Lecture 14 Formal Tests and Gibbs Sampling

Previously

- the bayesian setup
- marginalization and posterior predictives
- globe tossing and beta-binomial
- exchangeability and poisson-gamma
- the coal disasters

Marginalization

Marginal posterior:

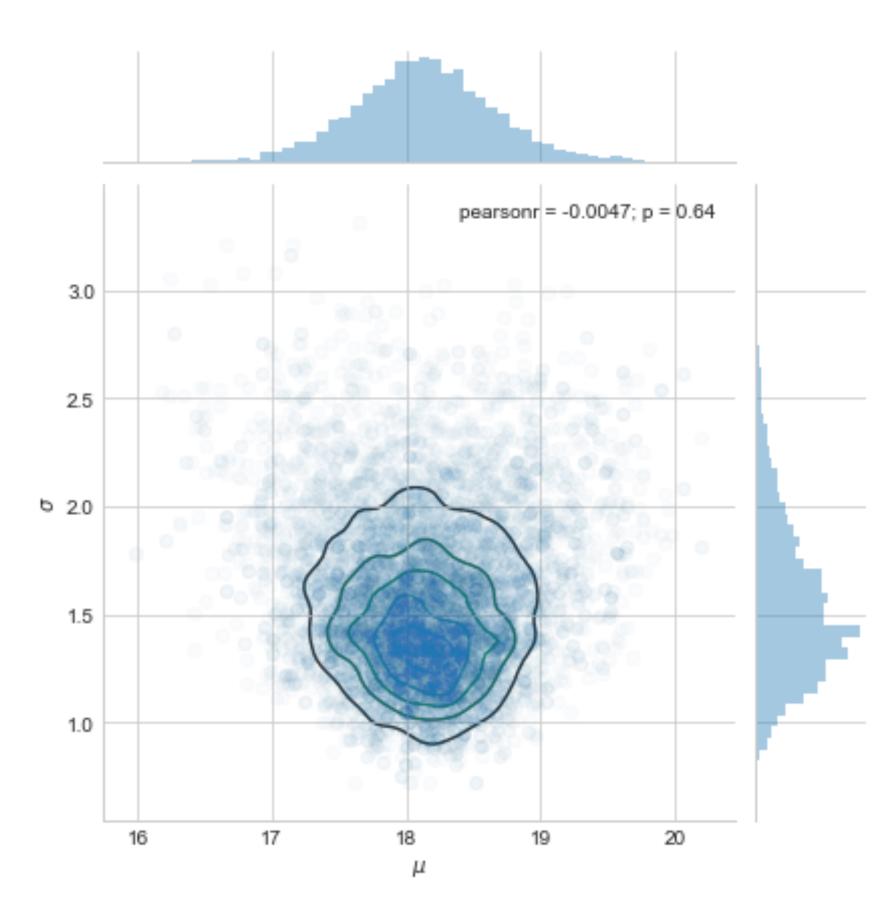
$$p(heta_1|D) = \int d heta_{-1} p(heta|D).$$

samps[20000::,:].shape #(10001, 2)

```
sns.jointplot(
   pd.Series(samps[20000::,0], name="$\mu$"),
   pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
   .plot_joint(
      sns.kdeplot,
   zorder=0, n_levels=6, alpha=1)
```

Marginals are just 1D histograms

```
plt.hist(samps[20000::,0])
```



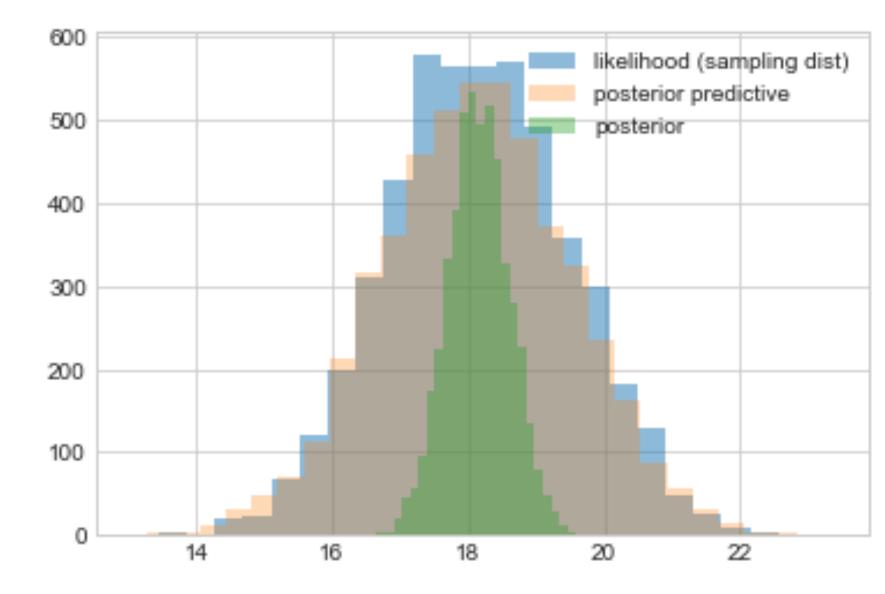
Posterior Predictive

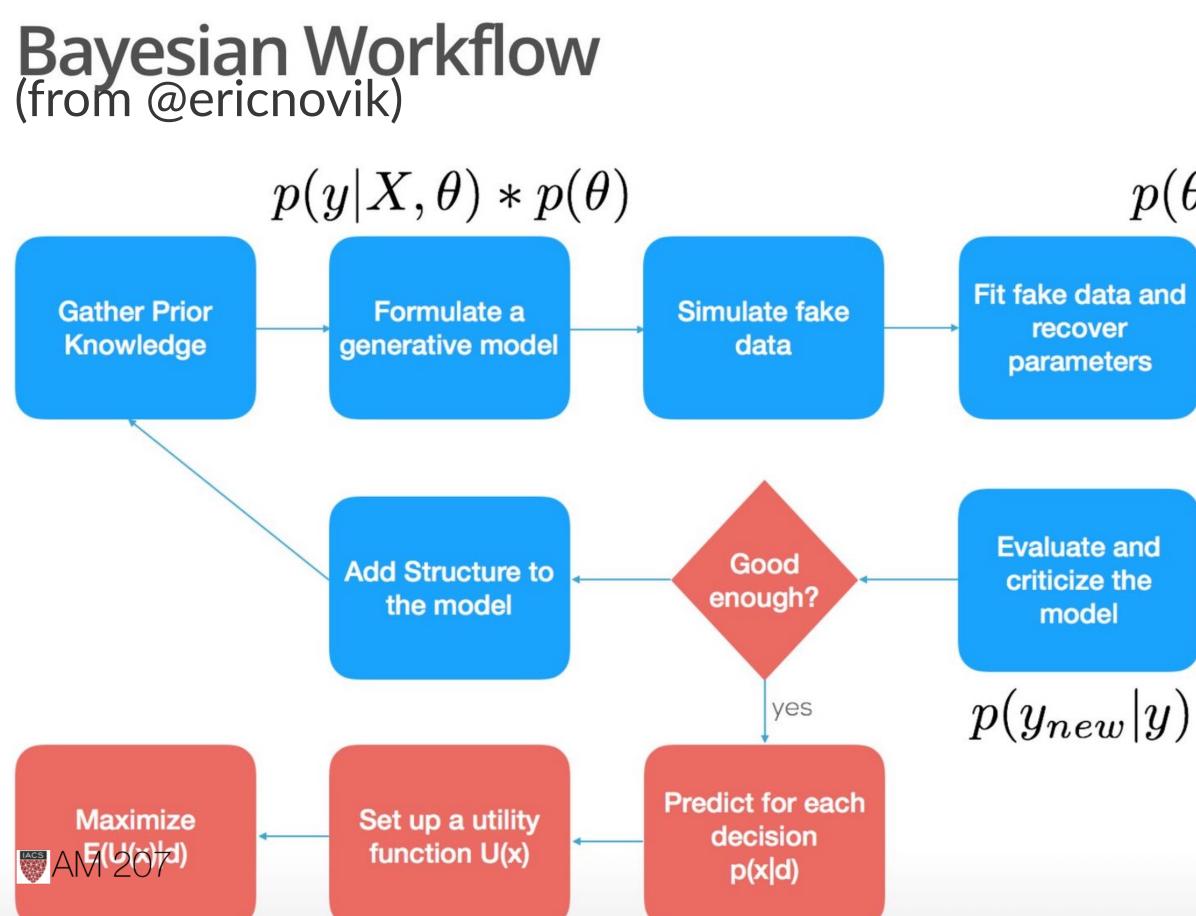
The distribution of a future data point y^* :

