
Lecture 10
Metropolis-Has-ngs Sampler and Bayesian Stats

Last &me: Metropolis, Markov, and MCMC

• Simulated Annealing samples from a ever 5ghter boltzmann
distribu5on

• thus making its acceptance probability

• generally sample from any distribu5on by making its transi5on
kernel/matrix sa5sfy detailed balance (reversibility)

• this ensures ergodicity and sample averages are 5me averages

• a symmetric proposal (like in SA) leads to a metropolis sampler

Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons

Sta$onarity

 or or

Con$nuous case: define so that:

 then

Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are
visited infinitely as .

Rainy Sunny Markov chain

aperiodic and irreducible

Transi'on matrix, applied again and again

array([[0.33333333, 0.66666667],
 [0.5 , 0.5]])

[[0.44444444 0.55555556]
 [0.41666667 0.58333333]]

[[0.42592593 0.57407407]
 [0.43055556 0.56944444]]

[[0.42901235 0.57098765]
 [0.42824074 0.57175926]]

[[0.42849794 0.57150206]
 [0.42862654 0.57137346]]

[[0.42858368 0.57141632]
 [0.42856224 0.57143776]]

Sta$onary distribu$on can be solved for:

 Assume that it is

Then:

gives us

and thus

np.dot([0.9,0.1], tm_before): array([0.42858153, 0.57141847])

Sta$onarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov
chain will eventually converge to a sta:onary markov chain. It is the
marginal distribu:on of this chain that we want to sample from,
and which we do in metropolis (and for that ma?er, in simulated
annealing).

Detailed balance is enough for sta3onarity

If one sums both sides over

 which gives us back the

sta/onarity condi/on from above.

Proposal, redux

• all the posi,ons x in the domain we wish to minimize a func,on
 over ought to be able to communicate: IRREDUCIBLE

• detailed balance: proposal is symmetric

• ensures generated by simulated annealing is a sta,onary
markov chain with target boltzmann distribu,on: equilibrium

• ensures generated by metropolis is a sta,onary markov
chain with appropriate target.

Today

• condi'ons for a MCMC algorithm

• metropolis-has'ngs sampler

• sampling from discrete distribu'ons

• introduc'on to bayesian sta's'cs

• normal-normal model

Ergodicity and Sta.onarity

• These are not the same concept

• detailed balance implies sta3onarity. Needs irreducibility.

• aperiodic, irreducible, harris recurrent markov chain
ergodic

• what is ergodic?

Ergodicity

• Aperiodic, irreducible, posi0ve Harris recurrent markov chains
are ergodic

• i.e., in the limit of infinite (many) steps, the marginal distribu0on
of the chain is the same. This means that if we take largely
spaced about (some thinning T) samples from a sta0onary
markov chain (aBer burnin B), we can draw independent samples.

• “Ergodic” law of large numbers:

• equivalent, for very large N:

• the jury is out on thinning. Most dont think one needs it

• you can get a similar central limit theorem as well

Sketch of proof (here and here for details)

• by Perron-Frobenius theorem, irreducible, aperiodic stochas8c
matrices (rows sum to 1 with non-nega8ve elements) have one
eigenvalue and posi8ve eigenvector . All other
eigenvalues have absolute value less than 1.

• where

• Then

https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf

Metropolis

• probability increases, accept. decreases, accept some of the 6me.

• get aperiodic, irreducible, harris recurrent markov chain
ergodic but takes a while to reach the sta$onary distribu$on

• arrange transi+on matrix(kernel) to get desired sta+onary
distribu+on

Transi'on matrix for Metropolis:

 where

is the Metropolis acceptance probability and

 is the rejec*on term.

(from Paul Lewis)

def metropolis(p, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 for i in range(nsamp):
 x_star = qdraw(x_prev)
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 if np.random.uniform() < min(1, pdfratio):
 samples[i] = x_star
 x_prev = x_star
 else:#we always get a sample
 samples[i]= x_prev

 return samples

Intui&on: approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new
proposal distribu7on from which to sample.

Metropolis-Has-ngs

• want to handle distribu1ons with limited support

• proposal like normal leads to a lot of wasteful comparisons

• building in rejec1on breaks symmetry or proposal, the
distribu1on needs to be normalized by some part of cdf.

• you might want to sample from a asymmetric distribu1on which
matches targets support

Metropolis-Has-ngs

def metropolis_hastings(p,q, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 for i in range(nsamp):
 x_star = qdraw(x_prev)
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
 if np.random.uniform() < min(1, pdfratio*proposalratio):
 samples[i] = x_star
 x_prev = x_star
 else:#we always get a sample
 samples[i]= x_prev

 return samples

Acceptance is now

• correct the sampling of q to match p, corrects for any
asymmetries in the proposal distribu8on.

