
Lecture 12

Bayesian Stats

Last &me: Metropolis, MH

• sta%onarity and ergodicity

• metropolis

• dont rejec%on sample

• MH uses asymmetric proposals

• tuning width up decreases acceptance, down increases
acceptance

some rules of thumb

• want acceptance at about 30-40%

• want autocorrela4on low, traceplots to look like white noise

• perform burnin (get to sta4onarity) and perhps thinning (reduce
autocorrela4on if you need to save space, generally its not
needed; with thinning you will need a longer chain)

Last &me: Bayesian

• sample is the data fixed

• parameter is stochas2c, has prior and posterior distribu2on

• posterior: , can summarize via MAP

• just bayes rule:

Bayesian, contd.

• evidence: a normaliza0on,

irrelevant for sampling

Today

• discrete sampling

• Bayes revisited and the normal normal model through sampling

• the posterior predic6ve and decision theory

• Bayesian workflow in the macro

• conjugate priors

• sufficient sta6s6cs, exchangeability and the poisson-gamma

Discrete distribu,on MCMC

• proposal distribu.on becomes proposal matrix

• index the discrete outcomes

• can use symmetric or asymmetric proposal as long as rows sum
to 1

• make sure proposal matrix is irreducible: ie you can get from
any index to any other one.

Rain-Sun transi,on matrix

transition_matrix = np.array([[0.3, 0.7],[0.5, 0.5]])
print(np.linalg.matrix_power(transition_matrix,10))

The transition matrix
[[0.3 0.7]
 [0.5 0.5]]
Stationary distribution
[[0.41666673 0.58333327]
 [0.41666662 0.58333338]]

Problems with samplers, even with sta3onarity

Ergodicity to the rescue..

..if the universe does not die a heat death first...

conceptually:

If there exists a sta,onary , you can construct a such that

 is sta&onary and converges to , and

• an ergodic law of large numbers exists

• an ergodic central limit theorem exists

Start from sta*onary distribu*on

def rainsunpmf(state_int):
 p = 0.416667
 if state_int==0:
 return p
 else:#anything else is treated as a 1
 return 1 - p

p_sym = np.array([[0.1, 0.9],[0.9, 0.1]])
p_asym = np.array([[0.1, 0.9],[0.3, 0.7]])

def rainsunprop(sint_old):
 return np.random.choice(2,p=p_sym[sint_old])
def rainsunprop_asym(sint_old):
 return np.random.choice(2,p=p_asym[sint_old])
def rainsunpropfunc_asym(sint_new, sint_old):
 return p_asym[sint_old][sint_new]
samps_dis, acc_dis = metropolis(rainsunpmf, rainsunprop, 1000, 1)
samps_dis2, acc_dis2 = metropolis_hastings(rainsunpmf,
 rainsunpropfunc_asym, rainsunprop_asym, 1000, 1)

Both give same sta-onary distribu-on

Example: generate poisson

def prop_draw(ifrom):
 u = np.random.uniform()
 if ifrom !=0:
 if u < 1/2:
 ito = ifrom -1
 else:
 ito = ifrom + 1
 else:
 if u < 1/2:
 ito=0
 else:
 ito=1
 return ito

def prop_pdf(ito, ifrom):
 if ito == ifrom - 1:
 return 0.5
 elif ito == ifrom + 1:
 return 0.5
 elif ito == ifrom and ito == 0:#needed to make first row sum to 1
 return 0.5
 else:
 return 0

Bayesian Stats: posterior distribu2on

with the evidence or the expected likelihood (on exis3ng
data points) over the prior :

•

• evidence is just the normaliza4on

• usually dont care about normaliza4on
(un4l model comparison), just samples

2 key slides: Marginaliza1on

What if is mul,dimensional?

Marginal posterior:

Normal-Normal Model

• fixed prior:

• non-fixed prior: Choose a func.onal form that is mildly
informa.ve, e.g., normal, half cauchy, half normal

• prior: Mildly informa.ve normal with prior mean and wide
standard devia.on

• fixed

logprior = lambda mu:
 norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu:
 np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu:
 loglike(mu) + logprior(mu)

• non-fixed :

logprior = lambda mu, sigma:
 norm.logpdf(mu, loc=mu_prior, scale=std_prior) +
 norm.logpdf(sigma, loc=sig_data, scale=2)
loglike = lambda mu, sigma:
 np.sum(norm.logpdf(Y, loc=mu, scale=sigma))
logpost = lambda mu, sigma:
 loglike(mu, sigma) + logprior(mu, sigma)

Marginaliza)on

Marginal posterior:

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
 pd.Series(samps[20000::,0], name="μ"),
 pd.Series(samps[20000::,1], name="σ"),
 alpha=0.02)
 .plot_joint(
 sns.kdeplot,
 zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])

Posterior Predic+ve

The distribu,on of a future data point :

.

First draw the thetas from the posterior,
then draw y's from the likelihood (these
are draws from joint)
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)

(from @ericnovik)

Conjugate Prior

• A conjugate prior is one which, when mul0plied with an
appropriate likelihood, gives a posterior with the same func0onal
form as the prior.

• Likelihoods in the exponen0al family have conjugate priors in the
same family

• analy0cal tractability AND interpretability

Coin Toss Model

• Coin tosses are modeled using the Binomial Distribu5on, which
is the distribu5on of a set of Bernoulli random variables.

• The Beta distribu5on is conjugate to the Binomial distribu5on

Because of the conjugacy, this turns out to be:

• think of a prior as a regularizer.

• a prior is equivalent to a uniform distribu9on.

• This is an uninforma)ve prior. Here the prior adds one heads
and one tails to the actual data, providing some "towards-center"
regulariza9on

• especially useful where in a few tosses you got all heads, clearly
at odds with your beliefs.

