Lecture 16

GAUSSIANS AND
GAUSSIAN PROCESSES

Last Time

e |linear regression from normal model
e dentifiability
e bayesian updating for linear regression

e regularization

@AM 207

LAB ROOM CHANGE (this fri only)

NW B-101

same time, 11 am

@AM 207

From Mclreath:

The island societies of Oceania provide a
natural experiment in technologica
evolution. Different historical islanc

populations possessed tool kits of
different size. These kits include fish
hooks, axes, boats, hand plows, and many
other types of tools. A number of theories
predict that larger populations will both
develop and sustain more complex tool
kits. So the natural variation in population
size induced by natural variation in island
size in Oceania provides a natural
experiment to test these ideas. It's also
suggested that contact rates among
populations effectively increase

@AM 207

MVN Primer

1

p(e | u, %) = (2m) 2|z V2 exp{—§<x TR (e m}

e | 2 2y |
JOINT: p(z, v) zN(H o y)
My _E:I:y 2y i

MARGINAL: p(z) = [p(@, 9)dy = N (11,5)

CONDITIONAL: p(z | ¥) = N (s + T2y Ty (¥ — ty), B — Ty 2y 12T

@AM 207

Modeling correlation

General expectation of continuity as you move from one adjacent
point to another. In the absence of significant noise, two adjacent
points ought to have fairly similar f values.

2 (—(CBZ _wj))

k(z;,z;) = orexp o

[is correlation length, a? amplitude.

@AM 207

#Correlation Kernel
def exp_kernel(x1l,x2, params):
amplitude=params[0]
scale=params[1]
return amplitude * amplitude*np.exp(-((x1-x2)**2) / (2.0%*scale))

#Covariance Matrix

covariance = lambda kernel, x1, x2, params: \
np.array([[kernel(xil, xi2, params) for xil in x17] for xi2 in x2])

Each curve in plots is generated as:

a=1.0
nsamps = 50
xx = np.linspace(0,20,nsamps)

#Create Covariance Matrix
sigma = covariance(exp_kernel,xx,xx, [a,ell]) + np.eye(nsamps)*le-06

#Draw samples from a @-mean gaussian with cov=sigma
samples = np.random.multivariate_normal(np.zeros(nsamps), sigma)

The greater the correlation length, the
smoother the curve.

&AM 207

What did we just do?

e we have not seen any data yet

e but we expect the function representing our data to have some
level of continuity

e thus we considered different PRIOR functions that might
represent our data

e as having come from MVNs with a covariance matrix based on
the correlation length we think we have

@AM 207

The red curve represents one of these
functions from the calculation above.

We have 3 red data points, so it would be
seem to be one of the curves consistent
with the data.

We can consider the curve as a point in a
multi-dimensional space, a draw from a
multivariate gaussian with as many points
as points on the curve.

Consider the 3 red data points to have
been generated |ID from some regression
function f(z) (like w -) with some

univariate gaussian noise o at each point.

@AM 207

f(X)

10 ~

JOINT:

o[22 30])ea[#) [0 K
| pp L By Trr wll KT K

MARGINAL: p(f*) = / p(f* y)dy = N (s, Kix)

CONDITIONAL.:
p(f* ‘ y) — N (,U'* + K* (K‘l' 0'2-[)_1 (y R :u')7 K** o K*(K_|_ UzI)_lK’?)

where: K = K(z,z); K, = K(z,2"); Kux = K(x™, 2")

@AM 207

p(f* |y) =N (ue + Ko (K +0°1) " (y — p), Kuw — Ku(K 40 I) K]

EQUALS Predictive

[= 7, added a small noise term.

#"test" data 2
X_star = np.linspace(9,20,nsamps)

defining the training data

X = np.array([5.0, 10.0, 15.0]) # shape 3 1
f = np.array([1.0, -1.0, -2.0]).reshape(-1,1)

K = covariance(exp_kernel, x,x,[a,ell]) 0
#shape 3,3

K_star = covariance(exp_kernel,x,x_star,[a,ell])
#shape 50, 3 -1

K_star_star = covariance(exp_kernel, x_star, x_star, [a,ell])
#shape 50,50

-2
K_inv = np.linalg.inv(K)
#shape 3,3
. -3
mu_star = np.dot(np.dot(K_star, K_inv),f)
#shape 50
sigma_star = K_star_star - np.dot(np.dot(K_star, K_inv),K_star.T) 4

#shape 50, 50

&AM 207

10

15

@AM 207

10

Posterior and predictive

15 20 0 5

10

15

So far

. We built a covariance matrix from a kernel function
. Use the covariance matrix to generate a "curve" as a point in a multi-dimensional space from a MVN

. multiple such curves serve as prior fits for our data

O ¢ I S N

. now we bring in the data and condition on it (with noise added if needed) using normal distribution
formulae

O

. the conditional has the form of a predictive and we are done

6. Also notice that the marginal only has quantities from the predictive block. This means that we dont
care about the size of the original block in calculating the marginal.

These observations are the building blocks of the GP.

@AM 207

Use infinite gaussians!

10 ~

e think of the function as an infinite

vector.

