
Lecture 14
Formal Tests and Gibbs Sampling



Previously

• the bayesian setup

• marginaliza3on and posterior predic3ves

• globe tossing and beta-binomial

• exchangeability and poisson-gamma

• the coal disasters



Marginaliza)on

Marginal posterior: 

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
    pd.Series(samps[20000::,0], name="$\mu$"),
    pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
    .plot_joint(
        sns.kdeplot,
    zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])



Posterior Predic+ve

The distribu,on of a future data point :

.

First draw the thetas from the posterior, 
then draw y's from the likelihood (these 
are draws from joint )
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)



(from @ericnovik)



Exchangeability

Lets assume that the number of children of a women in any one of 
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a 
permuta7on of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...



Today

• formal convergence criterion (coal disasters)

• convergence paranoia

• gibbs sampling

• hierarchical models

• empirical bayes

• full hierarchical model (in lab)





Model



from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
    stepper=pm.Metropolis()
    trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]



Imputa'on

>>>disasters_missing = np.array([ 4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])
>>>disasters_masked = np.ma.masked_values(disasters_missing, value=-999)

An array with mask set to True where data is missing.



with pm.Model() as missing_data_model:
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
    early_mean = pm.Exponential('early_mean', lam=1.)
    late_mean = pm.Exponential('late_mean', lam=1.)
    idx = np.arange(len(disasters_masked))
    rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
    disasters = pm.Poisson('disasters', rate, observed=disasters_masked)

with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(10000, step=stepper)

pm.summary(trace_missing, varnames=['disasters_missing'])

disasters_missing:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  2.189            1.825            0.078            [0.000, 6.000]
  0.950            0.980            0.028            [0.000, 3.000]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.000          1.000          2.000          3.000          6.000
  0.000          0.000          1.000          2.000          3.000



Model convergence

• traces white noisy

• diagnose autocorrela3on, check 
parameter correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m 
samples

• traceplots from different star7ng points, 
different chains

• formal tests: Gewecke, Gelman-Rubin, 
Effec7ve Sample Size



Gewecke: difference of means

with coaldis1:
    stepper=pm.Metropolis()
    tr = pm.sample(2000, step=stepper)

z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)



Gelman-Rubin

Mul$ple chains..compute within chain 
variance and compare to between chain 
variance



Use weighted average of  and  to es1mate variance of the 
sta1onary distribu1on pm.gelman_rubin(trace):

Overes&mates our variance, but unbiased under sta&onarity.

Ra#o of the es#mated distribu#on variance to asympto#c one:



ESS: Effec(ve Sample Size

IIDness of draws decreases

pm.effective_n(trace)

{'early_mean': 16857.0,
 'early_mean_log_': 12004.0,
 'late_mean': 27344.0,
 'late_mean_log_': 27195.0,
 'switchpoint': 195.0}

(40000 samples)

 



Posterior Predic+ve Checks

 with coaldis1:
    sim = pm.sample_ppc(t2, samples=200)



Another sampler issue: Non-Iden5fiability

Generate data from N(0,1). Then fit:



Correla'on diagnos'c

sigma = pm.HalfCauchy("sigma", beta=1)
alpha1=pm.Uniform('alpha1', lower=-10**6, upper=10**6)
alpha2=pm.Uniform('alpha2', lower=-10**6, upper=10**6)
mu = pm.Deterministic("mu", alpha1 + alpha2)
y = pm.Normal("data", mu=mu, sd=sigma, observed=data)



>>>pm.effective_n(traceni)
{'alpha1': 1.0,
 'alpha1_interval_': 1.0,
 'alpha2': 1.0,
 'alpha2_interval_': 1.0,
 'mu': 26411.0,
 'sigma': 39215.0,
 'sigma_log_': 39301.0}
 >>>pm.gelman_rubin(traceni)
 {'alpha1': 1.7439881580327452,
  'alpha1_interval_': 1.7439881580160093,
  'alpha2': 1.7438626593529831,
  'alpha2_interval_': 1.7438626593368223,
  'mu': 0.99999710182062695,
  'sigma': 1.0000248056117549,
  'sigma_log_': 1.0000261752214563}



Is autocorrela,on bad?

• depends on what you want to do

• this is true for  in general

• does not ma5er much for means

• ma5ers for credible intervals as we need tails



Thoughts on Diagnos-cs

• be paranoid, you only know you have not converged, not if you 
have

• what if you missed out an en:re lobe? Thus mul:ple chains and 
mul:ple star:ng points.

• check posterior correla:ons, trace autocorrela:on, effec:ve , 
the look of the trace, the acceptance rate

• check gewecke and gelman-rubin



Gibbs Sampling and Hierarchical models.

• the idea behind gibbs sampling

• examples of gibbs sampling

• gibbs is an always accepted MH

• hierarchical models as regularizers

• empirical bayes (for rat tumors)

• se=ng up full bayes for hierarchical models



What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling 
through all the par7cles, drawing from each one of them 
condi7onally given the energy levels of the others, taking the 7me 
average.

Geman and Geman used this idea to denoise images.



