Lecture 10
Metropolis-Hastings Sampler and Bayesian Stats

@AM 207

Last time: Metropolis, Markov, and MCMC

e Simulated Annealing samples from a ever tighter boltzmann
distribution

 thus making its acceptance probability A = exp (—Af/kT)

e generally sample from any distribution by making its transition
kernel/matrix satisfy detailed balance (reversibility)

e this ensures ergodicity and sample averages are time averages

e a symmetric proposal (like in SA) leads to a metropolis sampler
&AM 207

Markov Chain

T(xn ‘wn—l y Lp—1- .- 7x1) — T(ajn ‘xn—l)

e non lID, stochastic process
e but one step memory only

e widely applicable, first order equations

@AM 207

Stationarity

()

Continuous case: define T' so that:

/da:is(wi)T(miH ;) = s(x;.1) then

/da:s(a:)T(y\a:) = /p(y, z)dz = s(y)

@AM 207

Jargon

* Irreducible: can go from anywhere to everywhere
e Aperiodic: no finite loops

 Recurrent: visited repeatedly. Harris recurrent if all states are
visited infinitely as t — oc.

@AM 207

Rainy Sunny Markov chain

2/3

‘ ,

1/2

aperiodic and irreducible

&AM 207

Transition matrix, applied again and again

array([[©.33333333, 0.66666667],
[0.5 0.5 1D

[[0.44444444 ©.55555556]
[0.41666667 ©.583333337]
[[©.42592593 ©.57407407]
[©.43055556 0.569444447]
[[0.42901235 ©.57098765]
[0.42824074 ©0.571759267]
[[©.42849794 ©.57150206]
[0.42862654 0.57137346]]
[[0.42858368 ©.57141632]
[0.42856224 0.571437767]

@AM 207

Stationary distribution can be solved for:
Assume thatitis s = [p, 1 — p
Then: sT = s
gives us

px(1/3)+(1—-p)x1/2=p
and thus p = 3/7

np.dot([0.9,0.1], tm before): array([0.42858153, 0.571418471])

@AM 207

Stationarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov
chain will eventually converge to a stationary markov chain. It is the
marginal distribution of this chain that we want to sample from,

and which we do in metropolis (and for that matter, in simulated
annealing).

/ des(z)T(y|z) = / p(y, z)dz = s(y)

@AM 207

Detailed balance is enough for stationarity

s(z)T'(ylz) = s(y)T'(z|y)

If one sums both sides over z

/da:s(a:)t(y\m) = s(y) /me(az\y) which gives us back the

stationarity condition from above.

@AM 207

Proposal, redux

e all the positions x in the domain we wish to minimize a function
f over ought to be able to communicate: IRREDUCIBLE

e detailed balance: proposal is symmetric

e ensures {x;} generated by simulated annealing is a stationary
markov chain with target boltzmann distribution: equilibrium

e ensures {x;} generated by metropolis is a stationary markov
chain with appropriate target.

@AM 207

Today

e conditions fora MCMC algorithm

e metropolis-hastings sampler

e sampling from discrete distributions
e introduction to bayesian statistics

e normal-normal model

@AM 207

Ergodicity and Stationarity

e These are not the same concept
e detailed balance implies stationarity. Needs irreducibility.

e aperiodic, irreducible, harris recurrent markov chain —
ergodic

e what is ergodic?

@AM 207

Ergodicity

e Aperiodic, irreducible, positive Harris recurrent markov chains
are ergodic

e j.e, in the limit of infinite (many) steps, the marginal distribution
of the chain is the same. This means that if we take largely
spaced about (some thinning T) samples from a stationary
markov chain (after burnin B), we can draw independent samples.

@AM 207

e “Ergodic” law of large numbers:

/ o(z) f(z)dz = S ()

j=B+1:B+N:T

e equivalent, for very large N:

/9(37 %\IQ%

] =B+1

e the juryis out on thinning. Most dont think one needs it

e you can get a similar central limit theorem as well

@AM 207

Sketch of proof (here and here for details)

by Perron-Frobenius theorem, irreducible, aperiodic stochastic
matrices (rows sum to 1 with non-negative elements) have one
eigenvalue Ay = 1 and positive eigenvector ey > 0. All other
eigenvalues have absolute value less than 1.

¢ p() — Tn (0) where p Z oL €;

o Then p(¢) = Zai)\?ei = ey = €

@AM 207

https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf

Metropolis

* probability increases, accept. decreases, accept some of the time.

e get aperiodic, irreducible, harris recurrent markov chain —
ergodic but takes a while to reach the stationary distribution

/dws(m)T(y\x) = /p(y, z)dr = s(y)

e arrange transition matrix(kernel) to get desired stationary
distribution

@AM 207

Transition matrix for Metropolis:

T(x;|x;i1) = q(x;|x;—1) A(xi, x;-1) + 6(x;_1 — x;)r(x;_1) Where

s(x;)

s(xi_1)

)

A(zi, x;—1) = min(1,
Is the Metropolis acceptance probability and

r(x;) = /dyq(ym)(l — A(y, x;)) is the rejection term.