 Draw f from some 'infinite' gaussian 67
distribution with some mean and some g s
kernel. ol
This then is the Gaussian Process,
which we use to set a prior on the 27
space of functions. LT

@AM 207

JOINT:
p(f, f°)=N (
MARGINAL.:

p(H) = [plf, £)af>

where:

@AM 207

| Sy

T
_Eff""

K=K(z,z); K

2 f o
E foo foo

K(x,z™)

)

N(,Uf,K)

Back to our formulae...

N(-

LMoo _

;Koooo — K(moo,xOO)

KEY INSIGHT:

MARGINAL IS DECOUPLED

...for the marginal of a gaussian, only the covariance of the block of the
matrix involving the unmarginalized dimensions matters! Thus "if you
ask only for the properties of the function (you are fitting to the data) at
a finite number of points, then inference in the Gaussian process will
give you the same answer if you ignore the infinitely many other points,
as if you would have taken them all into account!”
-Rasmunnsen

@AM 207

Definition of Gaussian Process

Assume we have this function vector
f=(f(z1),...f(xz,)). If, for ANY choice of input points,
(z1,...,x,), the marginal distribution over f:

P(F) = /f P

is multi-variate Gaussian, then the distribution P(f) over the
function f is said to be a Gaussian Process.

@AM 207

a Gaussian Process defines a prior distribution over functions!

Once we have seen some data, this prior can be converted to a posterior over
functions, thus restricting the set of functions that we can use based on the data.

Since the size of the "other" block of the matrix does not matter, we can do
inference from a finite set of points.

Any m observations in an arbitrary data set, y = v, ..., vy, = m can always be
represented as a single point sampled from some m-variate Gaussian
distribution. Thus, we can work backwards to 'partner' a GP with a data set, by

marginalizing over the infinitely-many variables that we are not interested in, or
have not observed.

@AM 207

GP regression

Using a Gaussian process as a prior for our model, and a Gaussian as our
data likelihood, then we can construct a Gaussian process posterior.

Likelihood: y|f(x), z ~ N (f(z), o I)
where the infinite f(x) takes the place of the parameters.
Prior: f(z) ~ GP(m(z) = 0, k(x, x/))

Infinite normal posterior process: f(z)|y ~ GP(Mypost, Kpost (T, T!)).

@AM 207

The posterior distribution for f is:

Mpost = k(! z)[k(z,) + o’ Ity
kpost (T, 1) = k(z1, z1) — k(z!, z)[k(z,) + oI k(z, /)

Posterior predictive distribution for f(x,) for a test vector input z., given a
training set X with values y for the GP is:

my = k(z., X)[k(XT, X))+ I 1y
ke = (x4,) — k(zy, XD [E(XT, X) 4+ 1) k(X z,)

The predictive distribution of test targets yx : add oI to k,.

@AM 207

What did we do

e usually in a parametric model we had some m (small) number of
parameters

e but here our covariance functions are NxN !

 no free lunch: calculation involves inverting a NxN matrix as in
the kernel space representation of regression.

e cannot thus handle large data if no approximations are used

@AM 207

Parametric models

 |n general, parametrization restricts the class of functions we
use. If our data is not well modeled by our choices, we might

underfit.
* |ncreasing flexibility might lead to overfitting.

INSTEAD: consider every possible function and associate a prior
probability with this function. e.g. assign smoother functions higher
prior probability. But how are we possibly going to calculate over
an uncountably infinite set of functions in finite time?

@AM 207

Linear Regression

y:f(X)+€7€NN(0702)7f(X) :XTwawNN(Oaz)

: 1 _ 1 _
Posterior: p(w| X, y) ~ N(ﬁA "Xy, A7) where A = — XX" + £

O

Posterior predictive distribution:

1
p(f(zy)|zs, X, y) =N(—a:*A 1Xy, A_la:*).
o>

For posterior predictive of y,, just add o to the variance above.

@AM 207

We can show that we can rewrite the above posterior predictive as:

p(f(zs)|zse, X,y) = NI SXT (K + °I) ty, 2T Sz, — IS X (K + 6*1) ' XZx,)

where K = XX X' which is of size N x N.

Notice now that the features only appear in the combination
k(z,z') = 2 T2’ thus, the dual representation:

p(f(z«)|zs, X, y) =
N (n(x*,X)(n(XT,X) +02I)_1y, k(T4 T4) — /-@(:B*,XT)(R(XT,X) +U2I)_1“(XT733*))

@AM 207

&AM 207

Basis functions

A scalar x could be projected into a
polynomial space:

o(x) = (1,z,z%,2°,...). So let us now
have

Let &(X) be the aggregation of columns
¢(x) for all training set cases x € X.

Then the posterior predictive is p(f(zy)|z, X, y) = N(iquffA_lcby, T A1 o,).
o)

where ¢, = ¢(x,) and A = i2<I><I>T + 31
O

which can as before be written as

N6z, X) (6(XT, X) + 021) 'y, 620, 2) — 6(2e, XT) (6(XT, X) + 06°1) " w(XT, z,)
where the kernel is now k(z, z') = ¢(z)! To(z')

Then defining ¢(z) = (/2 ¢(z), we have k(z, z') = ¥(z)T¥(z')

@AM 207

Kernel Trick

If an algorithm is defined just in terms of inner products in input
space then we can make the algorithm work in higher-dimensional
feature space by replacing occurrences of those inner products by

k(z,z').

