prop)
if y samp < fun(x_prop):
X_prev = X_prop
trace.append(x_prop)
break
elif x _prop > x_prev:
R = x_prop
elif x_prop < x_prev:
L = x_prop
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Hamiltonian
Monte
Carlo




Need a Coherent Glide

* want to cover on p(q) better than a
drunkard

* move smoothly on p(q)

e instead we will augment with a
"momentum" variable p

* try to move smoothly on p(p, q)

e and then marginalize:

/ dpp(p, q) = / dpp(p|q)pr(q) = p(q)
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Balance between gravity and momentum
in a rocket provides it

Now, like in annealing, let
p(p, q) _ e—Energy

Carry out an augmentation with an
additional momentum with the energy
Hamiltonian




p(p,q) = e PV = ¢ K0 e=V9) = p(p|q)p(q)

and thus: H(p, q) = —log(p(p, q)) = —logp(p|q) — logp(q)

The choice of a kinetic energy term then is the choice of a

conditional probability distribution over the "augmented"
momentum which ensures that

/ dpp(p, q) — / dpp(pla)p(q) = p(a) / p(pla)dp = p(a)
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Canonical distribution

Distribution of a physical system in connection with a heat bath.

Its temperature if thus fixed.

p(p, g) is our canonical distribution

p(p,q) = e P = e KPDe=VID) = p(p|q)p(q)
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Phase Space level sets

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian
2

p

with E; constants (constant energies) for
each level-set foliate and where the
potential energy V(q) = —log(p(q))
replaces the energy term we had earlier in
simulated annealing.
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We are looking at level sets of the

Joint distribution

Why do it this way?

Because Hamiltonian flow conserves energy, leading naturally to
using level sets and the

Microcanonical distribution
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Microcanonical distribution: states for given energy.

Time implicit H: flows constant energy, vol preserving, reversible.

The canonical distribution can be written as a product of this microcanonical
distribution and a marginal energy distribution:

p(q;p) = p(0r|E)p(E)
where 0z indexes the position on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.
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Momentum resampling (thruster fire) moves us between level sets
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Traverse a level set: Hamiltonian Mechanics

Physics equations of motion in the Hamiltonian Formalism set up
the "glide" (over a level set).

dp OH
dt 0q
dq oOH
dt 8p

d H
H =p*/2m + V(q), dZZ = 8(9q = %‘; — Force: Newton's law.
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Oscillator: an EXACT solution!
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Explicitly time-independent Hamiltonian is conserved

If the Hamiltonian H doesn't have a functional dependence on time
we see that

d_H o Z OH dqz- oOH dpz'_ oOH
dt ' Oq; dt  Op; dt | Ot

1

d_H_Z'BHE?H OH,, 8H.] OH
dt |

0q; Op; (fm)( 0q; )_ Ot

1
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If

OH _  dH _
ot dt

- ’

Then
H(t + At) = H(t) Vi.

This time independence is crucial to reversibility: cannot figure
which direction equations are being run
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Reversibility

T, from (g, p) — (¢',p') to a "later" time ¢’ = ¢t + s. Mapping is 1-1,
inverse T_.. This can be obtained by simply negating time:

dp  OH
d(—t)  Oq

dg  OH
d(—t)  p
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Superman Transform

If we then transform p — —p, we have the old equations back:

d-p) 06H
d(-t) ~  8q
dg  OH
d(—t)  9(-p)

To reverse T, flip the momentum, run Hamiltonian equations
backwords in time until you get back to the original position and

momentum in phase space at time t, then flip the momentum again
so it is pointing in the right direction.
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Volume in phase space is conserved

T, for small change s = ¢ can be written as:

dg
Ts — (q> +5(j;) + 0(6%)
p at

Jacobian:
146282 520
24P w and thus the determinant is 1 + O(6%).
582[{ 1—94 O*H
0q? Opdq _
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Thus as our system evolves, any contraction or expansion in
position space must be compensated by a respective expansion or
compression in momentum space.

As a result of this, the momenta we augment our distribution with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.
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Between level sets:
Momentum resampling

Draw p from a distribution that is
determined by the distribution of
momentum, i.e. p ~ N(0, /M) for
example, and attempt to explore the level
sets.

Firing the thruster moves us between
level sets!

That is, we sample the marginal energy
distribution.



Resampling Efficiency

Let p(E|q) as the transition distribution of
energies induced by a momentum

resampling using p(p|q) = —log K (p, q) at
a given position gq.

If p(E|q) narrow compared to the marginal
energy distribution p(E): random walk
amongst level sets proceeds slowly.

If p(E|q) matches p(E): independent
samples generated from the marginal
energy distribution very efficiently.
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Tuning: Choice of Kinetic energy

e The ideal kinetic energy interacts with target to make
microcanonical exploration easy and uniform and marginal
exploration well matched by the transition distribution.

* In practice we often use K(p) = p’ M 'p

e Set inverse mass matrix to the covariance of the target
distribution: maximally decorrelate the target. Do in warmup
phase. Warmup replaces burnin.
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See this for Gaussian:

1 1
H=op M p+oq 3

On transformation p’ = pv/ M1, then ¢ = q/M

H — %(p/Tp/ _I_q/Tq/) if M—l —

Thus de-correlate target.

Generalize to arbitrary distributions.
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Tuning: integration time

e whats the best integration time?

e should we glide for a long time? then we wont get too may
samples

e if our integration was exact we could glide for arbitrary short times
e but integration is not exact and will infact take us off the level set

e thus too many samples/too short time will get us back to MH
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HMC/NUTS in pymc3

def clike2(value):
X value[ 0]
v value[1]
val = -100 * (T.sqrt(y**2+x*¥2)-1)**2 + (x-1)¥*3 - y -5
return (val)

with pm.Model() as model:
banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:

start = pm.find_MAP()

stepper=pm.Metropolis()

trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::57)

with model:

stepper_nuts=pm.NUTS()

trace _nuts=pm.sample(100000, step=stepper nuts)
pm.autocorrplot(trace_nuts[:16000])

@AM 207

correlation

correlation

correlation

correlation

banana_0

40

banana_1

lag
banana_0

100

banana_1

40

100



Problems

e discretization to solve differential equaions and the need for
symplecticity

e |ack of reversibility even with symplecticity (we are marginally off
the level set)
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Practical implementation:
Discretization and our

problems
U

pi(t+€) = p;(t) e(‘?qi |q(t)
| _ oy Pi()
gi(t+€)=¢q;(t)+ € -

off-diagonal terms of size e makes
volume not preserved

leads to drift over time



Sympletic Leapfrog

e Only shear transforms allowed, will
preserve volume.

AZ Q AN+~ oo + 5> =it - 59l
SRR

*pilt o) =pilt+5) = 55 lae

e still error exists, oscillatory, so
reversibility not achieved
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