
Lecture 26

END OF
DAYS
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What is this course about?
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• Density Es*ma*on. (Also called unsupervised or representa4on 
learning)

• Genera*ve Models in sta4s4cs and machine learning..a 
principled way of modeling (both supervised and unsupervised)

• Being Bayesian: a self-consistent process to carry out this 
modeling

• Sampling and stochas*c op*miza*on: the technology needed

3



Along the way we

• learn how to regularize models

• deal with data computa5onally large/small and sta5s5cally small/large

• learn how to op5mize objec5ve func5ons such as loss func5ons using 
Stochas5c Gradient Descent and Simulated annealing

• Perform sampling and MCMC to solve a variety of problems

• Learn how to use interpretably parametric, non-interpretably 
parametric, and non-parametric methods
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Bayesian Hierarchical Mark-Recapture 
Models (see h8ps://www.fron>ersin.org/
ar>cles/10.3389/fmars.2016.00025/full)
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Concepts running through:
Hidden Variables, marginalized

Tes$ng, tes$ng, tes$ng
Differen'a'on vs Integra'on

Frequen'st vs Bayesian
Genera&ve Models
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Outline of the course summary
1. The Nature of learning

2. Frequen5st stats and machine learning

3. Stochas5c op5miza5on

4. Sampling and MCMC: Metropolis to HMC and NUTS

5. Bayesian Stats

6. Hierarchical Modeling

7. Supervised Learning: Regression, GLMs and GPs

8. Model Checking

9. Model comparison and ensembling

10. Genera5ve Models (adding latent variables which are "not parameters")

11. ELBO grease and Varia5onal Inference
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THE NATURE
OF LEARNING
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SMALL WORLD vs BIG 
WORLD

Small world:

Big World:
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Box's loop
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The nature of learning via predic3ves
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Interpretable vs Nets
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Universal Approxima0on

• any one hidden layer net can approximate any con2nuous 
func2on with finite support, with appropriate choice of 
nonlinearity

• under appropriate condi2ons, all of sigmoid, tanh, RELU can 
work

• but may need lots of units

• and will learn the func2on it thinks the data has, not what you 
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Dont Overfit
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KL-Divergence: compare box to nature

KL divergence measures distance/dissimilarity of the two 
distribu9ons p(x) and q(x).

• used for VI, EM, a probabilis4c loss func4on
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FREQUENTIST STATS
MACHINE LEARNING
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Law of Large numbers, LOTUS, MC

Let  be a sequence of IID values from random 
variable , which has finite mean . Let:

 then 

• Expecta)ons become sample averages. Convergence for large N.

• allows for monte-carlo
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The Central Limit Theorem (CLT)

Let  be a sequence of IID values from a random 
variable . Suppose that  has the finite mean  AND finite 
variance . Then:

 converges to
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Frequen'st Sta's'cs

"data is a sample from an exis/ng popula)on"

• data is stochas+c, variable; parameters fixed

• apply an es+mator  to the sample data , so .

• If your model describes the true genera+ng process for the data 
(not mis-specified), then there is some true .

• The best we can do is to es+mate .
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MLE
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Informa(on Entropy and MAXENT

• what would be the least surprising distribu3on, the one with the 
least addi3onal assump3ons (most conserva3ve), the one that 
can happen in the most ways consistent with constraints

• most common distribu3ons used as likelihoods (and priors) are in 
the exponen3al family, MAXENT subject to different constraints.
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Sampling Distribu0on, 
bootstrap

• M data sets drawn from the popula1on, 
thus M es1mates

• As we let , the distribu1on 
induced on  is the empirical sampling 
distribu0on of the es0mator.

• create data sets by BOOTSTRAP

• but we need samples
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SAMPLE vs POPULATION

Want: 

LLN: 

 representa)ve 
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Statement of the Learning 
Problem

The sample must be representa/ve of the 
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Then,

This is the bias variance decomposi2on for regression.

26



DATA SIZE MATTERS: straight line fits to a sine curve

Corollary: Must fit simpler models to less data!
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Regulariza*on is a prior for smoothness
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STOCHASTIC
OPTIMIZATION
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Gradient ascent (descent)

basically go opposite the direc1on of the 
deriva1ve.