$$egin{aligned} p(y^*|D=\{y\}) &= E_{p(heta|D)}[p(y| heta)] \ &= \int d heta p(y^*| heta) p(heta|\{y\}). \end{aligned}$$

First draw the thetas from the posterior, then draw y's from the likelihood (these are draws from joint y, θ)

```
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)
```





$p(\theta|y,X)$ Fit the model to real data Inference **Decisions**

Exchangeability

Lets assume that the number of children of a women in any one of these classes can me modelled as coming from ONE birth rate.

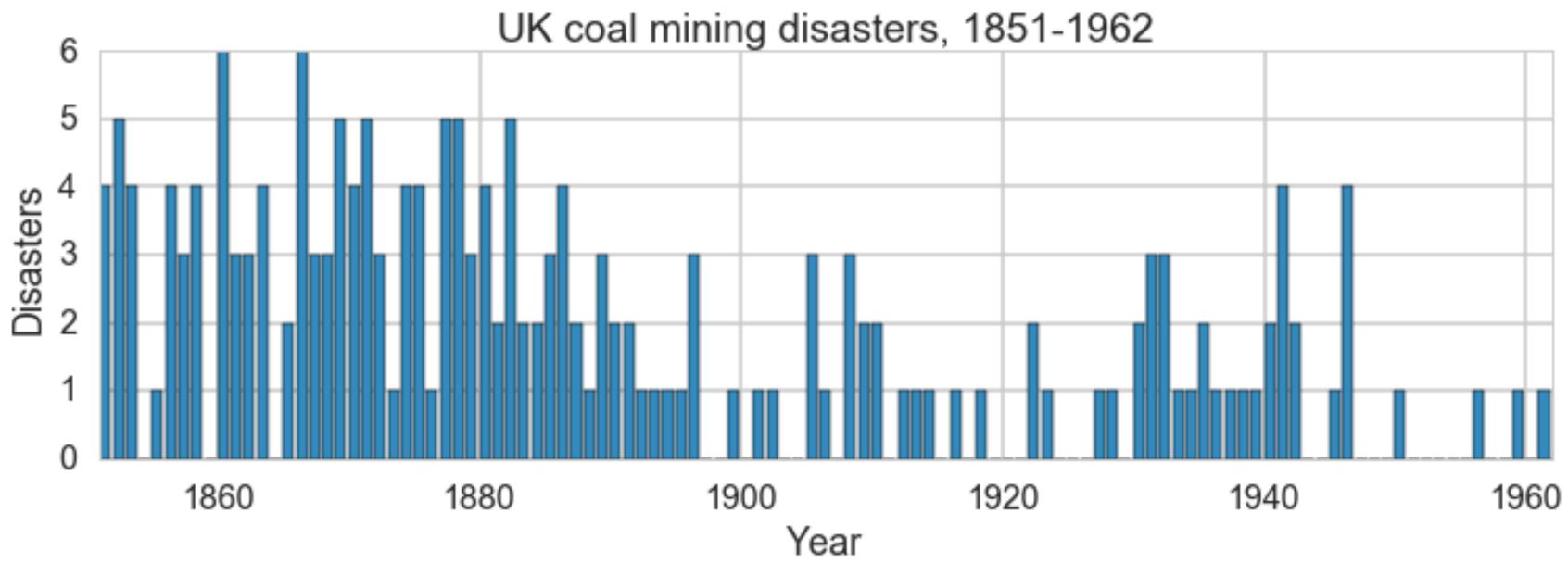
The in-class likelihood for these women is invariant to a permutation of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...

Today

- formal convergence criterion (coal disasters)
- convergence paranoia
- gibbs sampling
- hierarchical models
- empirical bayes
- full hierarchical model (in lab)



Model

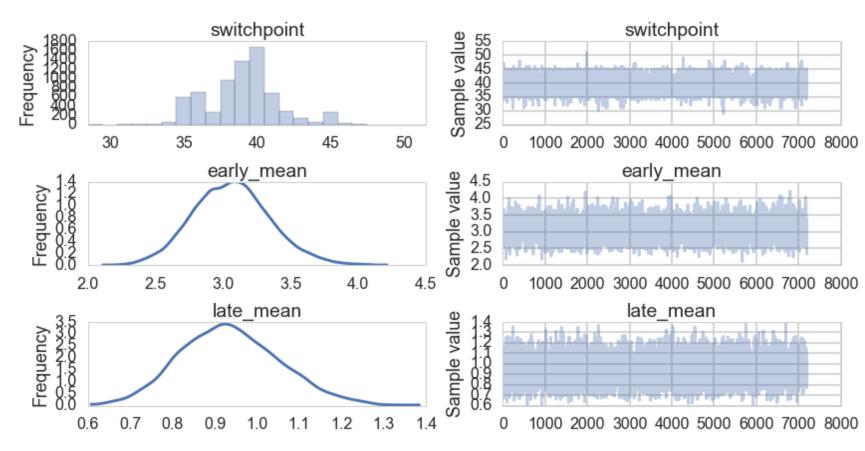
 $y| au, \lambda_1, \lambda_2 \sim Poisson(r_t)$

 $r_t = \lambda_1 ext{ if } t < au ext{ else } \lambda_2 ext{ for } t \in [t_l, t_h]$ $au \sim DiscreteUniform(t_l,t_h)$

$$egin{aligned} \lambda_1 &\sim Exp(a)\ \lambda_2 &\sim Exp(b) \end{aligned}$$


```
from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)
```


40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]



100%|

Imputation

>>>disasters_missing = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]>>>disasters_masked = np.ma.masked_values(disasters_missing, value=-999)

An array with mask set to True where data is missing.

