
Lecture 17

Data Augmenta+on to

The theory of HMC

via Slice



Last week

• the normal model to regression

• iden0fiability and regression

• posterior and posterior predic0ve for regression, vith theano shareds

• gaussian processes as picking func0ons from a covariance matrix compa0ble prior

• its something where any finite set of points sampled from it is a mul0variate-normal

•

• with data marginal not caring about the size of the other block

• but posterior-predic0ve condi0onal caring about the data block size



Homework



Levels of Bayes



This week

• Back to Gibbs

• Data Augmenta4on

• Slice Sampling as augmenta4on

• HMC as augmenta4on

• Back to hierarchical model with HMC and NUTS



Back to Gibbs

• Back to the Gibbs Sampling structure

• we sample from the condi:onals of the true pdf

• gives us a non-local proposal

• we have a DAG, with observa:ons at the bo@om of a tree, next 
layer intermediate parameters, upper layers hyper-parameters

• sample condi:onals from parents up the tree.



The idea of Gibbs

Thus:  integral fixed point equa5on

where 



Itera&ve scheme in which the "transi&on kernel"  is used to 
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get 

transi1ons.

Can sample  marginal and  so can sample the joint .





Data
Augmenta)on



want to sample a 

The difference from Gibbs Sampling: the other variable, say , is to 
be treated as latent.

The game is to construct a joint  such that we can sample 
from  and , and then find the marginal



Where we are going: Latent Variables

• cri%cal to our subsequent understanding

• dont think of bayes/frequen%st, think of observed/Latent

• anything unobserved is latent (this is the posterior predic%ve 
point of view)

• standard bayesian viewpoint: nuisance parameters are latent

• latent factors in matrix factoriza%on, mixtures, 
recommenda%ons...



Simplest form of a DA algo:

1. Draw  and call the observed value y

2. Draw 

3. Histo the  



Usual "Fake News" Example

Sample from .

Take 

The x-marginal is 



Example (contd)

N=100000
x=np.zeros(N)
x[0] = np.random.rand() # INITIALIZE
for i in np.arange(1,N):
    Y=sp.stats.norm.rvs(x[i-1]/np.sqrt(2), 0.5)
    x[i]=sp.stats.norm.rvs(Y/np.sqrt(2), 0.5)



Transi'on kernel

 has sta&onarity by 

construc&on from Gibbs.

Its a probability: 



 is symmetric in :

The rhs is symmetric in  and so is .

The Markov chain generated with transi3on probability  is 
REVERSIBLE and thus supports detailed balance. 



Problems with MCMC

• overshoot and oscillate at pinches

• need to specify step step sizes

• large steps go outside typical set and 
are not accepted

• small steps accepted but go nowhere

• large correrla9ons



SLICE
to the rescue



• Pick an ini)al point  from our posterior

• Draw  from U(0, f( ))

• Repeat for N samples

• Select the interval (e.g. stepping out, etc)

• Sample  from that interval (e.g. shrinkage)

• Draw  from U(0, f( ))



Unimodal Case



Mul$modal Case



Stepping Out

• set  width and draw u ~ Unif(0,1)

• set L =  (so  lies in [L, R] )

• while y < f(L) (here's where we extend leA interval) L = L - w

• while y < f(R) ( here's where we extend the right interval) R = R + 
w

The final interval will be larger than .





Shrinkage

• start with interval 

• current sample is  and 

• repeat un3l loop exits

• sample  uniformly from (L, R)

• if 



w=1.0
L=0; R=0;
x_prev = np.random.uniform(low=0, high=17)
iters=10000
trace=[]
kmax=1
for k in range(iters):
    y_samp = np.random.uniform(low=0, high=fun(x_prev))
    # widen left
    U = np.random.rand()
    L=x_prev-U*w
    R=x_prev+w*(1.0-U)
    while fun(L)>y_samp:
        L = L-w
    while fun(R)>y_samp:
        R = R+w
    #now propose new x on L,R

    while 1:
        x_prop= np.random.uniform(low=L, high=R)
        if k <= kmax:
            print("L,R, xprop", L, R, x_prop)
        if y_samp < fun(x_prop):
            x_prev = x_prop
            trace.append(x_prop)
            break
        elif x_prop > x_prev:
                R = x_prop
        elif x_prop < x_prev:
                L = x_prop



Hamiltonian
Monte
Carlo



Need a Coherent Glide

• want to cover on  be-er than a 
drunkard

• move smoothly on 

• instead we will augment with a 
"momentum" variable 

• try to move smoothly on 

• and then marginalize: 



Balance between gravity and momentum 
in a rocket provides it

Now, like in annealing, let 

Carry out an augmenta-on with an 
addi-onal momentum with the energy 
Hamiltonian



and thus: 

The choice of a kine,c energy term then is the choice of a 
condi,onal probability distribu,on over the "augmented" 
momentum which ensures that

.



