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What is this course about?
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e Density Estimation. (Also called unsupervised or representation
learning)

 Generative Models in statistics and machine learning..a
principled way of modeling (both supervised and unsupervised)

 Being Bayesian: a self-consistent process to carry out this
modeling

 Sampling and stochastic optimization: the technology needed
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Along the way we

e |learn how to regularize models
e deal with data computationally large/small and statistically small/large

e |learn how to optimize objective functions such as loss functions using
Stochastic Gradient Descent and Simulated annealing

e Perform sampling and MCMC to solve a variety of problems

e Learn how to use interpretably parametric, non-interpretably
parametric, and non-parametric methods
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p,, - observed ( 0 0 0 pu )
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The most general model is represented as:

initialize: zg ;
P(zeilze—14, Ar)

l1fori=1,...m
Cat(A¢[-, zp—y ) fori=1,.., m;
t—1,..T

P(yes.ilzes, Bes) = Cat(By [,z ]) fori=1,..,m;
ss=1,..8:t=1,..T

m T St
(A, BI1Y, A) o ([T(TT(TTp0wsilzes Be)

1 =] =]

not yetentered dead  offsite onsite
not yet 1 — 0 0 0
entered
A; = dead 0 1 1 — ¢, 1 — ¢,
offsite Yell=2) 0 Oy o'
onsite Ve 0 &ll—vy) &l -y
=
I @AM 207 Pz il ze—1,1 A:)))R(A) (2)

Scaled Half Student-t: Hyperprior

f(6) o T(U.T.V) 1 [520)

data quantity: SPARSE
(5 observations per group)




Concepts running through:

Hidden Variables, marginalized
Testing, testing, testing
Differentiation vs Integration
Frequentist vs Bayesian
Generative Models
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Outline of the course summary

The Nature of learning

Frequentist stats and machine learning

Stochastic optimization

Sampling and MCMC: Metropolis to HMC and NUTS
Bayesian Stats

Hierarchical Modeling

Supervised Learning: Regression, GLMs and GPs

Model Checking

W 0 N o U~ L o

Model comparison and ensembling
10. Generative Models (adding latent variables which are "not parameters")

11. ELBO grease and Variational Inference
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THE NATURE
OF LEARNING



SMALL WORLD vs BIG
WORLD

Small world:

P(D | 6) x P(6)

P(0| D) = P(D)

Big World:

P(D | M) x P(M)
P(D)

P(M | D) =
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Build model

Box's loop

DATA

|

Infer hidden quantities

Mixtures and mixed-membership models, Markov chain Monte Carlo,

time-saries models, generalized linear models,
factor models, Bayesian nonparametrics

’

variational inference,
Laplace approximation

l

Apply model

Predictive systems,
data exploration,
data summarization

Criticize model

Performance on a task,
prediction on unseen data,
posterior predictive checks

REVISE MODEL
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The nature of learning via predictives

y = f(z) +e

TARGET \X OINT
GISTRIBUTION P m? ’@STJR,BUT,ONP(%@
, |

SAMPLE (TRAINING EXAMPLES) | / weut P()
(€1,91) (Z2,Y2),s - @STRIBUTDN

HYPOTHESIS
SET H |

hlah2a--'aga "'ahu'\f

Y

MEASURE HypoTHesis 9~ f

(Tn,¥yn)
w
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Input
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Interpretable vs Nets

Linear —*—+’I|neanty -

& INPUT LAYER >
/ \ [ N n-
- Linear |—» on |

/\ linearity ,

l/vr 7

Linear

Linear .,

—
HIDDEN LAYER

. linearity /

=N

' Non-
\linearity |

Non-

|

qN—

Linear f—’y
OUTPUT LAYER
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Universal Approximation

e any one hidden layer net can approximate any continuous
function with finite support, with appropriate choice of
nonlinearity

e under appropriate conditions, all of sigmoid, tanh, RELU can
work

e but may need lots of units

e and will learn the function it thinks the data has, not what you

@AM 207
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Emor or risk ———9

Dont Overfit

- >
High Bias Low Bias
Low Variance High Vanance

Complexity “d" ——p
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KL-Divergence: compare box to nature

D1 (p,q) = Ep|log(p) — log(q)] = Epllog(p/q)]
— sz-log(%) or /dPlog(E)

q

KL divergence measures distance/dissimilarity of the two
distributions p(x) and q(x).

e used for VI, EM, a probabilistic loss function

@AM 207
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FREQUENTIST STATS
MACHINE LEARNING




Law of Large numbers, LOTUS, MC

Let 21, 25,...,x, be asequence of IID values from random
variable X, which has finite mean p. Let:

1 n
S, = —in,then S, — pasn — oo.
n =

e Expectations become sample averages. Convergence for large N.

e allows for monte-carlo

@AM 207
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The Central Limit Theorem (CLT)

Let 21, z5,...,x, be asequence of IID values from a random
variable X. Suppose that X has the finite mean u AND finite
variance &*. Then:

1 n
S, = — E x;, converges to
n
i=1

0.2

Sp ~ N(u,—)asn — oo.
n

@AM 207

18



Frequentist Statistics

"data is a sample from an existing population”
e data is stochastic, variable; parameters fixed

* apply an estimator F' to the sample data D, so i = F(D).

e |f your model describes the true generating process for the data
(not mis-specified), then there is some true u*.