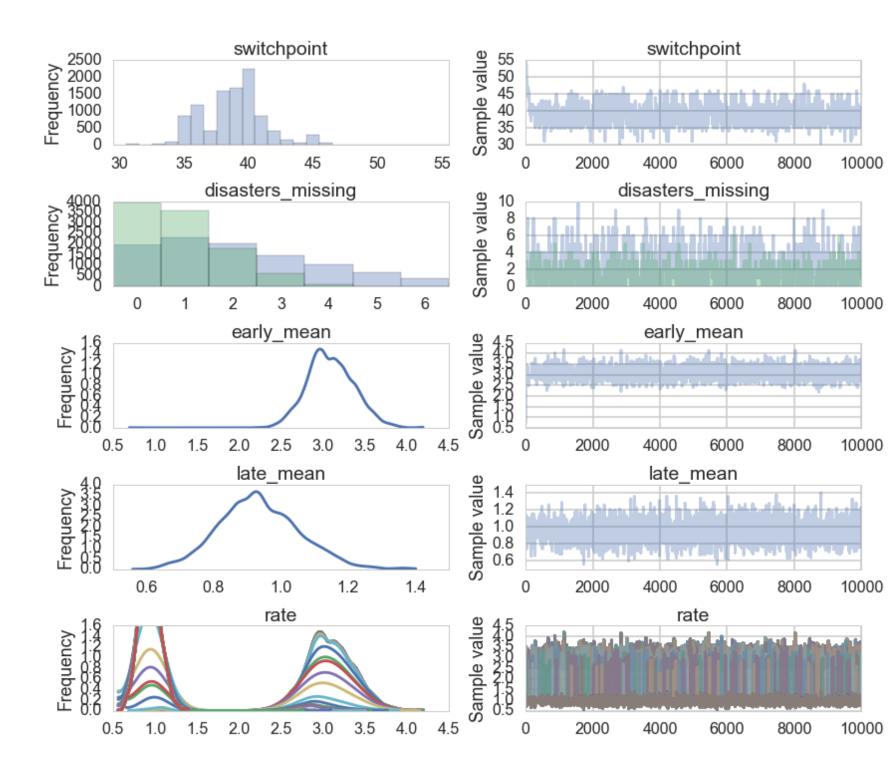

```
with pm.Model() as missing_data_model:
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
    early_mean = pm.Exponential('early_mean', lam=1.)
    late_mean = pm.Exponential('late_mean', lam=1.)
    idx = np.arange(len(disasters_masked))
    rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
    disasters = pm.Poisson('disasters', rate, observed=disasters_masked)
```

```
with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(10000, step=stepper)
```

```
pm.summary(trace_missing, varnames=['disasters_missing'])
```

disasters_missing:

Mean	SD	MC Error	95% HPD	interval
2.189	1.825	0.078	[0.000,	6.000]
0.950	0.980	0.028	[0.000,	3.000]
Posterior quar	tiles:			
2.5	25	50	75	97.5
	- ==============	= ===============	==	
0.000	1.000	2.000	3.000	6.000
0.000	0.000	1.000	2.000	3.000

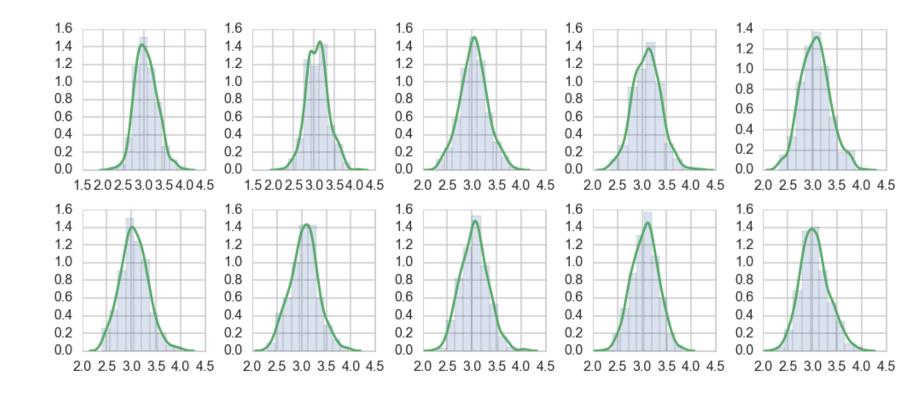


Model convergence

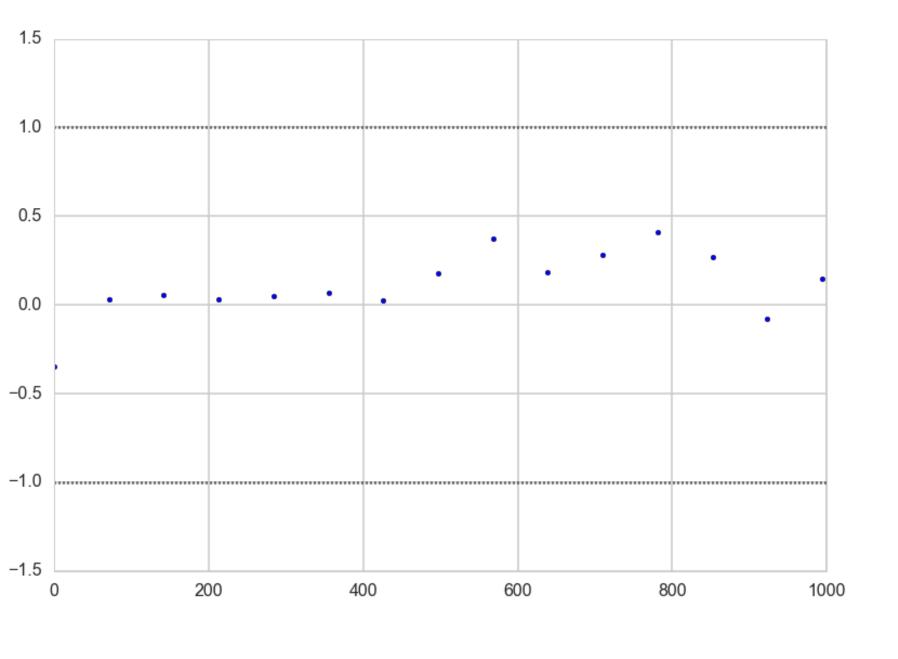
- traces white noisy
- diagnose autocorrelation, check parameter correlations

pm.trace_to_dataframe(trace).corr()

- visually inspect histogram every m samples
- traceplots from different starting points, different chains
- formal tests: Gewecke, Gelman-Rubin, Effective Sample Size



Gewecke: difference of means



$$H_0:\mu_{ heta_1}-\mu_{ heta_2}$$

$$\sigma_{ heta_1- heta_2}=\sqrt{}$$

 $|\mu_{ heta_1}|$ –

with coaldis1: stepper=pm.Metropol tr = pm.sample(2000)

z = geweke(tr, intervals=15)

```
plt.scatter(*z['early_mean'].T)
plt.xlim(0, 1000)
```


 $_{ heta_2}=0\implies \mu_{ heta_1- heta_2}=0$

 $var(heta_1)$ $var(heta_2)$ n_1 n_2

$$\mu_{ heta_2}| < 2\sigma_{ heta_1- heta_2}$$

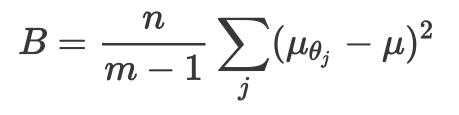
plt.hlines([-1,1], 0, 1000, linestyles='dotted')