Consider the objec/ve func/on: 

gradient = fprime(old_x)
move = gradient * step
current_x = old_x - move
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good step size
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Gradient Descent and SGD
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Stochas(c Gradient Descent

ONE POINT AT A TIME

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad

Mini-Batch: do some at a 1me
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Logis&c Regression Likelihood, graphically
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So#max Formula,on
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Backprop: Reverse Mode Differen4a4on

Write as:
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Layer Cake
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THATS IT! Write your Own Layer

39



Simulated Annealing

Minimize  by iden+fying with the energy of an imaginary physical 
system undergoing an annealing process.

Move from  to  via a proposal.

If the new state has lower energy, accept .

If the new state has higher energy, accept with 
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Lowering temperature slowly, the system 
reaches "thermal equilibrium" at each 
temperature. Boltzmann's distribu=on:

If you iden+fy

 and 

Then:
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SA Distribu+ons
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SAMPLING
AND MCMC
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GENERATE THEM!

• Inverse method, Rejec2on (on steroids)

• Stra2fica2on to reduce variance

• Importance (for expecta2ons)

• MCMC, MH, HMC, Slice, ADVI, etc

• integrals (marginalize) by ignoring 
dimensions in histogram
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Sampling a Distribu0on

• Turn the annealing ques0on on its head.

• Suppose we wanted to sample from a distribu0on  
(corresponding to a minimiza0on of energy ).

• keep our symmetric proposal (reversibility!). Need irreducibility 
to sample from full distribu0on

• set T=1, and use our simulated annealing method: Metropolis
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MCMC
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Intui&on: proposal approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new 
proposal distribu7on from which to sample.
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Cri$cal: explore the typical set
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Sta$onarity

 or  or

Con$nuous case: define  so that:

 then
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Detailed balance is enough for sta3onarity

If one sums both sides over 

 which gives us back the 

sta/onarity condi/on from above.
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Need Ergodicity

• “Ergodic” law of large numbers:

(the jury is out on thinning. Most dont think one needs it)

If there exists a sta,onary , you can construct a  such that  is sta,onary and converges to , and

• an ergodic law of large numbers exists

• an ergodic central limit theorem exists
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Metropolis and MH

• overshoot and oscillate at pinches

• need to specify step step sizes

• large steps can go outside typical set 
and are not accepted

• but can cover ground quickly

• small steps accepted but go nowhere

• large correla;ons
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MH Acceptance

• correct the sampling of q to match p, corrects for any 
asymmetries in the proposal distribu8on.

• A good rule of thumb is that the proposal has the same or larger 
support then the target, with the same support being the best.
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(from Paul Lewis)
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The idea of Gibbs

, a 

Sta&onary distribu&on.

: Sample 

alternately to get transi1ons.

Can sample  marginal and  so can 
sample the joint .
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Data Augmenta+on

The difference from Gibbs Sampling: the other variable, say , is to 
be treated as latent.

The game is to construct a joint  such that we can sample 
from  and , and then find the marginal
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SLICE
(a data augmenta+on)
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HMC & NUTS
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HMC to the rescue: need 
glide

Now, like in annealing, let 

DATA AUGMENTATION: with an 
addi*onal momentum gives energy 

Hamiltonian 

Hamiltonian flow: reversible, 3me-
invariant, volume-preserving

61



Thrusters fire away

Choice of a kine,c energy term is choice 
of a condi,onal probability distribu,on 
over the "augmented" momentum such 
that:

.
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Tuning:

• The ideal kine,c energy interacts with 
target, in prac,ce we o7en use 

• Set inverse mass matrix to the covariance of 
the target distribu,on: maximally decorrelate 
the target. Do in warmup phase.

• use symplec,c integra,on

• need to determine L and .

• generally sta,c not good, under samples tails 
(high-energy microcanonicals). Es,mate 
dynamically: NUTS (pymc3 and Stan)
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Acceptance probability

• small symplec+c errors means H evolu+on only forward in +me

• tack on sign change . Superman to the rescue!