So we learn that covariance can be kernelized, and dimensions can
be lifted. This might remind you of SVM.

@AM 207

Infinite basis sets

Now consider an infinite set of ¢(x). Like a fourier series or a
Bessel series.

We can construct an infinitely parametric model.
This is called a non-parametric model.

We just need to be able to define a finite kernel

k(z,z") = () (e)!

@AM 207

Kernels (rowl: exp, m32 row2: m52, cos)

&AM 207

Universal Approximation

e Exact correspondence between the gaussian process (direct
usage of gaussians in space) to the basis function regression (in
feature space with gaussians for prior parameters) in the
kernelized representation, as long as we identify the GP
covariance function k with the kernel function

k(z,z') = ¢(z)! To(z'). (Mercer's theorem)
e We have seen such universal approximation in NN

e thereis a connection for both single layer and deep NN
&AM 207

https://arxiv.org/abs/1711.00165

Setting up the model

with pm.Model() as model:

priors on the covariance function hyperparameters

L = pm.Uniform('Ll"', @, 10)

uninformative prior on the function variance

s2 £ = pm.HalfCauchy('s2 f', beta=10)

uninformative prior on the nolise variance

s2 n = pm.HalfCauchy('sZ2 n', beta=5)

covariance functions for the function f and the noise

f cov = s2 £**¥2 * pm.gp.cov.ExpQuad(l, 1)

mgp = pm.gp.Marginal(cov_func=f cov)

y_obs = mgp.marginal Llikelihood('y obs',
X=xtrain.reshape(-1,1), y=ytrain, noise=sZ2 n,
is observed=True)

&AM 207

Back to the rat tumor model

Posterior-predictive distribution, as a function of upper level
parameters n = («, B).

p(y*|D,n) = / do p(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximum-likelihood
with respect to n to estimate these n using our "data" ¢

@AM 207

Empirical Bayes or Type-2 MLE

« MLE with respect to n

e involves an optimization

e unlike cross-validation, 0s not-yet estimated on training set.
e indeed we marginalize over #s so can use training set.

e |n practice often match moments of predictive or posterior

@AM 207

Levels of Bayes

Method Definition

Maximum Likelihood f = argmazyp(D)6)

MAP estimation 6 = argmazyp(D|6)p(6|n)

ML-2 (Empirical Bayes) = 7 = argmaz, [dfp(D|0)p(8|n) = argmaz,p(D|n)

MAP-2 il = argmaz, [d6p(D|0)p(0|n)p(n) = argmaz,p(D|n)p(n)

Full Bayes p(0,n|D) o< p(D|0)p(6|n)p(n)

&AM 207

INFERENCE

Use the marginal likelihood:
p(y]X) = / p(ylf, X)p(f1X)df
f

The Marginal likelihood given a GP prior and a gaussian likelihood
IS:

n 1 1
log p(y| X) = — - log 2 — Zlog K+ o*I| — EyT(K + oIty

@AM 207

MAP-2 Fitting in pymc3

with model:
marginal_post = pm.find_MAP()

{'Ll': array(1.438152008/90554),
'l _interval_ ': array(-1.7839/733342616466),

's2 f£': array(2.04/7/500439200898),
's2 n': array(0.3465300514941838)}

@AM 207

MCMC

with model:
trace = pm.sample(10000, tune=2000, l

o |
nuts_kwargs={'target_accept':0.85}) gos 4//\\\\‘ %5
with model: Eﬁo 'go | | | | | |

fpred = mgp.conditional("fpred", 0 2 4 6 8 ® 0 2000 4000 6000 8000 10000
Xnew = X _pred.reshape(-1,1), _ s2_f ® s2_f
pred_noise=False) §a2 /\\\“ S .

ypred = mgp.conditional("ypred", £ 00 g'o | I [| |
Xnew = X_pred . reshape(-1 ; 1) ; 0 10 20 30 40 n 0 2000 4000 6000 8000 10000

pred _noise=True) s2_n s2_n

gp_samples = pm.sample_ ppc(trace,
vars=[fpred, ypred],
samples=200)

2000 4000 6000 8000 10000

Frequency
o N

Sample value
o N

o

&AM 207

&AM 207

Posterior (predictive) curves

Posterior predictive distribution

noisy realization
® frain pts
- actual
-4 = predicted

0 2 - 6 8

10

Where are GPs used?

e geostatistics with kriging, oil exploration
e spatial statistics
e as an interpolator (O noise case) in weather simulations

e they are equivalent to many machine learning models such as kernelized regression, SVM and neural
networks (some)

e ecology since model uncertainty is high
e they are the start of non-parametric regression
e time series analysis (see cover of BDA)

e because of the composability of kernels, in automates statistical analysis (see the automatic statistician)

@AM 207