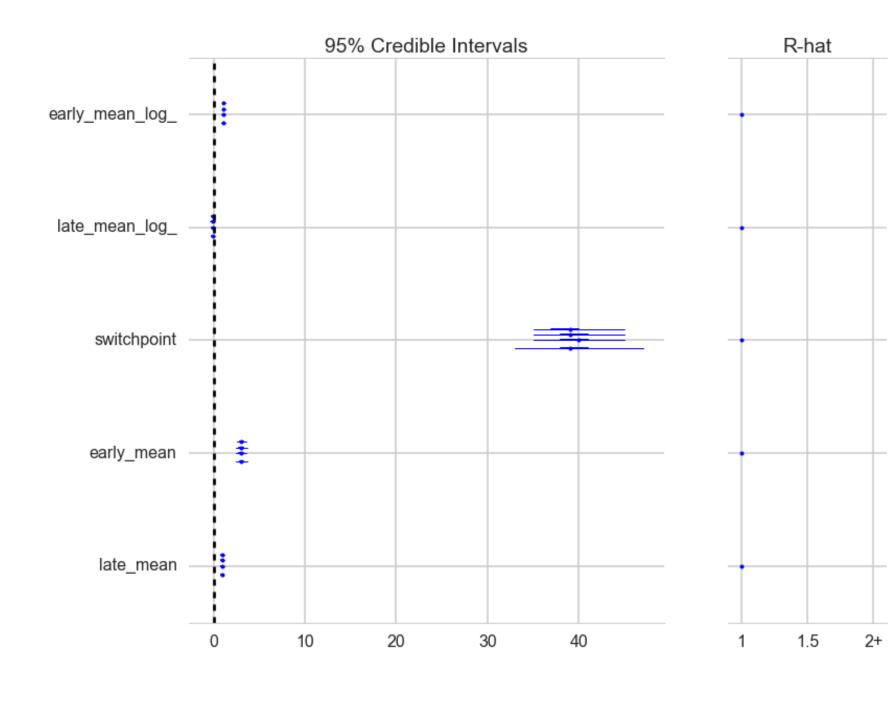
Gelman-Rubin

Multiple chains..compute within chain variance and compare to between chain variance

$$s_j^2 = rac{1}{n-1}\sum_i (heta_{ij}-\mu_{ heta_j})^2$$

$$w=rac{1}{m}\sum_j s_j^2; \; \mu=rac{1}{m}\sum_j \mu_ heta_j$$





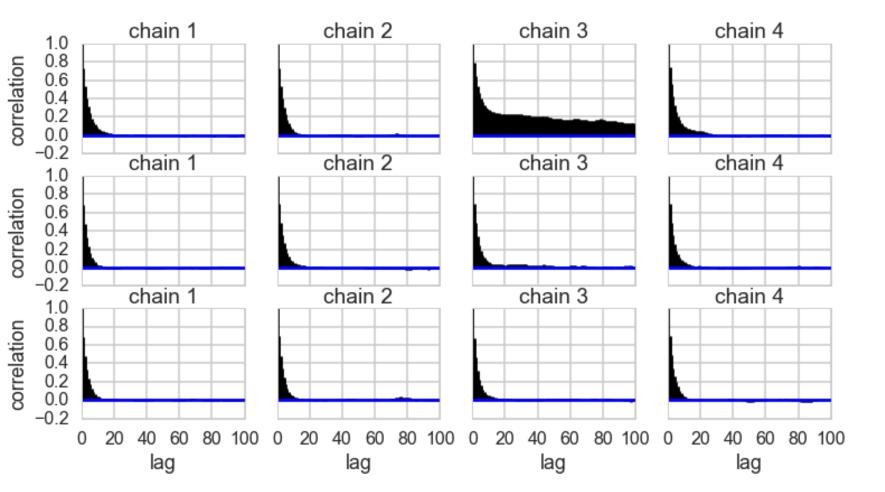
Use weighted average of w and B to estimate variance of the stationary distribution pm.gelman_rubin(trace):

$$\hat{Var}(heta) = (1 - rac{1}{n})w + rac{1}{n}B$$

Overestimates our variance, but unbiased under stationarity. Ratio of the estimated distribution variance to asymptotic one:

$$\hat{R} = \sqrt{rac{\hat{Var}(heta)}{w}}$$

ESS: Effective Sample Size



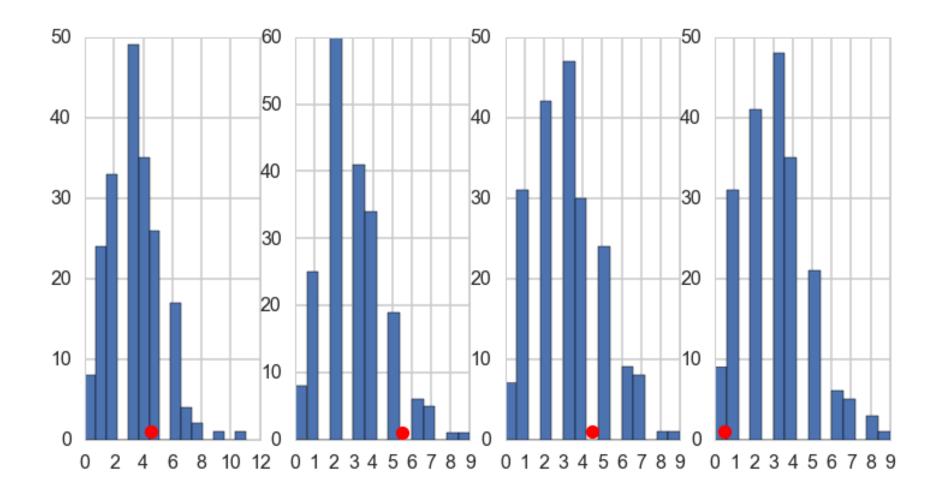
IIDness of draws decreases pm.effective_n(trace) {'early_mean': 16857.0, 'early_mean_log_': 12004.0, 'late_mean': 27344.0, 'late_mean_log_': 27195.0, 'switchpoint': 195.0}

(40000 samples)

mn $n_{eff} = rac{1}{1+2\sum_{\Delta t}
ho_{\Delta t}}$

Posterior Predictive Checks

```
with coaldis1:
   sim = pm.sample_ppc(t2, samples=200)
```



Another sampler issue: Non-Identifiability

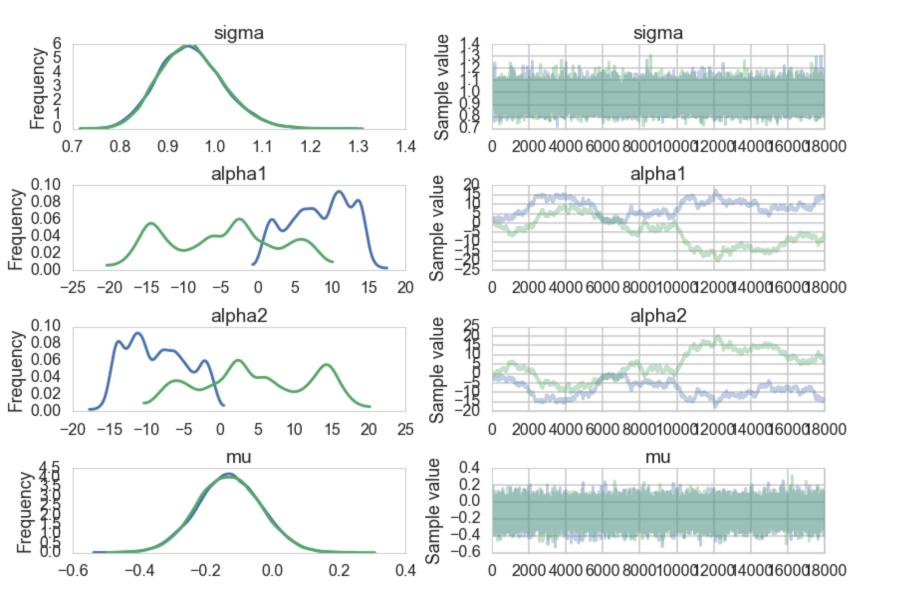
Generate data from N(0,1). Then fit:

$$y \sim N(\mu,\sigma)$$

$$\mu=lpha_1+lpha_2$$

 $lpha_1 \sim Unif(-\infty,\infty) \ lpha_2 \sim Unif(-\infty,\infty) \ \sigma \sim HalfCauchy(0,1)$