• Acceptance: 

• More general acceptance in NUTS, sum over all points in orbit
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Model convergence

• traces white noisy

• diagnose autocorrela3on, check 
parameter correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m 
samples

• traceplots from different star7ng points, 
different chains

• formal tests: Gewecke, Gelman-Rubin, 
Effec7ve Sample Size
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Thoughts on Diagnos-cs

• be paranoid, you only know you have not converged, not if you 
have

• what if you missed out an en:re lobe? Thus mul:ple chains and 
mul:ple star:ng points.

• check posterior correla:ons, trace autocorrela:on, effec:ve , 
the look of the trace, the acceptance rate

• check gewecke and gelman-rubin
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STATS
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WHEN BAYES
from Jim Savage
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https://twitter.com/jim_savage_/status/983371427226308609
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Latent Variables

• dont think of bayes/frequen4st, think of observed  /Latent 

• anything unobserved is latent (this is the posterior predic4ve 
point of view,  as ), thus standard bayesian viewpoint: nuisance 
parameters are latent

• latent factors in matrix factoriza4on, mixtures, 
recommenda4ons...cluster s
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Genera&ve model
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Bayesian

• sample is the data, and is fixed

• parameter is stochas4c, has prior and posterior distribu4on

• posterior: , can summarize via MAP

• just bayes rule: 
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From edwardlib: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.
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• prior-predic*ve = evidence:  a 

normaliza*on, irrelevant for sampling, useful for EB

• What if  is mul*dimensional? Marginal posterior: 

• posterior predic*ve: the distribu*on of a future data point :

.

74



Marginaliza)on

Marginal posterior: 

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
    pd.Series(samps[20000::,0], name="$\mu$"),
    pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
    .plot_joint(
        sns.kdeplot,
    zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])
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priors

• choose likelihoods with MAXENT

• choose priors as non-informa;ve, e.g. 
uniform or Jeffreys

• beEer s;ll: choose priors as weakly 
informa;ve/regularizing

• helps with sampler performance

• see hEps://github.com/stan-dev/stan/
wiki/Prior-Choice-Recommenda;ons 
and Stan Manual
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Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of  assuming we
know ?

Prior for  is 
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The conjugate of the normal is the normal itself.

Say we have the prior

posterior: 
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Here

Define 

which is a weighted average of prior mean and sampling mean.
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The variance is

or be&er

 as  increases, the data dominates the prior and the posterior 
mean approaches the data mean, with the posterior distribu3on 
narrowing...
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Bayesian Upda,ng "on-line"

• as each piece of data comes in, you update the prior by 
mul6plying by the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!
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Weakly informa.ve or regularizing priors

• these are the priors we will concern ourselves most with

• restrict parameter ranges

• help samplers

• regularizing priors may use the data "twice" as we shall see
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Normal model Example

• two data points 1 and -1

• flat improper priors on 

• model dri3s wildly as less data

• flat priors say extreme implausible 
values quite likely

• extreme dri3s overwhelm chain
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weakly regularizing priors

• choose 

• choose 

• lets mean vary widely but not crazily

• HalfCauchy lets variance be posi:ve 
and occasionally can have high value 
samples
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Data Overwhelms priors

Define 

• priors regularize data for small data

• but large data overwhelms priors
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Exchangeability

Lets assume that the number of children of a women in any one of 
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a 
permuta7on of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...

88



Posterior Predic+ves

Sampling easy (mothers poisson-gamma):

postpred1 = poisson.rvs(theta1trace)
postpred2 = poisson.rvs(theta2trace)

Exact: Nega+ve Binomial (requires math):
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Posterior Predic+ve Smear

pp vs sampling distrib at MAP 
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Missing Data can be imputed 
with the predic4ve

disasters_masked = np.ma.masked_values(disasters_missing, value=-999)
disasters = pm.Poisson('disasters', rate, observed=disasters_masked)
with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(10000, step=stepper)

pm.summary(trace_missing, varnames=['disasters_missing'])
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Bayes Ac)on

First define the distribu.on-averaged u.lity:

We then find the  that maximizes this u0lity:

This ac(on is called the bayes ac(on.
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Posterior Mean minimizes 
squared loss

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

This is Decision Theory.
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Custom Loss

def stock_loss(stock_return, pred, alpha = 100.):
    if stock_return * pred < 0:
        #opposite signs, not good
        return alpha*pred**2 - np.sign(stock_return)*pred \
                        + abs(stock_return)
    else:
        return abs(stock_return - pred)
#posterior predictive samples at every x
possible_outcomes = lambda signal: alpha_samples + \
    beta_samples*signal + noise

opt_predictions = np.zeros(50)
trading_signals =  np.linspace(X.min(), X.max(), 50)
for i, _signal in enumerate(trading_signals):
        _possible_outcomes = possible_outcomes(_signal)
        #expected loss over posterior predictive
        tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean()
        #bayes action minimizes expected loss
        opt_predictions[i] = fmin(tomin, 0, disp = False)
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HIERARCHICAL
MODELS
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Par$al pooling: Hierarchical 
Model

s drawn from "popula/on distribu/on" 
given by a conjugate Beta prior  

with hyperparameters  and .
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Priors from data

Where do  and  come from?

Why are we calling them hyperparameters?

So far have assumed  and  known in priors to be weakly 
informa7ve.

New idea: es*mate priors from data. Looks like a cross-valida*on 
like setup.
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Key Idea: Share sta.s.cal strength

• Some units (experiments) sta1s1cally more robust

• Non-robust experiments have smaller samples or outlier like 
behavior

• Borrow strength from all the data as a whole through the 
es1ma1on of the hyperparameters

• regularized par/al pooling model in which the "lower" 
parameters ( s) 1ed together by "upper level" hyperparameters.
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Empirical Bayes or Type-2 Likelihood

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood with 
respect to  to es7mate these  using our "data" 

Used in GPs, even can be sampled from
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Levels of Bayes
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Full Bayes

• Fix  and , we have a Gibbs step for all of the s

• For  and , everything else fixed, use sta;onary metropolis step, 
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a 
normal proposal, while holding all the s and  constant at the 
old value. di?o for .
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Howto Sampling

• a DAG, with observa2ons at the bo4om of a tree, next layer 
intermediate parameters, upper layers hyper-parameters

• sample condi2onals from parents up the tree.

• general structure is sampling steps inside Gibbs

• stan, pymc3 all have this structure
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Hierarchy organizes exchangeability

• we use the no+on of exchangeability at the level of 'units'.

• for our rats, the  were exchangeable since we had no addi+onal 
informa+on about experimental condi+ons.

• if specific groups of experiments came from specific laboratories, 
assume experiments interchangeable if from the same lab.

• lab specific  and  parameters

• add another level of hierarchy to draw these from hyperprior.
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Centered Hierarchical Normal-
Normal Model

problem: Small . Poor sampling.
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High Curvature Issues

• symplec)c integra)on diverges: good 
diagnos)c

• sampler needs to have real small steps 
to not diverge, but then becomes s)cky

• regions of high curvature o;en have 
high energy differences, causing trouble 
for microcanonical jump transi)ons.
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Non-centered model: Ma0 
Trick
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Divergences and true length of funnel
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Step size effect

• lower step size  be.er for symplec3c 
integrators, especially in high curvature 
regions, but too small: return of the random 
walk

• if divergences persist on lowering step sizes, 
we are s3ll too curved

• If Divergences infrequent, and all over. Mostly 
false posi3ves. Lowering step sizes should 
make them go away

• check marginal energy: if has bigger tails, 
indica3ve of big energy changes in high-
curvature regions not possible to boost to.

108



SUPERVISED LEARNING
REGRESSION AND GLMs
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Bayesian Regression

• posterior narrower (  spread) than PP

• supervised learning, a distrib at each 
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Traces for such a model are awful

The slope and intercept are very highly correlated: -0.99!
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Center the weights

• symptom of shared informa1on and 
iden1fiability

• fix by centering. intercept then gives 
response when predictor=mean.
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glms

• linear regression with a link. likelihoods chosen MAXENT

 where  is the parameter at the ith data point.

