
Lecture 16

GAUSSIANS AND
GAUSSIAN PROCESSES



Last Time

• linear regression from normal model

• iden/fiability

• bayesian upda/ng for linear regression

• regulariza/on



LAB ROOM CHANGE (this fri only)

NW B-101
same &me, 11 am



From Mclreath:

The island socie-es of Oceania provide a 
natural experiment in technological 
evolu-on. Different historical island 
popula-ons possessed tool kits of 

different size. These kits include fish 
hooks, axes, boats, hand plows, and many 
other types of tools. A number of theories 

predict that larger popula-ons will both 
develop and sustain more complex tool 

kits. So the natural varia-on in popula-on 
size induced by natural varia-on in island 

size in Oceania provides a natural 
experiment to test these ideas. It's also 

suggested that contact rates among 
popula-ons effec-vely increase 



MVN Primer

JOINT: 

MARGINAL: 

CONDITIONAL: 



Modeling correla-on

General expecta,on of con,nuity as you move from one adjacent 
point to another. In the absence of significant noise, two adjacent 
points ought to have fairly similar  values.

 is correla*on length,  amplitude.



#Correlation Kernel
def exp_kernel(x1,x2, params):
    amplitude=params[0]
    scale=params[1]
    return amplitude * amplitude*np.exp(-((x1-x2)**2) / (2.0*scale))

#Covariance Matrix
covariance = lambda kernel, x1, x2, params: \
    np.array([[kernel(xi1, xi2, params) for xi1 in x1] for xi2 in x2])

Each curve in plots is generated as:
a = 1.0
nsamps = 50
xx = np.linspace(0,20,nsamps)

#Create Covariance Matrix
sigma = covariance(exp_kernel,xx,xx, [a,ell]) + np.eye(nsamps)*1e-06

#Draw samples from a 0-mean gaussian with cov=sigma
samples = np.random.multivariate_normal(np.zeros(nsamps), sigma)

The greater the correla,on length, the 
smoother the curve.



What did we just do?

• we have not seen any data yet

• but we expect the func4on represen4ng our data to have some 
level of con4nuity

• thus we considered different PRIOR func4ons that might 
represent our data

• as having come from MVNs with a covariance matrix based on 
the correla4on length we think we have



The red curve represents one of these 
func0ons from the calcula0on above.

We have 3 red data points, so it would be 
seem to be one of the curves consistent 
with the data.

We can consider the curve as a point in a 
mul3-dimensional space, a draw from a 
mul3variate gaussian with as many points 
as points on the curve.

Consider the 3 red data points to have 
been generated IID from some regression 
func8on  (like ) with some 
univariate gaussian noise  at each point.



JOINT:

MARGINAL:

CONDITIONAL:

where: 



Condi&onal
EQUALS Predic.ve



, added a small noise term.
#"test" data
x_star = np.linspace(0,20,nsamps)

# defining the training data
x = np.array([5.0, 10.0, 15.0]) # shape 3
f = np.array([1.0, -1.0, -2.0]).reshape(-1,1)

K = covariance(exp_kernel, x,x,[a,ell])
#shape 3,3

K_star = covariance(exp_kernel,x,x_star,[a,ell])
#shape 50, 3

K_star_star = covariance(exp_kernel, x_star, x_star, [a,ell])
#shape 50,50

K_inv = np.linalg.inv(K)
#shape 3,3

mu_star = np.dot(np.dot(K_star, K_inv),f)
#shape 50

sigma_star = K_star_star  - np.dot(np.dot(K_star, K_inv),K_star.T)
#shape 50, 50



Posterior and predic.ve



So far

1. We built a covariance matrix from a kernel func5on

2. Use the covariance matrix to generate a "curve" as a point in a mul5-dimensional space from a MVN

3. mul5ple such curves serve as prior fits for our data

4. now we bring in the data and condi5on on it (with noise added if needed) using normal distribu5on 
formulae

5. the condi5onal has the form of a predic5ve and we are done

6. Also no5ce that the marginal only has quan55es from the predic5ve block. This means that we dont 
care about the size of the original block in calcula5ng the marginal.

These observa+ons are the building blocks of the GP.



Use infinite gaussians!

• think of the func-on as an infinite 
vector.

• Draw  from some 'infinite' gaussian 
distribu5on with some mean and some 
kernel.

This then is the Gaussian Process, 
which we use to set a prior on the 
space of func5ons.



Back to our formulae...

JOINT:

MARGINAL:

where: 



KEY INSIGHT:

MARGINAL IS DECOUPLED
...for the marginal of a gaussian, only the covariance of the block of the 
matrix involving the unmarginalized dimensions ma:ers! Thus "if you 

ask only for the proper?es of the func?on (you are fiBng to the data) at 
a finite number of points, then inference in the Gaussian process will 

give you the same answer if you ignore the infinitely many other points, 
as if you would have taken them all into account!"

-Rasmunnsen



Defini&on of Gaussian Process

Assume we have this func0on vector
. If, for ANY choice of input points, 

, the marginal distribu0on over :

is mul'-variate Gaussian, then the distribu'on  over the 
func'on  is said to be a Gaussian Process.

We write a Gaussian Process thus:



a Gaussian Process defines a prior distribu2on over func2ons!

Once we have seen some data, this prior can be converted to a posterior over 
func6ons, thus restric6ng the set of func6ons that we can use based on the data.