Correlation diagnostic



sigma = pm.HalfCauchy("sigma", beta=1) alpha1=pm.Uniform('alpha1', lower=-10**6, upper=10**6) alpha2=pm.Uniform('alpha2', lower=-10**6, upper=10**6) mu = pm.Deterministic("mu", alpha1 + alpha2) y = pm.Normal("data", mu=mu, sd=sigma, observed=data)

df=pm.trace_to_ df.corr()				
	sigma			
sigm	a 1.000000			
mu	-0.000115			
alpha	a 1 -0.003153			
alpha	a2 0.003152			

dataframe(traceni)

mu	alpha1	alpha2			
-0.000115	-0.003153	0.003152			
1.000000	0.002844	0.008293			
0.002844	1.000000	-0.999938			
0.008293	-0.999938	1.000000			

```
>>pm.effective_n(traceni)
{ 'alpha1': 1.0,
 'alpha1 interval ': 1.0,
 'alpha2': 1.0,
 'alpha2 interval ': 1.0,
 'mu': 26411.0,
 'sigma': 39215.0,
 'sigma_log_': 39301.0}
 >>pm.gelman rubin(traceni)
 { 'alpha1': 1.7439881580327452,
  'alpha1_interval_': 1.7439881580160093,
  'alpha2': 1.7438626593529831,
  'alpha2 interval ': 1.7438626593368223,
  'mu': 0.99999710182062695,
```

```
'sigma': 1.0000248056117549,
```

```
'sigma_log_': 1.0000261752214563}
```


Is autocorrelation bad?

- depends on what you want to do
- this is true for $n_e f f$ in general
- does not matter much for means
- matters for credible intervals as we need tails

Thoughts on Diagnostics

- be paranoid, you only know you have not converged, not if you have
- what if you missed out an entire lobe? Thus multiple chains and multiple starting points.
- check posterior correlations, trace autocorrelation, effective n, the look of the trace, the acceptance rate
- check gewecke and gelman-rubin

Gibbs Sampling and Hierarchical models.

- the idea behind gibbs sampling
- examples of gibbs sampling
- gibbs is an always accepted MH
- hierarchical models as regularizers
- empirical bayes (for rat tumors)
- setting up full bayes for hierarchical models

What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling through all the particles, drawing from each one of them conditionally given the energy levels of the others, taking the time average.

Geman and Geman used this idea to denoise images.

The idea of Gibbs

$$f(x) = \int f(x,y) dy = \int f(x|y) f(y) dy = \int dy f(x|y)$$

Thus:
$$f(x) = \int h(x, x') f(x') dx'$$
 integral fixed po

where
$$h(x,x') = \int dy f(x|y) f(y|x').$$

 $y)\int dx'f(y|x')f(x')$

oint equation

Iterative scheme in which the "transition kernel" h(x, x') is used to create a proposal for metropolis-hastings moves:

$$f(x_t) = \int h(x_t, x_{t-1}) f(x_{t-1}) dx_{t-1}$$
, a Stationa

$$h(x,x') = \int dy f(x|y) f(y|x')$$
.: Sample alter transitions.

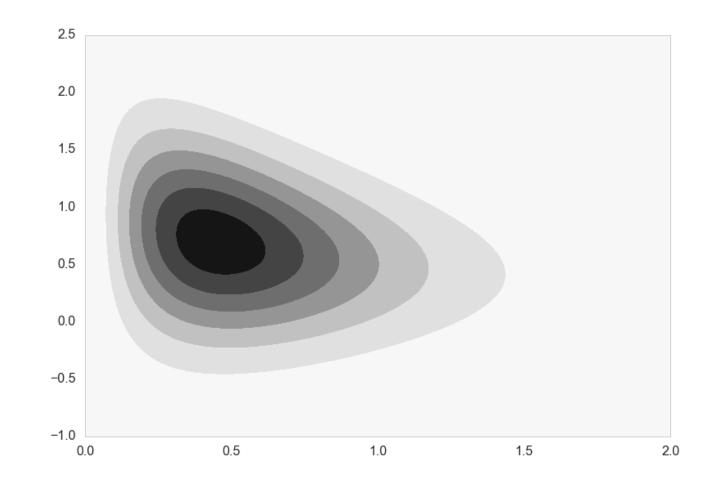
Can sample x marginal and x|y so can sample the joint x, y.

ary distribution.