• A good rule of thumb is that the proposal has the same or larger
support then the target, with the same support being the best.

(from Paul Lewis)

Choice of Proposal

• Our Weibull is:

• A rule of thumb for choosing proposal distribu9ons is to
parametrize them in terms of their mean and variance/precision
since that provides a no9on of "centeredness" which we can use
for our proposals

• Use a Gamma Distribu9on with parametriza9on
 in the shape-scale argument setup.

Gamma-Weibull with traceplot

Traceplot a+er burnin but without thinning

Traceplot a+er burning and thinning

Is thinning needed?

• jury is out but current thought is no

• does reduce space requirements and remove autocorrela8on

• but removing autocorrela8on is strictly not needed by ergodicity

• but how much burnin do we need? And how many effec8ve
samples?

• soon...

Why not reject?

target = lambda x: x*np.exp(-x)
proposal = lambda x: np.random.normal(x, 1.0)
def metropolis_broken(p, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 for i in range(nsamp):
 while 1:
 x_star = qdraw(x_prev)
 if x_star > 0:
 break
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 if np.random.uniform() < min(1, pdfratio):
 samples[i] = x_star
 x_prev = x_star
 else:#we always get a sample
 samples[i]= x_prev

 return samples

Do it right

prop2 = lambda x: x + np.random.normal()
q = lambda x_prev, x_star: norm.cdf(x_prev)
def metropolis_hastings(p,q, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 accepted=0
 for i in range(nsamp):
 while 1:
 x_star = qdraw(x_prev)
 if x_star > 0:
 break
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
 if np.random.uniform() < min(1, pdfratio*proposalratio):
 samples[i] = x_star
 x_prev = x_star
 accepted +=1
 else:#we always get a sample
 samples[i]= x_prev
 return samples, accepted

Normaliza)on of distribu)ons

• we dont need to normalize target once we have samples

• unless we need to calculate the "evidence" to compare models

• we do need to make sure we have a normalized proposal

Tuning the width or precision

(from Paul Lewis)

Discrete distribu,on MCMC

• proposal distribu.on becomes proposal matrix

• index the discrete outcomes

• can use symmetric or asymmetric proposal as long as rows sum
to 1

• make sure matrix is irreducible: ie you can get from any index to
any other one.

Example: generate poisson

def prop_draw(ifrom):
 u = np.random.uniform()
 if ifrom !=0:
 if u < 1/2:
 ito = ifrom -1
 else:
 ito = ifrom + 1
 else:
 if u < 1/2:
 ito=0
 else:
 ito=1
 return ito

def prop_pdf(ito, ifrom):
 if ito == ifrom - 1:
 return 0.5
 elif ito == ifrom + 1:
 return 0.5
 elif ito == ifrom and ito == 0:#needed to make first row sum to 1
 return 0.5
 else:
 return 0

Summary: 3 Concepts

• proposal

• pdf/pmf

• transi/on

Bayesian sta*s*cs

Frequen'st Stats

• parameters are fixed, data is stochas2c

• true parameter characterizes popula2on

• we es2mate on sample

• we can use MLE

• we obtain sampling distribu2ons (using bootstrap)

Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters are stochas3c random variables

• associate the parameter with a prior distribu3on

• The prior distribu3on generally represents our belief on the
parameter values when we have not observed any data yet (to
be qualified later)

Posterior distribu,on

with the evidence or the expected likelihood (on exis3ng
data points) over the prior :

•

• evidence is just the normaliza4on

• usually dont care about normaliza4on
(un4l model comparison), just samples

• What if is mul4dimensional? Marginal
posterior:

Posterior Predic+ve for predic+ons

The distribu,on of a future data point :

.

Expecta(on of the likelihood at a new point(s) over the posterior
.

Summary via MAP (a point es4mate)

Plug-in Approxima0on:
 and then draw

 a sampling distribu/on.

Normal-Normal Model

logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + logprior(mu)
def metropolis(logp, qdraw, stepsize, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 accepted = 0
 for i in range(nsamp):
 x_star = qdraw(x_prev, stepsize)
 logp_star = logp(x_star)
 logp_prev = logp(x_prev)
 logpdfratio = logp_star -logp_prev
 u = np.random.uniform()
 if np.log(u) <= logpdfratio:
 samples[i] = x_star
 x_prev = x_star
 accepted += 1
 else:#we always get a sample
 samples[i]= x_prev

 return samples, accepted

Posterior predic,ve from sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint

Posterior predic,ve Idea

