Lecture 12 Bayesian Stats

Last time: Metropolis, MH

- stationarity and ergodicity
- metropolis
- dont rejection sample
- MH uses asymmetric proposals
- tuning width up decreases acceptance, down increases acceptance

some rules of thumb

- want acceptance at about 30-40%
- want autocorrelation low, traceplots to look like white noise
- perform burnin (get to stationarity) and perhps thinning (reduce) autocorrelation if you need to save space, generally its not needed; with thinning you will need a longer chain)

Last time: Bayesian

- sample is the data fixed
- parameter is stochastic, has prior and posterior distribution

• posterior:
$$p(heta|y) = rac{p(y| heta)\,p(heta)}{p(y)}$$
, can summarize

• just bayes rule: $posterior = \frac{likelihood \times prior}{evidence}$

via MAP

Bayesian, contd.

- evidence:
$$p(y) = E_{p(heta)}[\mathcal{L}] = \int d heta p(y| heta) p(heta)$$
 a r

irrelevant for sampling

normalization,

Today

- discrete sampling
- Bayes revisited and the normal normal model through sampling
- the posterior predictive and decision theory
- Bayesian workflow in the macro
- conjugate priors
- sufficient statistics, exchangeability and the poisson-gamma

Discrete distribution MCMC

- proposal distribution becomes proposal matrix
- index the discrete outcomes
- can use symmetric or asymmetric proposal as long as rows sum to 1
- make sure proposal matrix is irreducible: ie you can get from any index to any other one.

Rain-Sun transition matrix

transition_matrix = np.array([[0.3, 0.7], [0.5, 0.5]]) print(np.linalq.matrix power(transition matrix, 10))

The transition matrix [[0.3 0.7] [0.5 0.5]] Stationary distribution [[0.41666673 0.58333327] [0.41666662 0.58333338]]

```
In [14]: f = lambda a,b: np.array([[a, 1-a],[b,1-b]])
In [16]: fp(0.5, 0.7)
Out[16]:
array([[ 0.58333333, 0.41666667],
       [ 0.58333333, 0.416666667]])
In [17]: fp(0.1, 0.2)
Out[17]:
array([[ 0.18181818, 0.81818182],
       [ 0.18181818, 0.81818182]])
```


In [15]: fp = lambda a,b: np.linalg.matrix_power(f(a,b), 100)

Problems with samplers, even with stationarity

Ergodicity to the rescue..

.. if the universe does not die a heat death first...

conceptually:

If there exists a stationary s(x), you can construct a T such that

 $\lim_{t \to \infty} T^n$ is stationary and converges to s, and

- an ergodic law of large numbers exists
- an ergodic central limit theorem exists

t a T such that s, and

Start from stationary distribution

```
def rainsunpmf(state_int):
    p = 0.416667
    if state_int==0:
        return p
    else:#anything else is treated as a 1
        return 1 - p
```


 $p_sym = np.array([[0.1, 0.9], [0.9, 0.1]])$ $p_asym = np.array([[0.1, 0.9], [0.3, 0.7]])$

def rainsunprop(sint old): return np.random.choice(2,p=p_sym[sint_old]) def rainsunprop asym(sint old): return np.random.choice(2,p=p asym[sint old]) def rainsunpropfunc asym(sint new, sint old): return p asym[sint old][sint new] samps_dis, acc_dis = metropolis(rainsunpmf, rainsunprop, 1000, 1) samps dis2, acc_dis2 = metropolis_hastings(rainsunpmf, rainsunpropfunc_asym, rainsunprop_asym, 1000, 1)

Both give same stationary distribution

Example: generate poisson

 $p(k)=e^{-\mu}rac{\mu^k}{k!}.$

elif ito == ifrom and ito == 0:#needed to make first row sum to 1

Bayesian Stats: posterior distribution

$$p(heta|y) = rac{p(y| heta)\,p(heta)}{p(y)}$$

with the evidence p(D) or p(y) the expected likelihood (on existing data points) over the prior $E_{p(\theta)}[\mathcal{L}]$:

$$p(y) = \int d heta p(y| heta) p(heta).$$

• $posterior = \frac{likelihood \times prior}{evidence}$

- evidence is just the normalization
- usually dont care about normalization (until model comparison), just samples

2 key slides: Marginalization

What if θ is multidimensional?