mately to get

Example

Sample from $f(x, y) = x^2 \exp[-xy^2 - y^2 + 2y - 4x]$



Conditionals

$$f(x,y) = x^2 \exp[-xy^2 - y^2 + 2y - 4x] = x^2 \exp[-x(y^2 - y^2) + 2y - 4x]$$

$$=g(y)\mathrm{Gamma}(3,y^2+4) \implies f(x|y)=\mathrm{Gam}(x)$$

$$f(x,y)=x^2 \exp[-y^2(1+x)+2y] \exp[-y^2(1+x)+2y]$$

$$\implies f(y|x) = N(rac{1}{1+x}, rac{1}{\sqrt{(2(1+x))}})$$

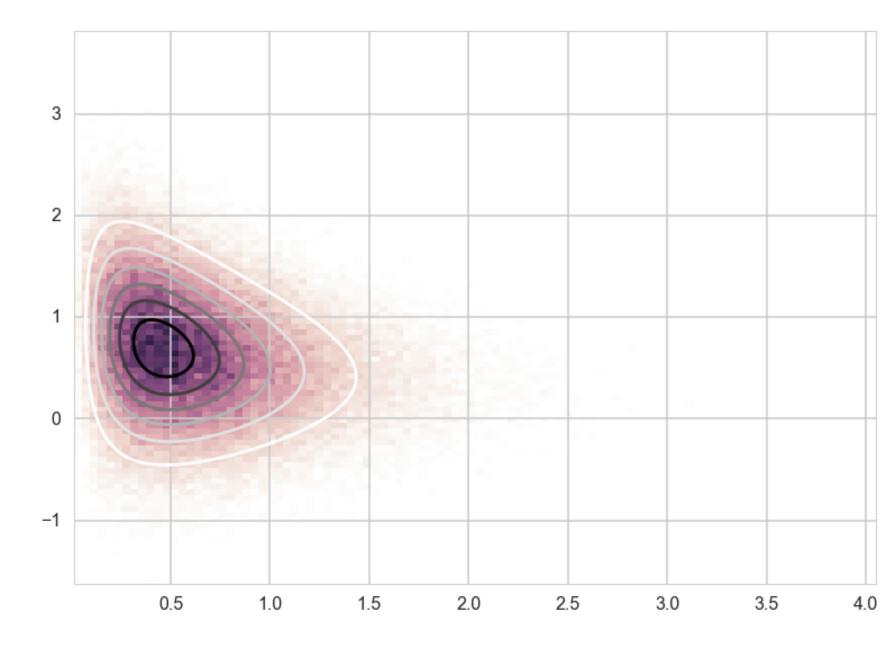
$(x^2+4)] \exp[-y^2+2y] \ mma(3,y^2+4)$

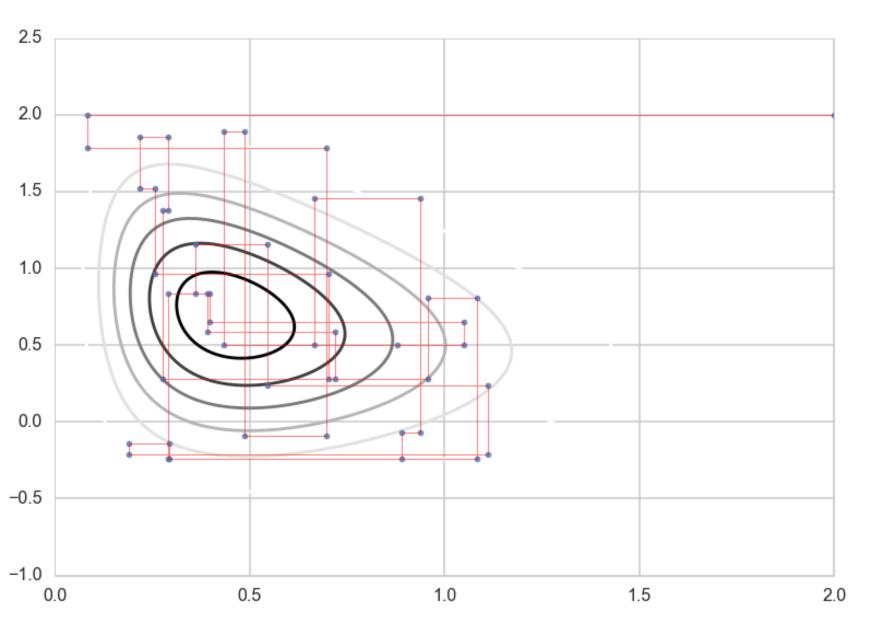
p[-4x]

 $\overline{(x))}$

Sampler

```
def xcond(y):
   return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
   return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
   x=start[0]
   y=start[1]
   samples=np.zeros((N+1, 2))
   samples[0,0]=x
   samples[0,1]=y
   for i in range(1,N,2):
       x=xgiveny_sample(y)
       samples[i,0]=x
       samples[i, 1]=y
       y=ygivenx_sample(x)
       samples[i+1,0]=x
       samples[i+1,1]=y
   return samples
out=gibbs(xcond, ycond, 100000)
```





More about gibbs

- easiest is to know how to sample locality
- a time
- been reached

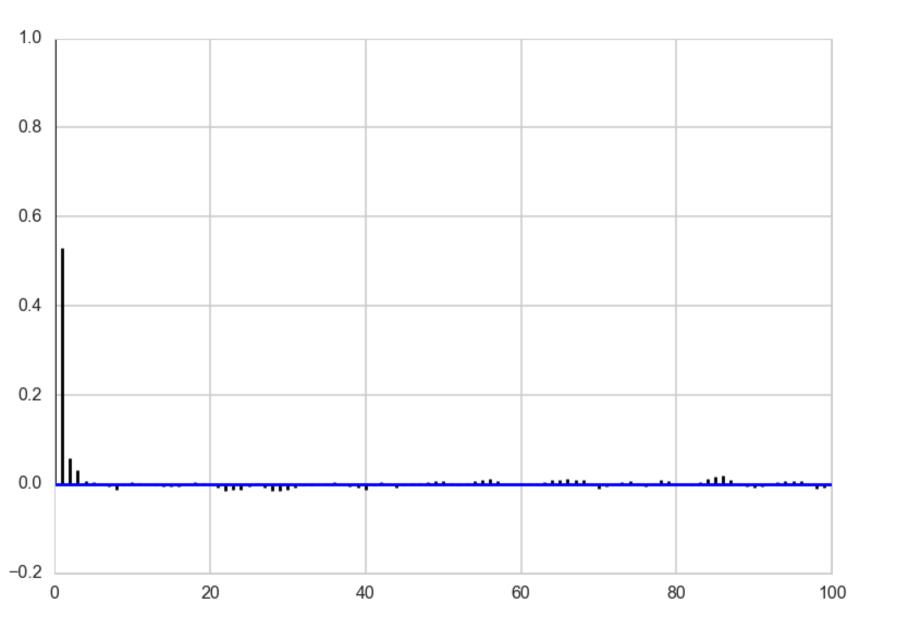
directly from conditionals: no need for

• moves one component (or one block) at

• all is not lost if thats not the case: can use a MH-step once stationarity has

• this makes gibbs a very general idea

Autocorrelation



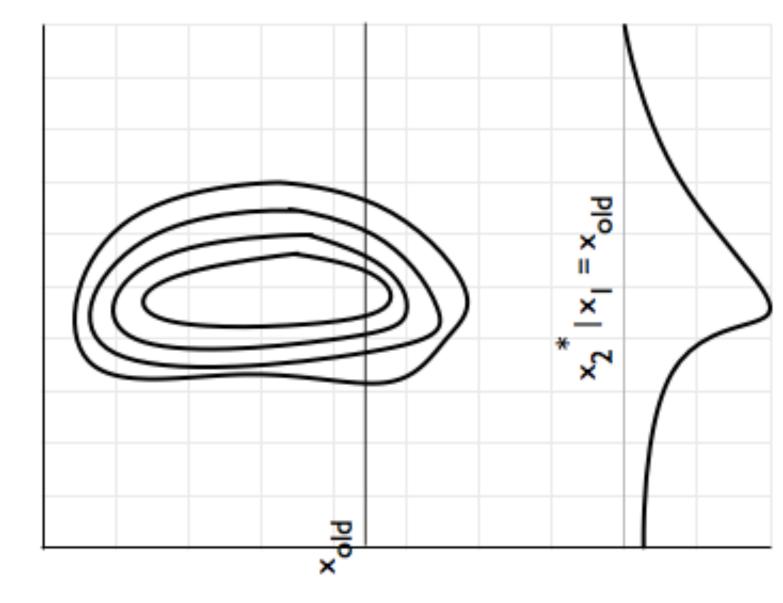
- this joint has very little autocorrelation
- highly correlated joints will have lots of autocorrelation
- thinning/longer chains may be required, but as usual it depends on what you are trying to calculate.
- expectations require far fewer samples
- complete posterior characterization require many more

More Gibbs Theory

The transition kernel corresponds to this proposal:

$$q_k(x^*|x^i) = egin{cases} p(x^*_k|x^i_{-k}) & \textit{for } x^*_{-k} = x^i_{-k}, \ 0 & \textit{otherwise} \end{cases}$$

where x_k^i is the *k*th component (or block) of *x* at *i*th step, while x_{-k}^i is all other components of *x* at the same step



×

×

Gibbs=MH with no rejection

$$A = min(1, rac{p(x^*)}{p(x^i)} \ rac{q_k(x^i|x^*)}{q_k(x^*|x^i)})$$

$$p(x^*) = p(x^*_{-k}, x^*_k) = p(x^*_k | x^*_{-k}) p(x^*_k | x^*_{-k})$$

$$A = min(1, rac{p(x_k^* | x_{-k}^*) p(x_{-k}^*)}{p(x_k^i | x_{-k}^i) p(x_{-k}^i)} \, rac{q_k(x^i | x^*)}{q_k(x^* | x^i)}) = min(1, rac{p(x_k^* | x_{-k}^*)}{p(x_k^i | x_{-k}^i)})$$

Componentwise update, $\implies x^*_{-k} = x^i_{-k}$ and A is 1!

