
Lecture 10
Metropolis-Has-ngs Sampler and Bayesian Stats



Last &me: Metropolis, Markov, and MCMC

• Simulated Annealing samples from a ever 5ghter boltzmann 
distribu5on

• thus making its acceptance probability 

• generally sample from any distribu5on by making its transi5on 
kernel/matrix sa5sfy detailed balance (reversibility)

• this ensures ergodicity and sample averages are 5me averages

• a symmetric proposal (like in SA) leads to a metropolis sampler



Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons



Sta$onarity

 or  or

Con$nuous case: define  so that:

 then



Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are 
visited infinitely as .



Rainy Sunny Markov chain

aperiodic and irreducible



Transi'on matrix, applied again and again

array([[ 0.33333333,  0.66666667],
       [ 0.5       ,  0.5       ]])

[[ 0.44444444  0.55555556]
 [ 0.41666667  0.58333333]]
-----------------
[[ 0.42592593  0.57407407]
 [ 0.43055556  0.56944444]]
-----------------
[[ 0.42901235  0.57098765]
 [ 0.42824074  0.57175926]]
-----------------
[[ 0.42849794  0.57150206]
 [ 0.42862654  0.57137346]]
-----------------
[[ 0.42858368  0.57141632]
 [ 0.42856224  0.57143776]]



Sta$onary distribu$on can be solved for:

 Assume that it is 

Then: 

gives us

and thus 

np.dot([0.9,0.1], tm_before): array([ 0.42858153,  0.57141847])



Sta$onarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov 
chain will eventually converge to a sta:onary markov chain. It is the 
marginal distribu:on of this chain that we want to sample from, 
and which we do in metropolis (and for that ma?er, in simulated 
annealing).



Detailed balance is enough for sta3onarity

If one sums both sides over 

 which gives us back the 

sta/onarity condi/on from above.



Proposal, redux

• all the posi,ons x in the domain we wish to minimize a func,on 
 over ought to be able to communicate: IRREDUCIBLE

• detailed balance: proposal is symmetric

• ensures  generated by simulated annealing is a sta,onary 
markov chain with target boltzmann distribu,on: equilibrium

• ensures  generated by metropolis is a sta,onary markov 
chain with appropriate target.



Today

• condi'ons for a MCMC algorithm

• metropolis-has'ngs sampler

• sampling from discrete distribu'ons

• introduc'on to bayesian sta's'cs

• normal-normal model



Ergodicity and Sta.onarity

• These are not the same concept

• detailed balance implies sta3onarity. Needs irreducibility.

• aperiodic, irreducible, harris recurrent markov chain  
ergodic

• what is ergodic?



Ergodicity

• Aperiodic, irreducible, posi0ve Harris recurrent markov chains 
are ergodic

• i.e., in the limit of infinite (many) steps, the marginal distribu0on 
of the chain is the same. This means that if we take largely 
spaced about (some thinning T) samples from a sta0onary 
markov chain (aBer burnin B), we can draw independent samples.



• “Ergodic” law of large numbers:

• equivalent, for very large N:

• the jury is out on thinning. Most dont think one needs it

• you can get a similar central limit theorem as well



Sketch of proof (here and here for details)

• by Perron-Frobenius theorem, irreducible, aperiodic stochas8c 
matrices (rows sum to 1 with non-nega8ve elements) have one 
eigenvalue  and posi8ve eigenvector . All other 
eigenvalues have absolute value less than 1.

•  where 

• Then 

https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf


Metropolis

• probability increases, accept. decreases, accept some of the 6me.

• get aperiodic, irreducible, harris recurrent markov chain  
ergodic but takes a while to reach the sta$onary distribu$on

• arrange transi+on matrix(kernel) to get desired sta+onary 
distribu+on



Transi'on matrix for Metropolis:

 where

is the Metropolis acceptance probability and

 is the rejec*on term.



(from Paul Lewis)



def metropolis(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Intui&on: approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new 
proposal distribu7on from which to sample.



Metropolis-Has-ngs

• want to handle distribu1ons with limited support

• proposal like normal leads to a lot of wasteful comparisons

• building in rejec1on breaks symmetry or proposal, the 
distribu1on needs to be normalized by some part of cdf.

• you might want to sample from a asymmetric distribu1on which 
matches targets support



Metropolis-Has-ngs

def metropolis_hastings(p,q, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
        if np.random.uniform() < min(1, pdfratio*proposalratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Acceptance is now

• correct the sampling of q to match p, corrects for any 
asymmetries in the proposal distribu8on.

