
Lecture 12

Bayesian Stats



Last &me: Metropolis, MH

• sta%onarity and ergodicity

• metropolis

• dont rejec%on sample

• MH uses asymmetric proposals

• tuning width up decreases acceptance, down increases 
acceptance



some rules of thumb

• want acceptance at about 30-40%

• want autocorrela4on low, traceplots to look like white noise

• perform burnin (get to sta4onarity) and perhps thinning (reduce 
autocorrela4on if you need to save space, generally its not 
needed; with thinning you will need a longer chain)



Last &me: Bayesian

• sample is the data fixed

• parameter is stochas2c, has prior and posterior distribu2on

• posterior: , can summarize via MAP

• just bayes rule: 



Bayesian, contd.

• evidence:  a normaliza0on, 

irrelevant for sampling



Today

• discrete sampling

• Bayes revisited and the normal normal model through sampling

• the posterior predic6ve and decision theory

• Bayesian workflow in the macro

• conjugate priors

• sufficient sta6s6cs, exchangeability and the poisson-gamma 



Discrete distribu,on MCMC

• proposal distribu.on becomes proposal matrix

• index the discrete outcomes

• can use symmetric or asymmetric proposal as long as rows sum 
to 1

• make sure proposal matrix is irreducible: ie you can get from 
any index to any other one.



Rain-Sun transi,on matrix

transition_matrix = np.array([[0.3, 0.7],[0.5, 0.5]])
print(np.linalg.matrix_power(transition_matrix,10))

The transition matrix
[[ 0.3  0.7]
 [ 0.5  0.5]]
Stationary distribution
[[ 0.41666673  0.58333327]
 [ 0.41666662  0.58333338]]



Problems with samplers, even with sta3onarity



Ergodicity to the rescue..

..if the universe does not die a heat death first...

conceptually:

If there exists a sta,onary , you can construct a  such that

 is sta&onary and converges to , and

• an ergodic law of large numbers exists

• an ergodic central limit theorem exists



Start from sta*onary distribu*on

def rainsunpmf(state_int):
    p = 0.416667
    if state_int==0:                            
        return p                                 
    else:#anything else is treated as a 1
        return 1 - p



p_sym = np.array([[0.1, 0.9],[0.9, 0.1]])
p_asym = np.array([[0.1, 0.9],[0.3, 0.7]])

def rainsunprop(sint_old):
    return np.random.choice(2,p=p_sym[sint_old])
def rainsunprop_asym(sint_old):
    return np.random.choice(2,p=p_asym[sint_old])
def rainsunpropfunc_asym(sint_new, sint_old):
    return p_asym[sint_old][sint_new]
samps_dis, acc_dis = metropolis(rainsunpmf, rainsunprop, 1000, 1)
samps_dis2, acc_dis2 = metropolis_hastings(rainsunpmf,
     rainsunpropfunc_asym, rainsunprop_asym, 1000, 1)



Both give same sta-onary distribu-on



Example: generate poisson



def prop_draw(ifrom):
    u = np.random.uniform()
    if ifrom !=0:
        if u < 1/2:
            ito = ifrom -1
        else:
            ito = ifrom + 1
    else:
        if u < 1/2:
            ito=0
        else:
            ito=1
    return ito

def prop_pdf(ito, ifrom):
    if ito == ifrom - 1:
        return 0.5
    elif ito == ifrom + 1:
        return 0.5
    elif ito == ifrom and ito == 0:#needed to make first row sum to 1
        return 0.5
    else:
        return 0



Bayesian Stats: posterior distribu2on

with the evidence  or  the expected likelihood (on exis3ng 
data points) over the prior :



•

• evidence is just the normaliza4on

• usually dont care about normaliza4on 
(un4l model comparison), just samples



2 key slides: Marginaliza1on

What if  is mul,dimensional?