@AM 207

MCMC robot's rules

Drastic "off the cliff"
v downhill steps are almost
_ never accepted

Slightly downhill steps -~
are usually accepted -

With these rules, it is easy to
see that the robot tends to
stay near the tops of hills

Uphill steps are
always accepted

(from Paul Lewis)

def metropolis(p, gdraw, nsamp, Xinit):
samples=np.empty(nsamp)
X_prev = xinit
for 1 in range(nsamp):
X_star = gdraw(x_prev)
p_star = p(x_star)
p_prev = p(x_prev)
pdfratio = p _star/p prev
if np.random.uniform() < min(1l, pdfratio):
samples[1] = x_star
X_prev = X _star
else:#we always get a sample
samples[1]= X _prev

return samples

&AM 207

Intuition: approaches typical set

Ny l

Instead of sampling p we sample q, yielding a new state, and a new
proposal distribution from which to sample.

&AM 207

Metropolis-Hastings

e want to handle distributions with limited support
e proposal like normal leads to a lot of wasteful comparisons

e building in rejection breaks symmetry or proposal, the
distribution needs to be normalized by some part of cdf.

e you might want to sample from a asymmetric distribution which
matches targets support

@AM 207

Metropolis-Hastings

def metropolis hastings(p,q, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
for i in range(nsamp):
X_star = qgdraw(x_prev)
p_star p(x_star)
p_prev p(x_prev)
pdfratio = p_star/p prev
proposalratio = gq(x_prev, x_star)/q(x_star, x_prev)

if np.random.uniform() < min(l, pdfratio*proposalratio):

samples[i] = x_star
X_prev = x_star

else:#we always get a sample
samples[i]= x_prev

return samples

&AM 207

as

a4

Qs

Qaz

a1

Qo

N

10

Acceptance Is now

s(x;) X q(xi_1|x;))

A(zi, z;—1) = min(l, |
(1) (s(zi—1) X q(z;|z;i—1)

e correct the sampling of g to match p, corrects for any
asymmetries in the proposal distribution.

e A good rule of thumb is that the proposal has the same or larger
support then the target, with the same support being the best.

@AM 207

@AM 207

If robot has a greater tendency
to propose steps to the right as ,’
opposed to the left when choosing -

its next step, then the ’

acceptance ratio must
counteract this
tendency.

Suppose the probability of
proposing a spot to the right
is 2/3 (making the probability
of choosing left 1/3)

In this case, the Hastings ratio

decreases the chance of accepting moves to the right by half, and
increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

(from Paul Lewis)

Choice of Proposal

e Our Weibull is: 0.554ze—(*/1:9)°

e Arule of thumb for choosing proposal distributions is to
parametrize them in terms of their mean and variance/precision
since that provides a notion of "centeredness" which we can use
for our proposals

e Use a Gamma Distribution with parametrization
Gamma(zT,1/7) in the shape-scale argument setup.

@AM 207

Gamma-Weibull with traceplot

|
_— I‘hnm
. Mcme distribution

|\
\

&AM 207

Traceplot after burnin but without thinning

0 1000 200 3000 4000 3000 0o 7000 3000

@AM 207

Traceplot after burning and thinning

&AM 207

Is thinning needed?

e jury is out but current thought is no
e does reduce space requirements and remove autocorrelation
e but removing autocorrelation is strictly not needed by ergodicity

e but how much burnin do we need? And how many effective
samples?

¢ 5S00n...

@AM 207

035

0.30

025

020

015

010

005

000

&AM 207

Why not reject? ze ?,z > 0

target = lambda x: x*np.exp(-x)
proposal = lambda x: np.random.normal(x, 1.0)
def metropolis broken(p, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
for i in range(nsamp):
while 1:
X_star = qgdraw(x_prev)
if x_star > 0:
break
p_star = p(x_star)
p_prev = p(x_prev)
pdfratio = p_star/p_prev
if np.random.uniform() < min(1l, pdfratio):
samples[i] = x_star
X_prev = X_star

10.0

12.5

15.0

else:#we always get a sample

17.5 m.o samples[i]: X_prev

return samples

Do it right

prop2 = lambda x: x + np.random.normal()
g = lambda x_prev, x_star: norm.cdf(x_prev)
def metropolis hastings(p,q, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
accepted=0
for i in range(nsamp):
while 1:
X_star = qgdraw(x_prev)
if x_star > 0:

break
p_star = p(x_star)
p_prev = p(x_prev)

pdfratio = p_star/p_prev
proposalratio = q(x_prev, x_star)/q(x_star, x_prev)

if np.random.uniform() < min(1l, pdfratio*proposalratio):

samples[i] = x_star
X_prev = x_star
accepted +=1
else:#we always get a sample
samples[i]= x_prev
return samples, accepted

&AM 207

035

030

025

020

015

010

0.05

0.00

10.0

12.5

15.0

17.5

2.0

Normalization of distributions

e we dont need to normalize target once we have samples
e unless we need to calculate the "evidence" to compare models

e we do need to make sure we have a normalized proposal

@AM 207

Tuning the width or precision

Proposal distributions Proposal distributions Disadvantage: robot
with smaller variance... _ with larger variance... often proposes a step
Disadvantage: robot ?akes that would take it off
: smaller steps, more time a cliff, and refuses to
move

required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps

Advantage: robot can
potentially cover a lot of
ground quickly

(from Paul Lewis)

@AM 207

Discrete distribution MCMC

e proposal distribution becomes proposal matrix
e index the discrete outcomes

e can use symmetric or asymmetric proposal as long as rows sum
tol

e make sure matrix is irreducible: ie you can get from any index to
any other one.