For most GLMs, the common links we use are the logit link to 
model the space of probabili:es, and the log link which you will use 
here to enforce posi:veness on a parameter.
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 is rate,  is counts,  is exposure.

 or  constrained to be posi.ve.

import theano.tensor as t
with pm.Model() as model1:
    alpha=pm.Normal("alpha", 0,100)
    beta=pm.Normal("beta", 0,1)
    logmu = t.log(df.days)+alpha+beta*df.monastery
    y = pm.Poisson("obsv", mu=t.exp(logmu), observed=df.y)
    lambda0 = pm.Deterministic("lambda0", t.exp(alpha))
    lambda1 = pm.Deterministic("lambda1", t.exp(alpha + beta))
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Zero Inflated Poisson Mixture 
model

, 
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Oceanic tools

From Mcelreath:

The island socie-es of Oceania provide a natural 
experiment in technological evolu-on. Different 

historical island popula-ons possessed tool kits of 
different size. These kits include fish hooks, axes, boats, 
hand plows, and many other types of tools. A number 

of theories predict that larger popula-ons will both 
develop and sustain more complex tool kits. So the 

natural varia-on in popula-on size induced by natural 
varia-on in island size in Oceania provides a natural 

experiment to test these ideas. It's also suggested that 
contact rates among popula-ons effec-vely increase 

popula-on size, as it's relevant to technological 
evolu-on. So varia-on in contact rates among Oceanic 

socie-es is also relevant. (McElreath 313)
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Model M1

with pm.Model() as m1:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop +
        betac*df.clevel + betapc*df.clevel*df.logpop
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

with m1:
    trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100%|██████████| 200000/200000 [00:15<00:00, 13019.16it/s]   12683.03it/s]
100%|██████████| 10000/10000 [01:59<00:00, 83.80it/s]
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Hierarchical regression: 
Overdispersion fixed by 

varying intercepts

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)
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Intercept-slope Correla/on Modeling
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Oceanic Tools Correla.ons: 
Example of GP

We modeled society specific intercepts for 
oceanic tools as draws from a 0 mean 
mul6variate gaussian and correla6on 
func6on depending on distance: nearer 
socie6es have similar intercepts.

Covariance posteriors:
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Gaussian Formulae
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Genera&ng curves from a kernel-based covariance
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a Gaussian Process defines a prior distribu2on over func2ons!

Once we have seen some data, this prior can be converted to a 
posterior over func6ons, thus restric6ng the set of func6ons that 
we can use based on the data.
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KEY INSIGHT:

MARGINAL IS DECOUPLED
...for the marginal of a gaussian, only the covariance of the block of the 
matrix involving the unmarginalized dimensions ma:ers! Thus "if you 

ask only for the proper?es of the func?on (you are fiBng to the data) at 
a finite number of points, then inference in the Gaussian process will 

give you the same answer if you ignore the infinitely many other points, 
as if you would have taken them all into account!"

-Rasmunnsen

124



Universal Approxima0on

• Exact correspondence between the gaussian process (direct 
usage of gaussians in space) to the basis func8on regression (in 
feature space with gaussians for prior parameters) in the 
kernelized representa8on, as long as we iden8fy the GP 
covariance func8on  with the kernel func8on 

. (Mercer's theorem)

• We have seen such universal approxima8on in NN

• there is a connec8on for both single layer and deep NN
125

https://arxiv.org/abs/1711.00165


Condi&onal
EQUALS Predic.ve
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INFERENCE

Use the marginal likelihood:

The Marginal likelihood given a GP prior and a gaussian likelihood 
is:
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Se#ng up the model

with pm.Model() as model:
    # priors on the covariance function hyperparameters
    l = pm.Uniform('l', 0, 10)
    # uninformative prior on the function variance
    s2_f = pm.HalfCauchy('s2_f', beta=10)
    # uninformative prior on the noise variance
    s2_n = pm.HalfCauchy('s2_n', beta=5)
    # covariance functions for the function f and the noise
    f_cov = s2_f**2 * pm.gp.cov.ExpQuad(1, l)
    mgp = pm.gp.Marginal(cov_func=f_cov)
    y_obs = mgp.marginal_likelihood('y_obs',  
        X=xtrain.reshape(-1,1), y=ytrain, noise=s2_n,
        is_observed=True)
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MCMC

with model:
     trace = pm.sample(10000, tune=2000,
        nuts_kwargs={'target_accept':0.85})
 with model:
     fpred = mgp.conditional("fpred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=False)
     ypred = mgp.conditional("ypred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=True)
     gp_samples = pm.sample_ppc(trace,
         vars=[fpred, ypred],
         samples=200)
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MODEL
CHECKING
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Mul$ple replica$ons of the posterior predic$ve

, observed data:  

Replicated Data: : data seen tomorrow if experiment replicated 
with same model and value of  producing todays data .

 comes from posterior predic-ve, and if there are covariates 
, then  is calculated at those covariates only 

(sample_ppc).

133



Departure from usual 
predic1ve sampling

Sample an en)re  at each  from 
trace.

For example the minimum value of speed 
of light in 20 predic8ve replica8ons.
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Visual Checking

Do these even look similar??
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Bayesian p-values

 

 probability over the posterior and 
posterior predic2ve
 (that is, the joint distribu2on, 

.

 

using .
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Appropriate usage

Gelman: Finding an extreme p-value and thus ‘rejec7ng’ a model is 
never the end of an analysis; the departures of the test quan7ty in 
ques7on from its posterior predic7ve distribu7on will o@en suggest 
improvements of the model or places to check the data, as in the speed 
of light example. Moreover, even when the current model seems 
appropriate for drawing inferences (in that no unusual devia7ons 
between the model and the data are found), the next scien7fic step will 
o@en be a more rigorous experiment incorpora7ng addi7onal factors, 
thereby providing beHer data.
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Oceanic Tools counterfactual checking
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Solu%on is centering, see in , can use model comparison
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MODEL COMPARISON
AND ENSEMBLING
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Model comparison

The key idea in model comparison is that we will sort our average u7li7es in some order. The exact values are not 
important, and may be computed with respect to some true distribu7on or true-belief distribu7on .

where  is the op+mal predic+on under the model . Now we compare the ac+ons, that is, we want:

No calibra*on, but calcula*ng the standard error of the difference can be used to see if the difference is 
significant, as we did with the WAIC score
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Bayesian Inference works in the small world

(some 'mes includes the true genera'ng process )
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Inference in the small world

we go from prior to posterior
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Bias and Variance: Overfi0ng

Overfi&ng can occur even if the small world includes the true data 
genera7ng process .
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Deviance

,

then

More generally: 
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AIC

Akaike Informa-on Criterion, or AIC:

• mul%variate gaussian posterior

• flat priors

• data >> parameters
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Train to Test
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DIC

• uses the posterior distribu.on, calculable from MCMC.

• mul.variate gaussian posterior distribu.on.

 where

 (by monte carlo)

alterna've fomula'on for , guaranteed to be posi've, is

148



Bayesian deviance

•  posterior predic,ve for points  on the test set or future data

• replace joint posterior predic,ve over new points  by product of marginals: ELPD: 

• Since we do not know the true distribu,on , replace elpd:  by the computed 

"log pointwise predic,ve density" (lppd) in-sample
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WAIC

where

Once again this can be es-mated by
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Centered vs Uncentered

interac(on is overfit. centering decorrelates

151



Defini&ons

• dWAIC is the difference between each WAIC 
and the lowest WAIC.

• SE is the standard error of the WAIC es:mate.

• dSE is the standard error of the difference in 
WAIC between each model and the top-
ranked model.

read each weight as an es.mated probability 
that each model will perform best on future data.
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it is temp(ng to use informa(on criteria to compare models with 
different likelihood func(ons. Is a Gaussian or binomial be;er? 

Can't we just let WAIC sort it out?
Unfortunately, WAIC (or any other informa(on criterion) cannot 

sort it out. The problem is that deviance is part normalizing 
constant. The constant affects the absolute magnitude of the 

deviance, but it doesn't affect fit to data.