Since the size of the "other" block of the matrix does not ma6er, we can do 
inference from a finite set of points.

Any  observa,ons in an arbitrary data set,  can always be 
represented as a single point sampled from some -variate Gaussian 
distribu,on. Thus, we can work backwards to 'partner' a GP with a data set, by 
marginalizing over the infinitely-many variables that we are not interested in, or 
have not observed.



GP regression

Using a Gaussian process as a prior for our model, and a Gaussian as our 
data likelihood, then we can construct a Gaussian process posterior.

Likelihood: 

where the infinite  takes the place of the parameters.

Prior: 

Infinite normal posterior process: 



The posterior distribu.on for f is:

Posterior predic,ve distribu,on for  for a test vector input , given a 
training set X with values y for the GP is:

The predic*ve distribu*on of test targets y∗ : add  to .



What did we do

• usually in a parametric model we had some  (small) number of 
parameters

• but here our covariance func9ons are NxN !

• no free lunch: calcula9on involves inver9ng a NxN matrix as in 
the kernel space representa9on of regression.

• cannot thus handle large data if no approxima9ons are used



Parametric models

• In general, parametriza0on restricts the class of func0ons we 
use. If our data is not well modeled by our choices, we might 
underfit.

• Increasing flexibility might lead to overfi@ng.

INSTEAD: consider every possible func9on and associate a prior 
probability with this func9on. e.g. assign smoother func9ons higher 
prior probability. But how are we possibly going to calculate over 
an uncountably infinite set of func9ons in finite 9me?



Linear Regression

Posterior:  where 

Posterior predic,ve distribu,on: 

For posterior predic,ve of , just add  to the variance above.



We can show that we can rewrite the above posterior predic2ve as:

where  which is of size N x N.

No#ce now that the features only appear in the combina#on 
, thus, the dual representa#on:



Basis func*ons

A scalar  could be projected into a 
polynomial space: 

. So let us now 
have

Let  be the aggrega*on of columns 
 for all training set cases .



Then the posterior predic.ve is 

where  and 

which can as before be wri.en as

where the kernel is now 

Then defining , we have 



Kernel Trick

If an algorithm is defined just in terms of inner products in input 
space then we can make the algorithm work in higher-dimensional 
feature space by replacing occurrences of those inner products by 

.

So we learn that covariance can be kernelized, and dimensions can 
be li6ed. This might remind you of SVM.



Infinite basis sets

Now consider an infinite set of . Like a fourier series or a 
Bessel series.

We can construct an infinitely parametric model.

This is called a non-parametric model.

We just need to be able to define a finite kernel 
!!



Kernels (row1: exp, m32 row2: m52, cos)



Universal Approxima0on

• Exact correspondence between the gaussian process (direct 
usage of gaussians in space) to the basis func8on regression (in 
feature space with gaussians for prior parameters) in the 
kernelized representa8on, as long as we iden8fy the GP 
covariance func8on  with the kernel func8on 

. (Mercer's theorem)

• We have seen such universal approxima8on in NN

• there is a connec8on for both single layer and deep NN

https://arxiv.org/abs/1711.00165


Se#ng up the model

with pm.Model() as model:
    # priors on the covariance function hyperparameters
    l = pm.Uniform('l', 0, 10)
    # uninformative prior on the function variance
    s2_f = pm.HalfCauchy('s2_f', beta=10)
    # uninformative prior on the noise variance
    s2_n = pm.HalfCauchy('s2_n', beta=5)
    # covariance functions for the function f and the noise
    f_cov = s2_f**2 * pm.gp.cov.ExpQuad(1, l)
    mgp = pm.gp.Marginal(cov_func=f_cov)
    y_obs = mgp.marginal_likelihood('y_obs',  
        X=xtrain.reshape(-1,1), y=ytrain, noise=s2_n,
        is_observed=True)



Back to the rat tumor model

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood 
with respect to  to es7mate these  using our "data" 



Empirical Bayes or Type-2 MLE

• MLE with respect to 

• involves an op4miza4on

• unlike cross-valida4on, s not-yet es4mated on training set.

• indeed we marginalize over s so can use training set.

• in prac4ce o?en match moments of predic4ve or posterior



Levels of Bayes



INFERENCE

Use the marginal likelihood:

The Marginal likelihood given a GP prior and a gaussian likelihood 
is:



MAP-2 Fi)ng in pymc3

with model:
    marginal_post = pm.find_MAP()

{'l': array(1.438132008790354),
 'l_interval__': array(-1.7839733342616466),
 's2_f': array(2.047500439200898),
 's2_n': array(0.3465300514941838)}



MCMC

with model:
     trace = pm.sample(10000, tune=2000,
        nuts_kwargs={'target_accept':0.85})
 with model:
     fpred = mgp.conditional("fpred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=False)
     ypred = mgp.conditional("ypred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=True)
     gp_samples = pm.sample_ppc(trace,
         vars=[fpred, ypred],
         samples=200)



Posterior (predic-ve) curves



Where are GPs used?

• geosta(s(cs with kriging, oil explora(on

• spa(al sta(s(cs

• as an interpolator (0 noise case) in weather simula(ons

• they are equivalent to many machine learning models such as kernelized regression, SVM and neural 
networks (some)

• ecology since model uncertainty is high

• they are the start of non-parametric regression

• (me series analysis (see cover of BDA)

• because of the composability of kernels, in automates sta(s(cal analysis (see the automa(c sta(s(cian)