Marginal posterior:
$$p(heta_1|D) = \int d heta_{-1} p(heta|D).$$

Normal-Normal Model

$$p(\mu,\sigma^2)=p(\mu|\sigma^2)p(\sigma^2)$$

- fixed σ prior: $p(\sigma^2) = \delta(\sigma^2 \sigma_0^2)$
- **non-fixed** σ **prior**: Choose a functional form that is mildly informative, e.g., normal, half cauchy, half normal
- μ **prior**: Mildly informative normal with prior mean and wide standard deviation

at is mildly al

• fixed σ

logprior = lambda mu: loglike = lambda mu: logpost = lambda mu: loglike(mu) + logprior(mu)

• non-fixed σ :

logprior = lambda mu, sigma: loglike = lambda mu, sigma: logpost = lambda mu, sigma:


```
norm.logpdf(mu, loc=mu_prior, scale=std_prior)
np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
norm.logpdf(mu, loc=mu_prior, scale=std_prior) +
norm.logpdf(sigma, loc=sig_data, scale=2)
np.sum(norm.logpdf(Y, loc=mu, scale=sigma))
loglike(mu, sigma) + logprior(mu, sigma)
```

Marginalization

Marginal posterior:

$$p(heta_1|D) = \int d heta_{-1} p(heta|D).$$

samps[20000::,:].shape #(10001, 2)

```
sns.jointplot(
   pd.Series(samps[20000::,0], name="$\mu$"),
   pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
   .plot_joint(
      sns.kdeplot,
   zorder=0, n_levels=6, alpha=1)
```

Marginals are just 1D histograms

```
plt.hist(samps[20000::,0])
```


Posterior Predictive

The distribution of a future data point y^* :

$$egin{aligned} p(y^*|D=\{y\}) &= E_{p(heta|D)}[p(y| heta)] \ &= \int d heta p(y^*| heta) p(heta|\{y\}). \end{aligned}$$

First draw the thetas from the posterior, then draw y's from the likelihood (these are draws from joint y, θ)

```
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)
```


$p(\theta|y,X)$ Fit the model to real data Inference **Decisions**

Conjugate Prior

- A conjugate prior is one which, when multiplied with an appropriate likelihood, gives a posterior with the same functional form as the prior.
- Likelihoods in the exponential family have conjugate priors in the same family
- analytical tractability AND interpretability

Coin Toss Model

- Coin tosses are modeled using the Binomial Distribution, which is the distribution of a set of Bernoulli random variables.
- The Beta distribution is conjugate to the Binomial distribution

$$p(p|y) \propto p(y|p)P(p) = Binom(n,y,p) imes L$$

Because of the conjugacy, this turns out to be:

$$Beta(y + \alpha, n - y + \beta)$$

 $Beta(\alpha,\beta)$

- think of a prior as a regularizer.
- a Beta(1, 1) prior is equivalent to a uniform distribution.
- This is an **uninformative prior**. Here the prior adds one heads and one tails to the actual data, providing some "towards-center" regularization
- especially useful where in a few tosses you got all heads, clearly at odds with your beliefs.
- a Beta(2,1) prior would bias you to more heads (water in globe toss).