— McElreath

Use Cross-Valida.on in such cases
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LOOCV

• Fit a model on N-1 data points, and use the Nth point as a valida6on point.

• the N-point and N-1 point posteriors are likely to be quite similar, use importance sampling. Fit the full 
posterior once. Then we have

• the importance sampling weights can be unstablein the tails, pymc (pm.loo) fits a generalized pareto to the 
tail (largest 20% importance ra>os) for each held out data point i (a MLE fit). Smooths out any large varia>ons.
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What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the 
same likelihood, the laAer can be used with models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-likelihood models 
(especially nested models where you are really performing feature selecEon), it is 
the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just do posterior 
predicEve checks to see how the predicEons are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predicEve performance within an exisEng 
cluster or group. Cross validaEon is best for new observaEons from new groups
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Evidence for model comparison: Occams Razor
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Bayesian Model Averaging

where the averaging is with repect to weights , the 
posterior probabili3es of the models .

Use the weights from the WAIC
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Counterfactual PP and ensembling via weights
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BAYESIAN
WORKFLOW
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(from @ericnovik)
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Ba#ery of tests

• Visual Inspec.on

• Gewecke, Gelman Rubin, Effec.ve N, posteriors from various 
starts

• posterior plots, pairwise posterior plots

• Divergences, enerygyplots
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Parallel Co-ordinates for divergences

see paper on bayesian viz
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https://arxiv.org/pdf/1709.01449.pdf


Model Calibra,on

Think about the Bayesian Joint distribu0on.

The prior predic+ve:
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How to choose priors?

• mild regulariza-on

• un-informa-vity

• sensible parameter space

• should correspond to scales and units of process being modeled

• we should calibrate to them
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Generate Ar)ficial data sets

• from fixed params, but even be4er, from priors

•

•

• callibrate inferences or decisions by analysing this data

•
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Now fit a posterior to each 
generated dataset

• see Cook et al

• take each 

• get a  posterior

• find the rank of  in "its" posterior

• a histogram of ranks should be uniform-
this tests our sampling so:ware
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http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf


Sensi&vity of posterior to 
range allowed by prior

where  and  are generated-posterior 
quan22es and  is a prior one, and n 
indexes the parameters
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Then move to the REAL DATA posterior

• now we do posterior predic.ve checks

• the prior checks have specified possible data distribu.ons that can 
be generated

• the posterior predic.ve ought to be a subset of these. If not our 
model is mis-specified

• this may seem strange as we didnt think priors are data genera.ng

• they are not but are defined with respect to the likelihood
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The Workflow (from Betancourt, and Savage)
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Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions
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Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison

• usually within a nested model, but you might want to apply a different modeling scheme, in which 
case use loo

• you might want to ensemble instead
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GENERATIVE
MODELS
(with latent variables for things like mixtures)
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Mixture Models

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.

Example: Zero Inflated Poisson
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Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 where .
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GMM supervised formula1on

, 

Full-data loglike: 
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Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:
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Semi-supervised learning

We have some labels, but typically very few labels: not enough to 
form a good training set. Likelihood a combina=on.

Here  ranges over the data points where we have labels, and  over 
the data points where we dont.
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Autoencoders

• can think of an autoencoder as a way of 
approximately training a genera8ve 
model.

• the features of the autoencoder 
describe the latent variables that 
explain the input

• can go deep!

• generalize to a stochas8c autoencoder. 
The standard autoencoder then is a 
specific hidden state  or 
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(from here)
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https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1


ELBO
GREASE
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The EM algorithm

• itera've method for maximizing difficult likelihood (or posterior) 
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its condi'onal 
expecta'on (more precisely, compute the condi'onal expecta'on of the 
augmented or full data likelihood) given current observed data and 
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).
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x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence
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E-step and M-step
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Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate 
 which gives 

rise to ELBO( ): (blue 
curve) whose value equals the value 
of  at .

2. M-step: maximize ELBO (or Q func) 
wrt  to get .

3. Set 
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VARIATIONAL
INFERENCE
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Varia%onal Inference Core Idea

 is now all parameters. Dont dis1nguish 
from .