The idea of Gibbs

Thus:  integral fixed point equa5on

where 



Itera&ve scheme in which the "transi&on kernel"  is used to 
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get 

transi1ons.

Can sample  marginal and  so can sample the joint .



Example

Sample from 



Condi&onals



Sampler

def xcond(y):
    return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
    return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
    x=start[0]
    y=start[1]
    samples=np.zeros((N+1, 2))
    samples[0,0]=x
    samples[0,1]=y    
    for i in range(1,N,2):
        x=xgiveny_sample(y)
        samples[i,0]=x
        samples[i, 1]=y
        ######################
        y=ygivenx_sample(x)
        samples[i+1,0]=x
        samples[i+1,1]=y    
    return samples
out=gibbs(xcond, ycond, 100000)



More about gibbs

• easiest is to know how to sample 
directly from condi5onals: no need for 
locality

• moves one component (or one block) at 
a 5me

• all is not lost if thats not the case: can 
use a MH-step once sta5onarity has 
been reached

• this makes gibbs a very general idea



Autocorrela*on

• this joint has very li0le autocorrela3on

• highly correlated joints will have lots of 
autocorrela3on

• thinning/longer chains may be required, 
but as usual it depends on what you are 
trying to calculate.

• expecta3ons require far fewer samples

• complete posterior characteriza3on 
require many more



More Gibbs Theory

The transi+on kernel corresponds to this 
proposal:

where  is the th component (or block) 
of  at th step, while  is all other 
components of  at the same step



Gibbs=MH with no rejec2on

Componentwise update,  and  is 1!



Rat Tumors

• tumors in female rats of type "F344" 
that recieve a par8cular drug, in 70 
different experiments.

• mean and variance of tumor incidence: 
0.13600653889043893, 
0.010557640623609196

• 71st experiment done: 4 out of 14 rats 
develop tumors. Es8mate the risk of 
tumor in the rats in the 71st experiment



Modeling

Need to choose a prior .



No Pooling

Separate priors on each :

Very overfit model with 210 parameters. VARIANCE!



Full Pooling

Assume that there is only one  in the problem, and set an prior on 
it.

Ignores any varia-on amongst the sampling units other than 
sampling variance.

Underfit model with 3 params. BIAS



Par$al pooling: Hierarchical 
Model

s drawn from "popula/on distribu/on" 
given by a conjugate Beta prior  

with hyperparameters  and .



Priors from data

Where do  and  come from?

Why are we calling them hyperparameters?

So far have assumed  and  known in priors to be weakly 
informa7ve.

New idea: es*mate priors from data. Looks like a cross-valida*on 
like setup.



Key Idea: Share sta.s.cal strength

• Some units (experiments) sta1s1cally more robust

• Non-robust experiments have smaller samples or outlier like 
behavior

• Borrow strength from all the data as a whole through the 
es1ma1on of the hyperparameters

• regularized par/al pooling model in which the "lower" 
parameters ( s) 1ed together by "upper level" hyperparameters.



Another Example: Kidney cancers



First idea: es+mate directly from data

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood 
with respect to  to es7mate these  using our "data" 



Called Empirical Bayes or Type-2 MLE

• MLE with respect to 

• involves an op4miza4on

• unlike cross-valida4on, s not-yet es4mated on training set.

• indeed we marginalize over s so can use training set.

• in prac4ce o?en match moments of predic4ve or posterior



EB for rats: prior/prior predic1ve...

Consider the prior expecta0on and variance: 

Match empirical mean and variance on 

• Need to be careful what "space" you are working in, predic:ve ( ) or not

• Use prior predic:ve if in a "predic:ve space":

.



...to posterior/posterior 
predic-ve...

•  = (1.3777748392916778, 
8.7524354471531129)

• Condi)onal posterior distribu)on for 
each of the , given everything else is 
Beta:.



Shrinkage in rat (tumors)

Posterior es)mates shrink towards full 
pooling.

Now, for the 71st experiment, we have 4 
out of 14 rats having tumors. The 
posterior es:mate for this would be

4/14, (4+a_est)/(14+a_est+b_est)
= (0.2857142857142857, 0.22286481449822493)



Full Bayesian

• every op)miza)on is a chance to overfit, would like to use 
integra)on all the way

• specify a hyper-prior  ( ) on these hyperparameters  
( )

• helps us develop a computa)onal strategy of gibbs sampling

• allows es)mates of the probabili)es of any one unit to borrow 
strength from all the data as a whole



Fully Bayesian Rat tumors

Joint Posterior: 

Condi&onals:



More Condi*onals

These depend on  and  via the 's



Sampling (sampler done in lab)

• Fix  and , we have a Gibbs step for all of the s

• For  and , everything else fixed, use sta;onary metropolis step, 
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a 
normal proposal, while holding all the s and  constant at the 
old value. di?o for .



Hierarchy organizes exchangeability

• we use the no+on of exchangeability at the level of 'units'.

• for our rats, the  were exchangeable since we had no addi+onal 
informa+on about experimental condi+ons.

• if specific groups of experiments came from specific laboratories, 
assume experiments interchangeable if from the same lab.

• lab specific  and  parameters

• add another level of hierarchy to draw these from hyperprior.