 (x_{-k}^*)

 $rac{p^*_{-k})p(x^*_{-k})}{p^i_{-k})p(x^i_{-k})} \; rac{p(x^i_k|x^*_{-k})}{p(x^*_k|x^i_{-k})}) \; ,$

14 12 10 8 6 4 2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

- tumors in female rats of type "F344" that recieve a particular drug, in 70 different experiments.
- mean and variance of tumor incidence:
 0.13600653889043893,
 0.010557640623609196
- 71st experiment done: 4 out of 14 rats develop tumors. Estimate the risk of tumor in the rats in the 71st experiment

Rat Tumors

Modeling

$$p(y_i| heta_i;n_i)=Binom(n_i,y_i, heta_i)$$

$$p(Y|\Theta;\{n_i\}) = \prod_{i=1}^{70}Binom(n_i,y_i,$$

Need to choose a prior $p(\Theta)$.

 $\theta_i)$

No Pooling

Separate priors on each θ_i :

$$heta_i \sim Beta(lpha_i, eta_i).$$

$$p(\Theta|\{lpha_i\},\{eta_i\}) = \prod_{i=1}^{70} Beta(heta_i,lpha_i,$$

Very overfit model with 210 parameters. VARIANCE!

 $\beta_i),$

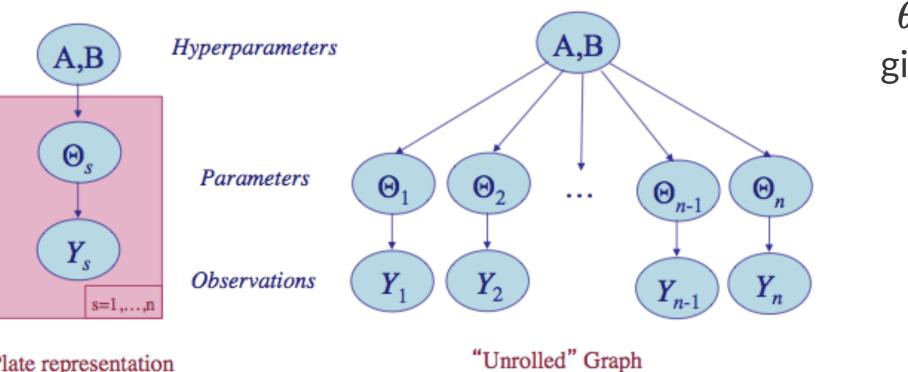
Full Pooling

Assume that there is only one θ in the problem, and set an prior on it.

Ignores any variation amongst the sampling units other than sampling variance.

Underfit model with 3 params. BIAS

Partial pooling: Hierarchical Model



 θ_i s drawn from "population distribution" given by a conjugate Beta prior $Beta(\alpha, \beta)$ with **hyperparameters** α and β .

Plate representation

 $heta_i \sim Beta(lpha, eta).$

70 $p(\Theta|lpha,eta)=\prod^{i}Beta(heta_i,lpha,eta).$ i=1

Priors from data

Where do α and β come from?

Why are we calling them hyperparameters?

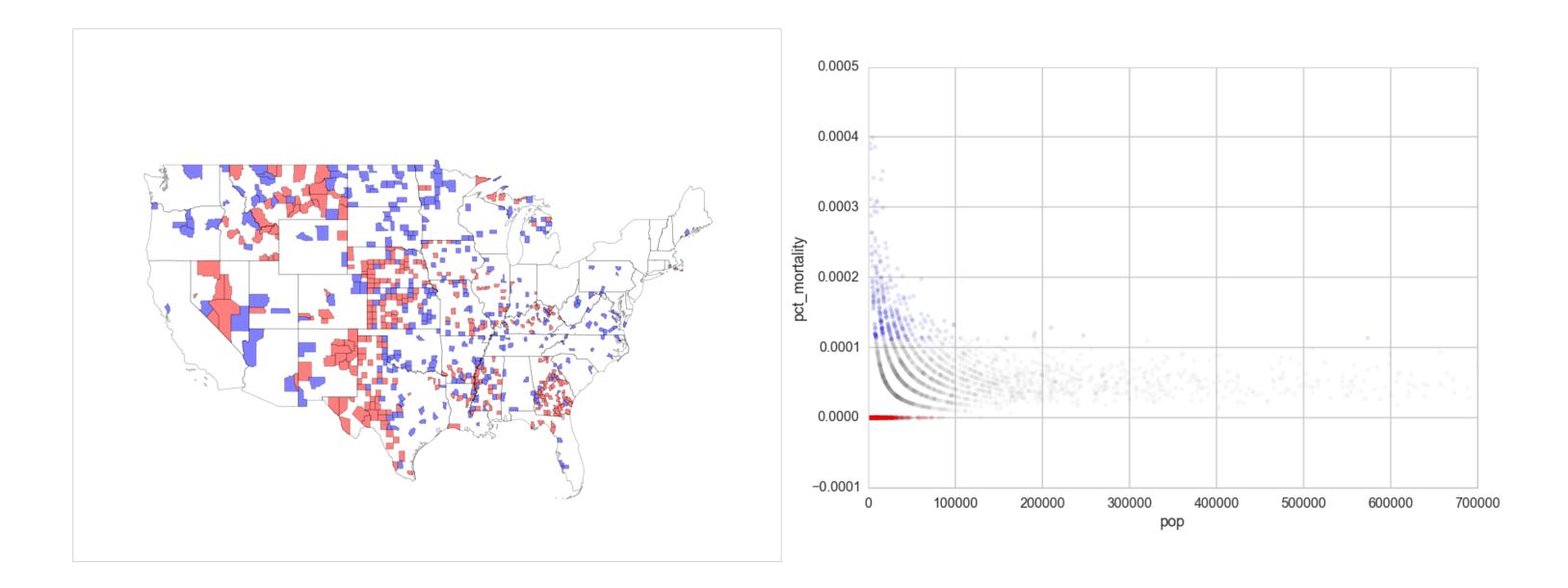
So far have assumed α and β known in priors to be weakly informative.

New idea: estimate priors from data. Looks like a cross-validation like setup.

Key Idea: Share statistical strength

- Some **units** (experiments) statistically more robust
- Non-robust experiments have smaller samples or outlier like behavior
- Borrow strength from all the data as a whole through the estimation of the hyperparameters
- regularized partial pooling model in which the "lower" parameters (θ s) tied together by "upper level" hyperparameters.