Restric(ng to a family of approximate 
distribu(ons D over , find a member of 
that family that minimizes the KL 
divergence to the exact posterior. An 
op(miza(on problem:
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Basic Setup in VI

: ELBO bounds log(evidence)

(likelihood-prior balance)
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Mean Field: Find a  such that:

: KL minimized means ELBO maximized.

Choose a "mean-field"  such that:

Each individual latent factor can take on any paramteric form 
corresponding to the latent variable.
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ADVI
Core Idea:

• CAVI does not scale

• Use gradient based op6miza6on, do it on less data

• do it automa6cally
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What does ADVI do?

1. Transforma+on of latent parameters (T transform)

• reparametrize mean field parameters to the real line

2. Standardiza+on transform for posterior to push gradient inside 
expecta+on (S transform)

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on
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2D gaussian example

High correla,on gaussian with sampler

cov=np.array([[0,0.8],[0.8,0]], dtype=np.float64)
data = np.random.multivariate_normal([0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
    density = pm.MvNormal('density', mu=[0,0],
    cov=tt.fill_diagonal(cov,1), shape=2)
with mdensity:
    mdtrace=pm.sample(10000)

Trace: 
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Two ideas from Yao et. al.

• pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementa>on, WIP). The 
idea comes from the process of smoothing in LOOCV es>ma>on

• VSBC (varia>onal simula>on based callibra>on) : Extends 
calibra>on from Bayesian Workflow to varia>onal case. pymc3 
experimenta>on by @junpenglao here, WIP
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https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb


Why use VB: Deep Genera1ve Models

• simply not possible to do inference in large models

• inference in neural networks: understanding robustness, etc

• hierarchical neural networks (perhaps on exam)

• Mixture density networks: mixture parameters are fi?ed using 
ANNs

• extension to generaBve semisupervised learning
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https://arxiv.org/pdf/1406.5298.pdf


Varia%onal Autoencoder

• just as in ADVI, we want to learn an approximate "encoding 
posterior" 

• note that we have now again gone back to thinking of  as a 
(possibly) deep latent variable, or "representaCon".

We know how to do this:

ELBO maximiza+on
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Why?

See pymc3 for e.g. for auto-encoding LDA

• varia&onal auto-encoders algorithm which allows us to perform 
inference efficiently for large datasets

• use tunable and flexible encoders such as mul&layer perceptrons 
(MLPs) as our varia&onal distribu&on to approximate complex 
varia&onal posterior
-then its just ADVI with mini-batch on PyMC3 or pytorch. Can 
use for any posterior, example LDA, or custom for MNIST
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https://docs.pymc.io/notebooks/lda-advi-aevb.html


Big Ideas

• learning is possible because there is a compressive manifold on which the 
data lives

• through SGD, HMC, etc we try tolearn about this manifold

• principled modeling can be done by combining known schemes such as 
poisson GLM with deep networks

• networks (which are just complex models) can be used at other places such 
as variaEonal posteriors

• priors will regularise for us!
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Interes'ng Times
• we progress by first predic1ng, and then understanding the 

robustness of our inference: posteriors and error bars

• MCMC/HMC, bayesian workflow, genera1ve models, deep 
genera1ve models and varia1onal inference are at the cuBng 
edge

• we have tried in this course to cover the basics and then be at 
this edge in places
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What you have done and should do
• a lot of prac+ce with lecture examples, labs, and homework

• been at the edge with your paper

• stay at the edge! Twi=er is the place to be.

• follow folks like Andrew Gelman, Michael Betancourt, Jim Savage, Dan 
Simpson, Ian Goodfellow, Aki Vehtari, Dus+n Tran, BayesGroup, Stephen 
Merity, Jeremy Howard, Roger Grosse, Ferenc Huszar, Alex D'Amour, Tom 
Wiecki, Colin Carrol, Tom Augsperger, Francios Chollet, Junpeng Lao, 
Richard McElreath
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FIN
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https://www.youtube.com/watch?v=yG8o47npQug

