
Lecture 10
Annealing to Metropolis with a bit on Markov



Last &me: Simulated Annealing

Minimize  by iden+fying with the energy of an imaginary physical 
system undergoing an annealing process.

Move from  to  via a proposal.

If the new state has lower energy, accept .

If the new state has higher energy, accept with probability



Today

• from annealing to Metropolis

• markov chains and MCMC

• Metropolis



Next Time

• markov chain theory

• metropolis and metropolis has4ngs

• discrete proposals



Physical Annealing
A system is first heated to a mel0ng state and then cooled down slowly.

• when solid is heated, its molecules start moving randomly, and 
its energy increases

• if subsequent process of cooling is slow, the energy decreases 
slowly, with some random increases governed by the Boltzmann 
distribu<on

• if cooling slow and deep enough, system will eventually se=le 



Simulated Annealing

Minimize  by iden+fying with the energy of an imaginary physical 
system undergoing an annealing process.

Move from  to  via a proposal.

If the new state has lower energy, accept .

If the new state has higher energy, accept with probability



• stochas(c acceptance of higher energy states, allows our process 
to escape local minima.

• When T is high, the acceptance of these uphill moves is higher, 
and local minima are discouraged.

• As T is lowered, more concentrated search near current local 
minimum, since only few uphill moves will be allowed.

• Thus, if we get our temperature decrease schedule right, we can 
hope that we will converge to a global minimum.



If the lowering of the temperature is sufficiently slow, the system 
reaches "thermal equilibrium" at each temperature. Then 
Boltzmann's distribu@on applies:

 where

 



Proposal

• it proposes a new posi-on x from a neighborhood  at which to 
evaluate the func-on.

• all the posi-ons x in the domain we wish to minimize a func-on 
 over ought to be able to communicate.

• detailed balance: proposal is symmetric

• ensures  generated by simulated annealing is a sta-onary 
markov chain with target boltzmann distribu-on: equilibrium



Example: 



If you iden+fy

 and 

Then:

• you get a peakier distribu1on as $T to 
0$ around the global minimum: 
distribu1on  op1mum!

• the globality and the exponen1a1on 
ensures that this peak is favored over 
the rest in 



Normalized Boltzmann distribu2on

• M global minima in set 

• func2on minimum value :

As  from above, this becomes  if  and 0 
otherwise.



The Simulated Annealing Algorithm

1. Ini&alize  where  = itera&ons at a par&cular 
temperature.

2. Perform  transi&ons:
(a) propose  (b) If  is accepted (according to probability 

), set , else set 

3. Update T and L, go to 2



def sa(energyfunc, initials, epochs, tempfunc, iterfunc, proposalfunc):
    accumulator=[]
    best_solution = old_solution = initials['solution']
    T=initials['T']
    length=initials['length']
    best_energy = old_energy = energyfunc(old_solution)
    accepted=0
    total=0
    for index in range(epochs):
        print("Epoch", index)
        if index > 0:
            T = tempfunc(T)
            length=iterfunc(length)
        print("Temperature", T, "Length", length)
        for it in range(length):
            total+=1
            new_solution = proposalfunc(old_solution)
            new_energy = energyfunc(new_solution)
            # Use a min here as you could get a "probability" > 1
            alpha = min(1, np.exp((old_energy - new_energy)/T))
            if ((new_energy < old_energy) or (np.random.uniform() < alpha)):
                # Accept proposed solution
                accepted+=1
                accumulator.append((T, new_solution, new_energy))
                if new_energy < best_energy:
                    # Replace previous best with this one
                    best_energy = new_energy
                    best_solution = new_solution
                    best_index=total
                    best_temp=T
                old_energy = new_energy
                old_solution = new_solution
            else:
                # Keep the old stuff
                accumulator.append((T, old_solution, old_energy))

    best_meta=dict(index=best_index, temp=best_temp)
    print("frac accepted", accepted/total, "total iterations", total, 'bmeta', best_meta)
    return best_meta, best_solution, best_energy, accumulator



tf = lambda t: 0.8*t #temperature function
itf = lambda length: math.ceil(1.2*length) #iteration function
inits=dict(solution=8, length=100, T=100)
bmeta, bs, be, out = sa(f, inits, 30, tf, itf, pf)

Epoch 0
Temperature 100 Length 100
Epoch 1
Temperature 80.0 Length 120
Epoch 2
Temperature 64.0 Length 144
Epoch 3
Temperature 51.2 Length 173
Epoch 4
Temperature 40.96000000000001 Length 208
Epoch 5
Temperature 32.76800000000001 Length 250
Epoch 6
Temperature 26.21440000000001 Length 300
Epoch 7
Temperature 20.97152000000001 Length 360
...
Epoch 27
Temperature 0.24178516392292618 Length 13863
Epoch 28
Temperature 0.19342813113834095 Length 16636
Epoch 29
Temperature 0.15474250491067276 Length 19964
frac accepted 0.7921531132581857 total iterations 119232 bmeta {'index': 112695, 'temp': 0.15474250491067276}







Prac%cal choices

• Start  large to accept all transi0ons.

• Thermostat

1. Linear: Temperature decreases as .

2. Exponen0al: Temperature decreases as 

3. Logarithmic: Temperature decreases as 



• Reannealing interval, or epoch length is the number of points to 
accept before reannealing (change the temperature). Typical 
star<ng value is 100, increase it as  where .