Another Example: Kidney cancers



First idea: estimate directly from data

Posterior-predictive distribution, as a function of upper level parameters $\eta = (\alpha, \beta)$.

$$p(y^*|D,\eta) = \int d heta \, p(y^*| heta) \, p(heta|D,\eta)$$

A likelihood with parameters η and simply use maximum-likelihood with respect to η to estimate these η using our "data" y^*

η)

Called Empirical Bayes or Type-2 MLE

- MLE with respect to η
- involves an optimization
- unlike cross-validation, θ s not-yet estimated on training set.
- indeed we marginalize over θ s so can use training set.
- in practice often match moments of predictive or posterior

EB for rats: prior/prior predictive...

Consider the prior expectation and variance:

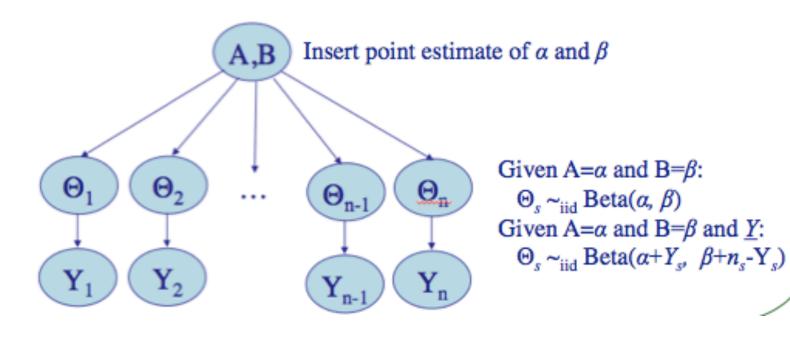
$$\mu = rac{lpha eta}{lpha + eta}, V = rac{lpha eta}{(lpha + eta)^2 (lpha + eta + 1)}$$

Match empirical mean and variance on y_i/n_i

- Need to be careful what "space" you are working in, predictive (y) or not
- Use prior predictive if in a "predictive space":

$$p(y^*) = E_{p(heta}[p(y^*| heta)] = \int d heta p(y^*| heta) p(heta).$$

- 8.7524354471531129)
- Beta:.



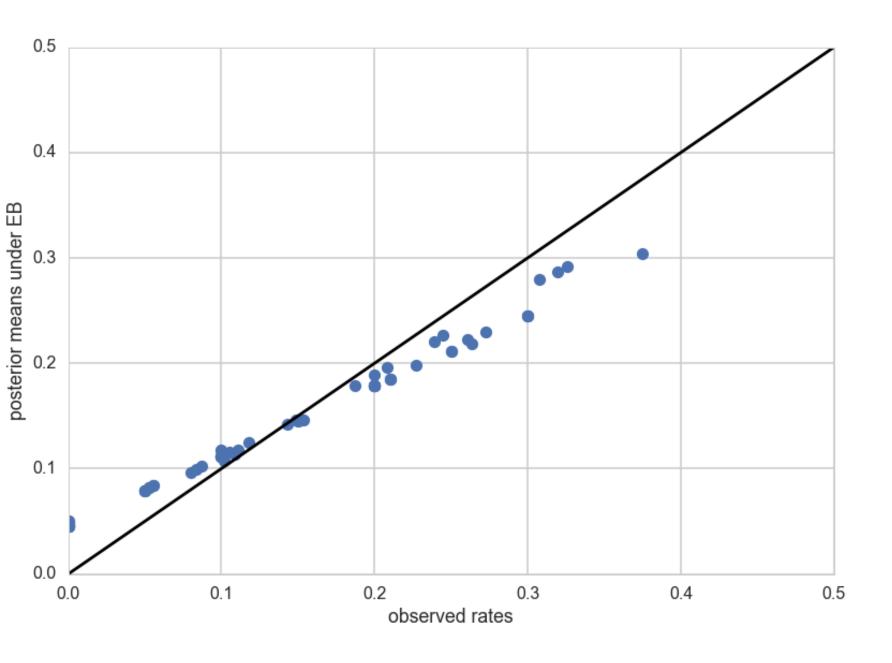
...to posterior/posterior predictive...

• $(\alpha, \beta) = (1.3777748392916778,$

 Conditional posterior distribution for each of the θ_i , given everything else is

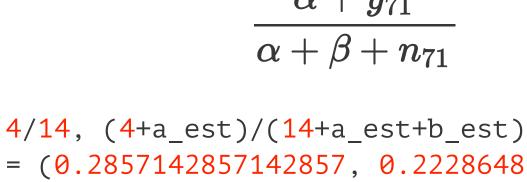
 $p(heta_i|y_i,n_i,lpha,eta)=Beta(lpha+y_i,eta+n_i-y_i)$

 $ar{ heta}_{post,i} = rac{lpha+y_i}{lpha+eta+n_i}$



pooling.

out of 14 rats having tumors. The posterior estimate for this would be



Shrinkage in rat (tumors)

- Posterior estimates shrink towards full
- Now, for the 71st experiment, we have 4

$$rac{lpha+y_{71}}{+eta+n_{71}}$$

= (0.2857142857142857, 0.22286481449822493)

Full Bayesian

- every optimization is a chance to overfit, would like to use integration all the way
- specify a hyper-prior $p(\eta)$ ($p(\alpha, \beta)$) on these hyperparameters η (α,β)
- helps us develop a computational strategy of gibbs sampling
- allows estimates of the probabilities of any one unit to borrow strength from all the data as a whole

Fully Bayesian Rat tumors

Joint Posterior:

$$p(\Theta,lpha,eta|Y,\{n_i\}) \propto p(lpha,eta) \prod_{i=1}^{70} Beta(heta_i,lpha,eta) \prod_{i=1}^{70}$$

Conditionals:

$$p(heta_i|y_i,n_i,lpha,eta)=Beta(lpha+y_i,eta+n_i)$$

$Binom(n_i,y_i, heta_i)$

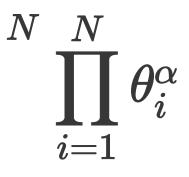
 $n_i - y_i)$

More Conditionals

$$p(lpha|Y,\Theta,eta) \propto p(lpha,eta) \left(rac{\Gamma(lpha+eta)}{\Gamma(lpha)}
ight)^N$$

$$P(eta|Y,\Theta,lpha) \propto p(lpha,eta) \left(rac{\Gamma(lpha+eta)}{\Gamma(eta)}
ight)^N \prod_{i=1}^N$$

These depend on Y and $\{n\}$ via the θ 's



$\prod_{i=1}^{N} (1-\theta_i)^{\beta_i}$

Sampling (sampler done in lab)

- Fix α and β , we have a Gibbs step for all of the θ_i s
- For α and β , everything else fixed, use stationary metropolis step, as conditionals are not isolatable to simply sampled distributions
- when we sample for α , we will propose a new value using a normal proposal, while holding all the θ s and β constant at the old value. ditto for β .

Hierarchy organizes exchangeability

- we use the notion of exchangeability at the level of 'units'.
- for our rats, the y_i were exchangeable since we had no additional information about experimental conditions.
- if specific groups of experiments came from specific laboratories, assume experiments interchangeable if from the same lab.
- lab specific α_{lab} and β_{lab} parameters
- add another level of hierarchy to draw these from hyperprior. 👹 AM 207