M 207

Bayesian updating of posterior probabilities

p, probability of heads

Bayesian Updating "on-line"

- as each piece of data comes in, you update the prior by multiplying by the one-point likelihood.
- the posterior you get becomes the prior for our next step

$$p(heta \mid \{y_1, \ldots, y_{n+1}\}) \propto p(\{y_1, \ldots, y_n\} \mid heta) imes p(heta)$$

• the posterior predictive is the distribution of the next data point!

$$p(y_{n+1}|\{y_1,\ldots y_n\}) = E_{p(\theta|\{y_1,\ldots y_n\})}[p(y_{n+1}| heta)] = \int d heta p(y_n)$$

 $(\theta \mid \{y_1, \ldots, y_n\})$

 $_{n+1}| heta)p(heta|\{y_1,\ldots,y_n\})$

Globe Toss Model

- Seal tosses globe, θ is true water fraction
- The Beta distribution is conjugate to the Binomial distribution $p(\theta|y) \propto p(y|\theta)P(\theta) = Binom(n, y, \theta) \times Beta(\alpha, \beta)$
- Because of the conjugacy, this turns out to be: $Beta(y + \alpha, n - y + \beta)$
- a Beta(1,1) prior is equivalent to a uniform distribution.

Bayesian Updating of globe

- data WLWWWLWLW
- right depending on new data

At each step:

• notice how the posterior shifts left and

Beta(y+lpha,n-y+eta)

- The probability that the amount of water is less than 50%: 0.173
- 0.815163497
- np.mean(samples), np.median(samples) = (0.63787343440335842,0.6473143052303143)

Posterior

np.mean(samples < 0.5) =

• Credible Interval: amount of probability mass.np.percentile(samples, [10, 90]) = [0.44604094]

MAP, a point estimate

$$egin{aligned} heta_{ ext{MAP}} &= rg\max_{ heta} \ p(heta|D) \ &= rg\max_{ heta} rac{\mathcal{L} \, p(heta)}{p(D)} \ &= rg\max_{ heta} \ \mathcal{L} \, p(heta) \end{aligned}$$

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304

Posterior Mean minimizes squared loss

$$R(t)=E_{p(heta|D)}[(heta-t)^2]=\int d heta(heta-t)^2p(heta|D)$$

$$rac{dR(t)}{dt} = 0 \implies t = \int d heta heta p(heta | D)$$

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

This is **Decision Theory**.

Posterior predictive

$$p(y^*|D) = \int d heta p(y^*| heta) p(heta|D)$$

Risk Minimization holds here too:
$$y_{minmse} = \int dy$$

Plug-in Approximation: $p(\theta|D) = \delta(\theta - \theta_{MAP})$ and then draw

 $p(y^*|D) = p(y^*|\theta_{MAP})$ a sampling distribution.

y y p(y|D)

$p(\theta|y,X)$ Fit the model to real data Inference **Decisions**

Posterior predictive from sampling

- first draw the thetas from the posterior
- then draw y's from the likelihood
- and histogram the likelihood
- these are draws from joint y, θ

postpred = np.random.binomial(len(data), samples);

Sufficient Statistics and the exponential family

$$p(y_i| heta) = f(y_i)g(heta)e^{\phi(heta)^T u(y_i)}.$$

Likelihood:
$$p(y| heta) = \left(\prod_{i=1}^n f(y_i)\right) g(heta)^n \; \exp\left(\phi(heta)\right)$$

$$\sum_{i=1}^{n} u(y_i)$$
 is said to be a **sufficient statis**

stic for θ

Poisson Gamma Example

The data consists of 155 women who were 40 years old. We are interested in the birth rate of women with a college degree and women without. We are told that 111 women without college degrees have 217 children, while 44 women with college degrees have 66 children.

Let $Y_{1,1}, \ldots, Y_{n_1,1}$ children for the n_1 women without college degrees, and $Y_{1,2}, \ldots, Y_{n_2,2}$ for n_2 women with college degrees.

Exchangeability

Lets assume that the number of children of a women in any one of these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a permutation of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...