Canonical distribu/on

Distribu(on of a physical system in connec(on with a heat bath.

Its temperature if thus fixed.

 is our canonical distribu.on



Phase Space level sets

Typical Set decomposes into level sets of 
constant probability(energy)

The energy Hamiltonian 

with  constants (constant energies) for 
each level-set foliate and where the 
poten&al energy  
replaces the energy term we had earlier in 
simulated annealing.



We are looking at level sets of the

Joint distribu,on

Why do it this way?

Because Hamiltonian flow conserves energy, leading naturally to 
using level sets and the

Microcanonical distribu/on



Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical 
distribu1on and a marginal energy distribu0on:

where  indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the 
typical set.



Momentum resampling (thruster fire) moves us between level sets



Traverse a level set: Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up 
the "glide" (over a level set).

, : Newton's law.



Oscillator: an EXACT solu3on!

q_t = lambda t: 4. * np.cos(t)
p_t = lambda t: -4. * np.sin(t)



Explicitly *me-independent Hamiltonian is conserved

If the Hamiltonian H doesn't have a func4onal dependence on 4me 
we see that



if

, 

Then

.

This &me independence is crucial to reversibility: cannot figure 
which direc&on equa&ons are being run



Reversibility

 from  to a "later" +me . Mapping is 1-1, 
inverse . This can be obtained by simply nega+ng +me:



Superman Transform

If we then transform , we have the old equa4ons back:

To reverse , flip the momentum, run Hamiltonian equa5ons 
backwords in 5me un5l you get back to the original posi5on and 
momentum in phase space at 5me t, then flip the momentum again 
so it is poin5ng in the right direc5on.



Volume in phase space is conserved

 for small change  can be wri1en as:

Jacobian:

 and thus the determinant is 



Thus as our system evolves, any contrac2on or expansion in 
posi2on space must be compensated by a respec2ve expansion or 
compression in momentum space.

As a result of this, the momenta we augment our distribu5on with 
must be dual to our pdf's parameters, transforming in the opposite 
way so that phase space volumes are invariant.



Between level sets: 
Momentum resampling

Draw  from a distribu/on that is 
determined by the distribu/on of 
momentum, i.e.  for 
example, and a9empt to explore the level 
sets.

Firing the thruster moves us between 
level sets!

That is, we sample the marginal energy 
distribu5on.



Resampling Efficiency

Let  as the transi+on distribu+on of 
energies induced by a momentum 
resampling using  at 
a given posi+on .

If  narrow compared to the marginal 
energy distribu7on : random walk 
amongst level sets proceeds slowly.

If  matches : independent 
samples generated from the marginal 
energy distribu7on very efficiently.



Tuning: Choice of Kine/c energy

• The ideal kine,c energy interacts with target to make 
microcanonical explora,on easy and uniform and marginal 
explora,on well matched by the transi,on distribu,on.

• In prac,ce we o=en use 

• Set inverse mass matrix to the covariance of the target 
distribu,on: maximally decorrelate the target. Do in warmup 
phase. Warmup replaces burnin.



See this for Gaussian:

On transforma+on , then 

 if 

Thus de-correlate target.

Generalize to arbitrary distribu1ons.



Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may 
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH





HMC/NUTS in pymc3

def clike2(value):
    x = value[0]
    y = value[1]
    val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
    return (val)

with pm.Model() as model:
    banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
    start = pm.find_MAP()
    stepper=pm.Metropolis()
    trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
    stepper_nuts=pm.NUTS()
    trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])



Problems

• discre(za(on to solve differen(al equaions and the need for 
symplec(city

• lack of reversibility even with symplec(city (we are marginally off 
the level set)



Prac%cal implementa%on: 
Discre%za%on and our 

problems

•

•

• off-diagonal terms of size  makes 
volume not preserved

• leads to dri7 over 8me



Symple'c Leapfrog

• Only shear transforms allowed, will 
preserve volume.

•

•

•

• s7ll error exists, oscillatory, so 
reversibility not achieved