Marginal posterior: 



Normal-Normal Model

• fixed  prior: 

• non-fixed  prior: Choose a func.onal form that is mildly 
informa.ve, e.g., normal, half cauchy, half normal

•  prior: Mildly informa.ve normal with prior mean and wide 
standard devia.on



• fixed 

logprior = lambda mu:
    norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu:
    np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu:
    loglike(mu) + logprior(mu)

• non-fixed :

logprior = lambda mu, sigma:
    norm.logpdf(mu, loc=mu_prior, scale=std_prior) +
    norm.logpdf(sigma, loc=sig_data, scale=2)
loglike = lambda mu, sigma:
    np.sum(norm.logpdf(Y, loc=mu, scale=sigma))
logpost = lambda mu, sigma:
    loglike(mu, sigma) + logprior(mu, sigma)



Marginaliza)on

Marginal posterior: 

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
    pd.Series(samps[20000::,0], name="$\mu$"),
    pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
    .plot_joint(
        sns.kdeplot,
    zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])



Posterior Predic+ve

The distribu,on of a future data point :

.

First draw the thetas from the posterior, 
then draw y's from the likelihood (these 
are draws from joint )
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)



(from @ericnovik)



Conjugate Prior

• A conjugate prior is one which, when mul0plied with an 
appropriate likelihood, gives a posterior with the same func0onal 
form as the prior.

• Likelihoods in the exponen0al family have conjugate priors in the 
same family

• analy0cal tractability AND interpretability



Coin Toss Model

• Coin tosses are modeled using the Binomial Distribu5on, which 
is the distribu5on of a set of Bernoulli random variables.

• The Beta distribu5on is conjugate to the Binomial distribu5on

Because of the conjugacy, this turns out to be:



• think of a prior as a regularizer.

• a  prior is equivalent to a uniform distribu9on.

• This is an uninforma)ve prior. Here the prior adds one heads 
and one tails to the actual data, providing some "towards-center" 
regulariza9on

• especially useful where in a few tosses you got all heads, clearly 
at odds with your beliefs.

• a  prior would bias you to more heads (water in globe 
toss).





Bayesian Upda,ng "on-line"

• as each piece of data comes in, you update the prior by 
mul6plying by the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!



Globe Toss Model

• Seal tosses globe,  is true water frac3on

• The Beta distribu3on is conjugate to the Binomial distribu3on

• Because of the conjugacy, this turns out to be:

• a  prior is equivalent to a uniform distribu3on.



Bayesian Upda,ng of globe

• data WLWWWLWLW

• no(ce how the posterior shi1s le1 and 
right depending on new data

At each step:



Posterior

• The probability that the amount of 
water is less than 50%: 
np.mean(samples < 0.5) = 
0.173

• Credible Interval: amount of probability 
mass. np.percentile(samples, 
[10, 90]) = [ 0.44604094,  
0.81516349]

• np.mean(samples), 
np.median(samples) = 
(0.63787343440335842, 
0.6473143052303143)



MAP, a point es.mate

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304



Posterior Mean minimizes 
squared loss

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

This is Decision Theory.



Posterior predic,ve

Risk Minimiza+on holds here too: 

Plug-in Approxima0on:  and then draw

 a sampling distribu/on.



(from @ericnovik)



Posterior predic,ve from 
sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint 

postpred = np.random.binomial( len(data), samples);



Posterior predic,ve for globe tosses



Sufficient Sta+s+cs and the exponen+al family

Likelihood: 

 is said to be a sufficient sta+s+c for 



Poisson Gamma Example

The data consists of 155 women who were 40 years old. We are 
interested in the birth rate of women with a college degree and 
women without. We are told that 111 women without college 

degrees have 217 children, while 44 women with college degrees 
have 66 children.

Let  children for the  women without college 
degrees, and  for  women with college degrees.



Exchangeability

Lets assume that the number of children of a women in any one of 
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a 
permuta7on of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...