Poisson likelihood

 $Y_{i,1} \sim Poisson(heta_1), Y_{i,2} \sim Poisson(heta_2)$

$$p(Y_{1,1},\ldots,Y_{n_1,1}| heta_1) = \prod_{i=1}^{n_1} p(Y_{i,1}| heta_1) = \prod_{i=1}^{n_1} rac{1}{2}$$

$$= c(Y_{1,1},\ldots,Y_{n_1,1}) \; (n_1 heta_1)^{\sum Y_{i,1}} e^{-n_1 heta_1} \, \sim Po$$

 $|Y_{1,2},\ldots,Y_{n_1,2}| heta_2\sim Poisson(n_2 heta_2)|$

 $rac{1}{Y_{i,1}!} heta_{1}^{Y_{i,1}}e^{- heta_{1}}$

$pisson(n_1 heta_1)$

Posterior

$c_1(n_1,y_1,\ldots,y_{n_1}) \; (n_1 heta_1)^{\sum Y_{i,1}} e^{-n_1 heta_1} \; p(heta_1) imes c_2(n_2,y_1,\ldots,y_{n_2}) \; (n_2 heta_2)^{\sum Y_{i,2}} e^{-n_2 heta_2} \; p(heta_2)$

$\sum Y_i$, total number of children in each class of mom, is **sufficient statistics**

Conjugate prior

Sampling distribution for θ : $p(Y_1, \ldots, y_n | \theta) \sim \theta^{\sum Y_i} e^{-n\theta}$

Form is of *Gamma*. In shape-rate parametrization (wikipedia)

$$p(heta) = ext{Gamma}(heta, ext{a}, ext{b}) = rac{ ext{b}^{ ext{a}}}{\Gamma(ext{a})} heta^{ ext{a}-1}$$

Posterior: $p(\theta|Y_1,\ldots,Y_n) \propto p(Y_1,\ldots,y_n|\theta)p(\theta) \sim \text{Gamma}(\theta,a+\sum Y_i,b+n)$

Priors and Posteriors

We choose 2,1 as our prior.

$$p(heta_1|n_1,\sum_i^{n_1}Y_{i,1})$$

$$p(heta_2|n_2,\sum_i^{n_2}Y_{i,2})$$

Prior mean, variance: $E[heta]=a/b, var[heta]=a/b^2.$

- $\sim \mathrm{Gamma}(heta_1, 219, 112)$

- $) \sim \mathrm{Gamma}(heta_2, 68, 45)$

Posteriors

$$E[heta] = (a + \sum y_i)/(b+N)
onumber \ var[heta] = (a + \sum y_i)/(b+N)^2.$$

np.mean(theta1), np.var(theta1)
= (1.9516881521791478,
0.018527204185785785)

np.mean(theta2), np.var(theta2)
= (1.5037252100213609,
0.034220717257786061)

Posterior Predictives

$$p(y^*|D) =$$

Sampling makes it easy:

Negative Binomial: $E[y^*] = rac{(a+\sum y_i)}{(b+N)}$ $var[y^*] = rac{(a+\sum y_i)}{(b+N)^2}(N+b+1).$

 $\int d heta p(y^*| heta) p(heta|D)$

postpred1 = poisson.rvs(theta1) postpred2 = poisson.rvs(theta2)

But see width:

np.mean(postpred1), np.var(postpred1)=(1.976, 1.855423999999999)

Posterior predictive smears out posterior error with sampling distribution

- use for making predictions
- use for model checking using cross-validation; also for data visualization

Normal-Normal Model

Posterior for a gaussian likelihood:

$$p(\mu,\sigma^2|y_1,\ldots,y_n,\sigma^2) \propto rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2\sigma^2}\sum(y_i-y_i)}$$

What is the posterior of μ assuming we know σ^2 ?