• Larger decreases in temperature require correspondingly longer 
epoch lengths to re-equilibriate

• Running long epochs at larger temperatures is not very useful. 
Decrease temperature rapidly at first.



Simulated Annealing for baseball

bbinits=dict(solution=np.random.binomial(1, 0.5, ncols).astype(bool),
               length=100, T=100)
def efunc(solution):
   solution_vars = predictors[predictors.columns[solution]]
   g = LinearRegression().fit(X=solution_vars, y=logsalary)
   return aic(g, solution_vars, logsalary)
def pfunc(solution):
   flip = np.random.randint(0, ncols)
   solution_new = solution.copy()
   solution_new[flip] = not solution_new[flip]
   return solution_new               



tf2 = lambda temp: 0.8*temp
itf2 = lambda length: math.ceil(1.2*length)
bb_bmeta, bb_bs, bb_be, bb_out = sa(efunc, bbinits, 25, tf2, itf2, pfunc)

Epoch 0
Temperature 100 Length 100
Epoch 1
Temperature 80.0 Length 120
Epoch 2
Temperature 64.0 Length 144
Epoch 3
Temperature 51.2 Length 173
Epoch 4
Temperature 40.96000000000001 Length 208
Epoch 5
Temperature 32.76800000000001 Length 250
...
Epoch 21
Temperature 0.9223372036854786 Length 4641
Epoch 22
Temperature 0.7378697629483829 Length 5570
Epoch 23
Temperature 0.5902958103587064 Length 6684
Epoch 24
Temperature 0.4722366482869651 Length 8021
frac accepted 0.37204513458427013 total iterations 47591 bmeta {'index': 18619, 'temp': 1.4411518807585602}

Best AIC: -420.9472114371548
Best solution: (array([ 1,  2,  5,  7,  9, 12, 13, 14, 15, 23, 24, 25]),)
Discovered at iteration 18618



MCMC
Markov Chain Monte Carlo



Sampling a Distribu0on

• Turn the ques,on on its head.

• Suppose we wanted to sample from a distribu,on  
(corresponding to a minimiza,on of energy ).

• keep our symmetric proposal (reversibility!). Need irreducibility 
to sample from full distribu,on

• set T=1, and use our simulated annealing method



The Typical Set



Metropolis

1. use a proposal distribu0on to propose a step.

2. Then we calculate the pdf at that step, and compare it to the one 
at the previous step.

3. If the probability increased (energy decreased) we accept. If 
probability decreased (energy increased) we accept some of the 
0me.

4. Accumulate our samples.



Intui&on: approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new 
proposal distribu7on from which to sample.



def metropolis(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Uniform Proposal to sample the standard gaussian

from scipy.stats import uniform
def propmaker(delta):
    rv = uniform(-delta, 2*delta)
    return rv
uni = propmaker(0.5)
def uniprop(xprev):
    return xprev+uni.rvs()



Sampling from gaussian with uniform proposal



Why do this?

• Why not rejec-on? wasteful

• more wasteful in higher dimensions

• curse of dimensionality in higher 
dimensions

• volume around mode gets smaller

• interplay of density and volume



Curse of dimensionality

as dimensionality increases, center is lower volume, outside has 
more volume



Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons



Sta$onarity

 or  or

Con$nuous case: define  so that:

 then



Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are 
visited infinitely as .





Rainy Sunny Markov chain

aperiodic and irreducible



Transi'on matrix, applied again and again

array([[ 0.33333333,  0.66666667],
       [ 0.5       ,  0.5       ]])

[[ 0.44444444  0.55555556]
 [ 0.41666667  0.58333333]]
-----------------
[[ 0.42592593  0.57407407]
 [ 0.43055556  0.56944444]]
-----------------
[[ 0.42901235  0.57098765]
 [ 0.42824074  0.57175926]]
-----------------
[[ 0.42849794  0.57150206]
 [ 0.42862654  0.57137346]]
-----------------
[[ 0.42858368  0.57141632]
 [ 0.42856224  0.57143776]]



Sta$onary distribu$on can be solved for:

 Assume that it is 

Then: 

gives us

and thus 

np.dot([0.9,0.1], tm_before): array([ 0.42858153,  0.57141847])



Sta$onarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov 
chain will eventually converge to a sta:onary markov chain. It is the 
marginal distribu:on of this chain that we want to sample from, 
and which we do in metropolis (and for that ma?er, in simulated 
annealing).



Detailed balance is enough for sta3onarity

If one sums both sides over 

 which gives us back the 

sta/onarity condi/on from above.



Proposal, redux

• all the posi,ons x in the domain we wish to minimize a func,on 
 over ought to be able to communicate: IRREDUCIBLE

• detailed balance: proposal is symmetric

• ensures  generated by simulated annealing is a sta,onary 
markov chain with target boltzmann distribu,on: equilibrium

• ensures  generated by metropolis is a sta,onary markov 
chain with appropriate target.



Are we done?

NO. we want to use law of large numbers. But our samples seem to 
be correlated, not IID.

Need a stronger condi.on, ergodicity.

And need to consider correla.on.

But first, a generaliza0on to asymmetric proposals: Metropolis 
Has0ngs...