@AM 207

Example: generate poisson

018
016

1/2 1/2 0 0

. 1/2 0 1/2 0 0
| e og=| 0 1/2 0 1/2 0 -
. 0o 0 1/2 0 1/2 --.

006

0.04
0.02 ®

Py =y - - - - -

0.00

@AM 207

018
def prop_draw(ifrom):
016 .
u = np.random.uniform()
if ifrom !=0:
014 if u< 1/2:
ito = ifrom -1
else:
012 ito = ifrom + 1
else:
010 if u.< 1/2:
ito=0
else:
008 ito=1
return ito
0.06 def prop_pdf(ito, ifrom):
if ito == ifrom - 1:
0.04 return 0.5
elif ito == ifrom + 1:
return 0.5
002 elif ito == ifrom and ito == 0:#needed to make first row sum to 1
return 0.5
0.00 - else:
-2 14 16 return 0

&AM 207

Summary: 3 Concepts

e proposal
o pdf/pmf

e transition

@AM 207

Qz a4 Qo as

&AM 207

Bayesian statistics

Frequentist Stats

e parameters are fixed, data is stochastic
e true parameter §* characterizes population

e we estimate 6 on sample

e we can use MLE 6,,;, = argmax L
0

e we obtain sampling distributions (using bootstrap)

@AM 207

Bayesian Stats

e assume sample IS the data, no stochasticity
e parameters @ are stochastic random variables

 associate the parameter 6 with a prior distribution p(6)

 The prior distribution generally represents our belief on the
parameter values when we have not observed any data yet (to
be qualified later)

@AM 207

Posterior distribution

p(y|0) p(0)
p(y)

with the evidence p(D) or p(y) the expected likelihood (on existing

p(fly) =

data points) over the prior E,) [L]:
p(v) = [dop(yi6)p(6).

@AM 207

likelthood x prior

* posterior = ,
evidence

e evidence is just the normalization

e usually dont care about normalization
(until model comparison), just samples

e What if 6 is multidimensional? Marginal
posterior:

p(61|D) = / d6_1p(6|D).

&AM 207

prior

likelihood

posterior

0.5

—

0.5

-t

0.5

e

0.5

-—h

—

0.5

-

0.5

—

0.5

-

—

0.5

—h -

A

0.5

—r

Posterior Predictive for predictions

The distribution of a future data point y*:

p(y*|D = {y}) = / dop(y*|0)p(0|{y}).

Expectation of the likelihood at a new point(s) over the posterior
Ep D) [P(y0))-

@AM 207

Summary via MAP (a point estimate)

Ovap = argmax p(60|D)

6
= arg max £p(6)
o p(D)

= arg max L p(0)

Plug-in Approximation: p(8|y) = 6(0 — 0r4p)
and then draw

p(y" ly) = p(y*|@rrap) @ Sampling distribution.

@AM 207

Normal-Normal Model

logprior = Lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, Lloc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + Llogprior(mu)
def metropolis(logp, gdraw, stepsize, nsamp, Xxinit):
samples=np.empty(nsamp)
X_prev = xinit
accepted = 0
for i in range(nsamp):
X_star = qgdraw(x_prev, stepsize)
logp _star = logp(x_star)
Logp _prev = logp(x_prev)
logpdfratio = logp_star -logp prev
u = np.random.uniform()
if np.log(u) <= logpdfratio:
samples[i] = x_star
X_prev = XxX_star
accepted += 1
else:#we always get a sample
samples[i]= x_prev

return samples, accepted

@AM 207

" likelihood (sampling dist) B likelihood (sampling dist)
prior postenor predictive
300 ’ ' W mam posterior ' 300 posterior
400 400
300 300
200 200
100 | | | 100
0] - l 0 |
-10 0 10 2 0 40 50 14 16 18 2 2

&AM 207

Posterior predictive from sampling

e first draw the thetas from the posterior
e then draw y's from the likelihood
e and histogram the likelihood

e these are draws from joint y, 6

@AM 207

Posterior predictive Idea

@AM 207

&AM 207

Posterior probability

R

|

0

0.
probability\ of water
Sampling distributions
0.1 0.2 0.3 0.4 0.5 06
‘I... |H‘I ||H|I.. Il‘ ‘I... ..I| ‘l.. 4..|| hl

Posterior predictive
distribution

0

3 6 9

number of water samples

0.7
.|||||‘|