Prior for
$$\sigma^2$$
 is $p(\sigma^2) = \delta(\sigma^2 - \sigma_0^2)$

 $^{-\mu)^2} p(\mu,\sigma^2)$

$$p(\mu|y_1,\ldots,y_n,\sigma^2=\sigma_0^2)\propto p(\mu|\sigma^2=\sigma_0^2)\,e^{-1}$$

The conjugate of the normal is the normal itself. Say we have the prior

$$p(\mu|\sigma^2) = \expigg\{-rac{1}{2 au^2}(\hat{\mu}-\mu)^2igg]$$

posterior: $p(\mu|y_1, \ldots, y_n, \sigma^2) \propto \exp\left\{-\frac{a}{2}(\mu - b/a)^2\right\}$

 $-rac{1}{2\sigma_0^2}\sum(y_i - \mu)^2$

Here

$$a=rac{1}{ au^2}+rac{n}{\sigma_0^2}, \hspace{0.5cm} b=rac{\hat{\mu}}{ au^2}+rac{\sum y_i}{\sigma_0^2}$$

Define $\kappa = \sigma^2 / \tau^2$

$$\mu_p = rac{b}{a} = rac{\kappa}{\kappa+n} \hat{\mu} + rac{n}{\kappa+n} ar{y}$$

which is a weighted average of prior mean and sampling mean.

The variance is

as *n* increases, the data dominates the prior and the posterior mean approaches the data mean, with the posterior distribution narrowing...

Posterior vs prior

Y = [16.4, 17.0, 17.2, 17.4, 18.2, 18.2, 18.2, 19.9, 20.8]#Data Quantities sig = np.std(Y) # assume that is the value of KNOWN sigma (in the likelihood) $mu_data = np.mean(Y)$ n = len(Y)# Prior mean $mu_{prior} = 19.5$ # prior std tau = 10# plug in formulas kappa = siq^{**2} / tau^{**2} sig_post =np.sqrt(1./(1./tau**2 + n/sig**2)); # posterior mean mu_post = kappa / (kappa + n) *mu_prior + n/(kappa+n)* mu_data #samples N = 15000theta_prior = np.random.normal(loc=mu_prior, scale=tau, size=N); theta_post = np.random.normal(loc=mu_post, scale=sig_post, size=N);

wing length (mm)

Bioassay

Dose $x_i \log(g/ml)$ Number of animals n_i Number of deaths y_i -0.86 5 ()-0.30 5 1 -0.05 5 3 +0.735 5

Bioassays are typically conducted to measure the effects of a substance on a living organism

The death rate is usually modeled as $logit^{-1}$ with two parameters (see below). The goal is to estimate those parameters and be able to infer death rates as a function of dose.

This is a success-failure experiment with failure=death (morbid, I know).

The likelihood since is a success/fail experiment is expressed as a **Binomial**:

Likelihood: $P(D_i|\theta_i) = p(y_i, n_i|\theta_i) = \text{Bionomial}(y_i, n_i|\theta_i) \text{ for } i = 1, \dots, 4$

where θ_i is the rate of deaths in the *i*th experiment.

$$heta_i = \mathrm{logit}^{-1}(lpha + eta x_i) \;\; ext{ for } \mathrm{i} = 1, .$$

We use flat priors for α, β : $p(\alpha, \beta) \propto 1$

- ...,4

Posterior:

$$p(lpha,eta|y) \propto p(lpha,eta) \prod_{i=1}^k p(y_i|lpha,eta,n_i)
onumber \ = 1 \prod_{i=1}^k [ext{logit}^{-1}(lpha+eta x_i)]^{y_i} [1- ext{logit}^{-1}(lpha+eta x_i)]^{y_i}$$

2 ways to sample:

 (x_i)

 $(+ eta x_i)]^{n_i - y_i}$

- **Blockwise Updating** in which we simply use a 2D-proposal function like a 2-D gaussian. Simple and you can make diagonal moves, but the disadvantage to this is that it can take a very long time to cover the space.
- **Componentwise Updating**. Steps only in one dimension at a time. You then accept or not, and repeat. The advantage is that you can make big strides. The disadvantage is that you may sample only in one axis for a bit, but this evens out in the long run.

Grid Approximation

Posterior from componentwise sampling