Poisson likelihood



Posterior

, total number of children in each class of mom, is sufficient 
sta+s+cs



Conjugate prior

Sampling distribu0on for : 

Form is of . In shape-rate parametriza3on (wikipedia)

Posterior: 



Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance: 



Posteriors

np.mean(theta1), np.var(theta1) 
= (1.9516881521791478, 
0.018527204185785785)

np.mean(theta2), np.var(theta2) 
= (1.5037252100213609, 
0.034220717257786061)



Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:



But see width:

np.mean(postpred1), np.var(postpred1)=(1.976, 
1.8554239999999997)

Posterior predic,ve smears out posterior error with sampling 
distribu,on

• use for making predic2ons

• use for model checking using cross-valida2on; also for data 
visualiza2on



Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of  assuming we
know ?

Prior for  is 



The conjugate of the normal is the normal itself.

Say we have the prior

posterior: 



Here

Define 

which is a weighted average of prior mean and sampling mean.



The variance is

or be&er

 as  increases, the data dominates the prior and the posterior 
mean approaches the data mean, with the posterior distribu3on 
narrowing...



Posterior vs prior

Y = [16.4, 17.0, 17.2, 17.4, 18.2, 18.2, 18.2, 19.9, 20.8]
#Data Quantities
sig = np.std(Y) # assume that is the value of KNOWN sigma (in the likelihood)
mu_data = np.mean(Y)
n = len(Y)
# Prior mean
mu_prior = 19.5
# prior std
tau = 10
# plug in formulas
kappa = sig**2 / tau**2
sig_post =np.sqrt(1./( 1./tau**2 + n/sig**2));
# posterior mean
mu_post = kappa / (kappa + n) *mu_prior + n/(kappa+n)* mu_data
#samples
N = 15000
theta_prior = np.random.normal(loc=mu_prior, scale=tau, size=N);
theta_post = np.random.normal(loc=mu_post, scale=sig_post, size=N);



Bioassay

Dose �  log(g/ml) Number of animals � Number of deaths �

-0.86 5 0

-0.30 5 1

-0.05 5 3

+0.73 5 5



Bioassays are typically conducted to measure the effects of a 
substance on a living organism

The death rate is usually modeled as logit  with two parameters 
(see below). The goal is to es7mate those parameters and be able 
to infer death rates as a func7on of dose.

This is a success-failure experiment with failure=death (morbid, I 
know).



The likelihood since is a success/fail experiment is expressed as a 
Binomial:

Likelihood: 

where  is the rate of deaths in the th experiment.

We use flat priors for : 



Posterior:

2 ways to sample:



• Blockwise Upda/ng in which we simply use a 2D-proposal 
func6on like a 2-D gaussian. Simple and you can make diagonal 
moves, but the disadvantage to this is that it can take a very long 
6me to cover the space.

• Componentwise Upda/ng. Steps only in one dimension at a 
6me. You then accept or not, and repeat. The advantage is that 
you can make big strides. The disadvantage is that you may 
sample only in one axis for a bit, but this evens out in the long 
run.



Grid Approxima,on

## invLogit this is the same as a sigmoid
logitInv= lambda x: np.exp(x)/(1.0+np.exp(x))

## posterior
def calc_posterior(a, b, y=Y, x=X):
    # Calculate joint posterior, given values for a, b
    # x: dosage
    # y: number of deaths
    # a + b: parameters of the model
    p = np.product((logitInv(a+b*x)**y)*(1.0-logitInv( a+b*x))**(n-y))
    return p

# basically calculate the pdf on a grid
X1 = np.linspace(-3,7,101) # alpha
X2 = np.linspace(-10, 30,100) # beta
k=0;j=0
pp=np.zeros((101,100))
for x1 in X1:
    j=0
    for x2 in X2:
        pp[k,j]=calc_posterior(x1,x2)
        j +=1
    k +=1

# look at the posterior distribution
plt.contourf(X1,X2,pp.T)
plt.colorbar()



Posterior from componentwise sampling