• a prior would bias you to more heads (water in globe
toss).

Bayesian Upda,ng "on-line"

• as each piece of data comes in, you update the prior by
mul6plying by the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!

Globe Toss Model

• Seal tosses globe, is true water frac3on

• The Beta distribu3on is conjugate to the Binomial distribu3on

• Because of the conjugacy, this turns out to be:

• a prior is equivalent to a uniform distribu3on.

Bayesian Upda,ng of globe

• data WLWWWLWLW

• no(ce how the posterior shi1s le1 and
right depending on new data

At each step:

Posterior

• The probability that the amount of
water is less than 50%:
np.mean(samples < 0.5) =
0.173

• Credible Interval: amount of probability
mass. np.percentile(samples,
[10, 90]) = [0.44604094,
0.81516349]

• np.mean(samples),
np.median(samples) =
(0.63787343440335842,
0.6473143052303143)

MAP, a point es.mate

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304

Posterior Mean minimizes
squared loss

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

This is Decision Theory.

Posterior predic,ve

Risk Minimiza+on holds here too:

Plug-in Approxima0on: and then draw

 a sampling distribu/on.

(from @ericnovik)

Posterior predic,ve from
sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint

postpred = np.random.binomial(len(data), samples);

Posterior predic,ve for globe tosses

Sufficient Sta+s+cs and the exponen+al family

Likelihood:

 is said to be a sufficient sta+s+c for

Poisson Gamma Example

The data consists of 155 women who were 40 years old. We are
interested in the birth rate of women with a college degree and
women without. We are told that 111 women without college

degrees have 217 children, while 44 women with college degrees
have 66 children.

Let children for the women without college
degrees, and for women with college degrees.

Exchangeability

Lets assume that the number of children of a women in any one of
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a
permuta7on of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...

Poisson likelihood

Posterior

, total number of children in each class of mom, is sufficient
sta+s+cs

Conjugate prior

Sampling distribu0on for :

Form is of . In shape-rate parametriza3on (wikipedia)

Posterior:

Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance:

Posteriors

np.mean(theta1), np.var(theta1)
= (1.9516881521791478,
0.018527204185785785)

np.mean(theta2), np.var(theta2)
= (1.5037252100213609,
0.034220717257786061)

Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:

But see width:

np.mean(postpred1), np.var(postpred1)=(1.976,
1.8554239999999997)

Posterior predic,ve smears out posterior error with sampling
distribu,on

• use for making predic2ons

• use for model checking using cross-valida2on; also for data
visualiza2on

Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of assuming we
know ?

Prior for is

The conjugate of the normal is the normal itself.

Say we have the prior

posterior:

Here

Define

which is a weighted average of prior mean and sampling mean.

The variance is

or be&er

 as increases, the data dominates the prior and the posterior
mean approaches the data mean, with the posterior distribu3on
narrowing...

Posterior vs prior

Y = [16.4, 17.0, 17.2, 17.4, 18.2, 18.2, 18.2, 19.9, 20.8]
#Data Quantities
sig = np.std(Y) # assume that is the value of KNOWN sigma (in the likelihood)
mu_data = np.mean(Y)
n = len(Y)
Prior mean
mu_prior = 19.5
prior std
tau = 10
plug in formulas
kappa = sig**2 / tau**2
sig_post =np.sqrt(1./(1./tau**2 + n/sig**2));
posterior mean
mu_post = kappa / (kappa + n) *mu_prior + n/(kappa+n)* mu_data
#samples
N = 15000
theta_prior = np.random.normal(loc=mu_prior, scale=tau, size=N);
theta_post = np.random.normal(loc=mu_post, scale=sig_post, size=N);

Bioassay

Dose � log(g/ml) Number of animals � Number of deaths �

-0.86 5 0

-0.30 5 1

-0.05 5 3

+0.73 5 5

Bioassays are typically conducted to measure the effects of a
substance on a living organism

The death rate is usually modeled as logit with two parameters
(see below). The goal is to es7mate those parameters and be able
to infer death rates as a func7on of dose.

This is a success-failure experiment with failure=death (morbid, I
know).

The likelihood since is a success/fail experiment is expressed as a
Binomial:

Likelihood:

where is the rate of deaths in the th experiment.

We use flat priors for :

Posterior:

2 ways to sample:

• Blockwise Upda/ng in which we simply use a 2D-proposal
func6on like a 2-D gaussian. Simple and you can make diagonal
moves, but the disadvantage to this is that it can take a very long
6me to cover the space.

• Componentwise Upda/ng. Steps only in one dimension at a
6me. You then accept or not, and repeat. The advantage is that
you can make big strides. The disadvantage is that you may
sample only in one axis for a bit, but this evens out in the long
run.

Grid Approxima,on

invLogit this is the same as a sigmoid
logitInv= lambda x: np.exp(x)/(1.0+np.exp(x))

posterior
def calc_posterior(a, b, y=Y, x=X):
 # Calculate joint posterior, given values for a, b
 # x: dosage
 # y: number of deaths
 # a + b: parameters of the model
 p = np.product((logitInv(a+b*x)**y)*(1.0-logitInv(a+b*x))**(n-y))
 return p

basically calculate the pdf on a grid
X1 = np.linspace(-3,7,101) # alpha
X2 = np.linspace(-10, 30,100) # beta
k=0;j=0
pp=np.zeros((101,100))
for x1 in X1:
 j=0
 for x2 in X2:
 pp[k,j]=calc_posterior(x1,x2)
 j +=1
 k +=1

look at the posterior distribution
plt.contourf(X1,X2,pp.T)
plt.colorbar()

Posterior from componentwise sampling