• A good rule of thumb is that the proposal has the same or larger 
support then the target, with the same support being the best.



(from Paul Lewis)



Choice of Proposal

• Our Weibull is: 

• A rule of thumb for choosing proposal distribu9ons is to 
parametrize them in terms of their mean and variance/precision 
since that provides a no9on of "centeredness" which we can use 
for our proposals

• Use a Gamma Distribu9on with parametriza9on 
 in the shape-scale argument setup.



Gamma-Weibull with traceplot



Traceplot a+er burnin but without thinning



Traceplot a+er burning and thinning



Is thinning needed?

• jury is out but current thought is no

• does reduce space requirements and remove autocorrela8on

• but removing autocorrela8on is strictly not needed by ergodicity

• but how much burnin do we need? And how many effec8ve 
samples?

• soon...



Why not reject? 

target = lambda x: x*np.exp(-x)
proposal = lambda x: np.random.normal(x, 1.0)
def metropolis_broken(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        while 1:
            x_star = qdraw(x_prev)
            if x_star > 0:
                break
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Do it right

prop2 = lambda x: x + np.random.normal()
q = lambda x_prev, x_star: norm.cdf(x_prev)
def metropolis_hastings(p,q, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    accepted=0
    for i in range(nsamp):
        while 1:
            x_star = qdraw(x_prev)
            if x_star > 0:
                break
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
        if np.random.uniform() < min(1, pdfratio*proposalratio):
            samples[i] = x_star
            x_prev = x_star
            accepted +=1
        else:#we always get a sample
            samples[i]= x_prev            
    return samples, accepted



Normaliza)on of distribu)ons

• we dont need to normalize target once we have samples

• unless we need to calculate the "evidence" to compare models

• we do need to make sure we have a normalized proposal



Tuning the width or precision

(from Paul Lewis)



Discrete distribu,on MCMC

• proposal distribu.on becomes proposal matrix

• index the discrete outcomes

• can use symmetric or asymmetric proposal as long as rows sum 
to 1

• make sure matrix is irreducible: ie you can get from any index to 
any other one.



Example: generate poisson



def prop_draw(ifrom):
    u = np.random.uniform()
    if ifrom !=0:
        if u < 1/2:
            ito = ifrom -1
        else:
            ito = ifrom + 1
    else:
        if u < 1/2:
            ito=0
        else:
            ito=1
    return ito

def prop_pdf(ito, ifrom):
    if ito == ifrom - 1:
        return 0.5
    elif ito == ifrom + 1:
        return 0.5
    elif ito == ifrom and ito == 0:#needed to make first row sum to 1
        return 0.5
    else:
        return 0



Summary: 3 Concepts

• proposal

• pdf/pmf

• transi/on





Bayesian sta*s*cs



Frequen'st Stats

• parameters are fixed, data is stochas2c

• true parameter  characterizes popula2on

• we es2mate  on sample

• we can use MLE 

• we obtain sampling distribu2ons (using bootstrap)



Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters  are stochas3c random variables

• associate the parameter  with a prior distribu3on 

• The prior distribu3on generally represents our belief on the 
parameter values when we have not observed any data yet ( to 
be qualified later)



Posterior distribu,on

with the evidence  or  the expected likelihood (on exis3ng 
data points) over the prior :



•

• evidence is just the normaliza4on

• usually dont care about normaliza4on 
(un4l model comparison), just samples

• What if  is mul4dimensional? Marginal 
posterior:



Posterior Predic+ve for predic+ons

The distribu,on of a future data point :

.

Expecta(on of the likelihood at a new point(s) over the posterior 
.



Summary via MAP (a point es4mate)

Plug-in Approxima0on: 
 and then draw

 a sampling distribu/on.



Normal-Normal Model

logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + logprior(mu)
def metropolis(logp, qdraw, stepsize, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    accepted = 0
    for i in range(nsamp):
        x_star = qdraw(x_prev, stepsize)
        logp_star = logp(x_star)
        logp_prev = logp(x_prev)
        logpdfratio = logp_star -logp_prev
        u = np.random.uniform()
        if np.log(u) <= logpdfratio:
            samples[i] = x_star
            x_prev = x_star
            accepted += 1
        else:#we always get a sample
            samples[i]= x_prev

    return samples, accepted





Posterior predic,ve from sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint 



Posterior predic,ve Idea