 The best we can do is to estimate ji.

@AM 207
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pdf
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p(x11.8)

p(x15.8)

MLE

—
o

Y
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Information Entropy and MAXENT

H(p) = ~Eyllog(p)] = - [ p(@)log(p(z))dz OR - > piog(p)

 what would be the least surprising distribution, the one with the
least additional assumptions (most conservative), the one that
can happen in the most ways consistent with constraints

 most common distributions used as likelihoods (and priors) are in
the exponential family, MAXENT subject to different constraints.

@AM 207
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Sampling Distribution,
bootstrap

e M data sets drawn from the population,
thus M estimates

e Aswe let M — oo, the distribution
induced on i is the empirical sampling

distribution of the estimator.
e create data sets by BOOTSTRAP

e but we need samples

@AM 207

data

0.00168

-0.00249

0.0183

simulated data

0.00183

0.00183

-0.00587

0.0139

estimator

re-sampling

empirical

distribution

1 parameter calculation

Qoor = -0.0392

> -0.00249

-0.00249

-0.00587

estimator

1

qoor = -0.0354

re-estimate
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SAMPLE vs POPULATION

Want: Ryt (h) = Ey[(h(z) ~ £(2))*) = [ dap(z)(h(z) - £(2))’

LLN:
Rout(h) = lim — 3 (h(z:) - f@))? = lim — 3 (h(z:) - 3:)’

n—o00 M n—oo M
z;~p(x) z;~p(z)

D representative (D ~ p(z)) = Rp(h) = Z (h(z:) —¥i)°

x; €D

@AM 207



30
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Statement of the Learning
Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Then,

(R) = Ep) [Ep|(9p — 9)°]] + Ep) [(f — 9)°] + 0

This is the bias variance decomposition for regression.

@AM 207
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DATA SIZE MATTERS: straight line fits to a sine curve

samples with 2 data points

samples with 5 data points

A

o

©w
A

Corollary: Must fit simpler models to less data!

&AM 207
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Regularization is a prior for smoothness

@AM 207
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STOCHASTIC
OPTIMIZATION



Gradient ascent (descent)

basically go opposite the direction of the
derivative.

Consider the objective function:
J(z) =2 —6x+5

gradient = fprime(old_x)

move = gradient * step
current x = old X - move

@AM 207
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700

600
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200

100

good step size
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Gradient Descent and SGD

0.5 |
-1000  -500 0

500
0

..

1000

1500

\
2000
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Stochastic Gradient Descent

0:=0— aV,J;(6)

ONE POINT AT ATIME

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params _grad = evaluate gradient(loss function, example, params)
params = params - learning rate * params_grad

Mini-Batch: do some at a time

@AM 207

33



34

&AM 207



Logistic Regression Likelihood, graphically

Ty —» Liner | —— | Sigmoid | - NLL | —» Cost

/ S o Y (yilog(h(w - x;)) + (1 — y,)log(1 — h(w - x,)))

@AM 207
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Softmax Formulation

Input 22 = X:."W
P 1 : ’1 23 = L.S‘Mﬂ:z?,z%)
| . .
I 1 — i Wy 2 =Z(11z;‘+12z3)
ro; —* Linear LSM NLL ’ » Cost
. 3 _ T (12 .2
. » //,' Z%:xi'Wz Zo —LSMZ’(z.I,zZ)
T di o
Z Wy
2P =x;
@AM 207
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Write as:

@AM 207

Backprop: Reverse Mode Differentiation
Cost = f2° (£2 (£2 (£* (x))))

aftess o> of? of!

VxUost = =53 57 ol ox
dfloss ofS  Of?  of!
VXCOSt - ((( 8f3 sz ) F) E)
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Forward

Layer Cake

2zt = f4(2%) 0t =1

i b
Layer 5: NLL
¥ b
VA 3 = f 3 (z 2 ) 5 S
i b
Layer 2: LS
t v
2% = f,(z") 52
i b
Layer /: Linear
1 v
2! = x; b) 1

Backward
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THATS IT! Write your Own Layer

Layer /
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Simulated Annealing

Minimize f by identifying with the energy of an imaginary physical
system undergoing an annealing process.

Move from z; to z; via a proposal.

If the new state has lower energy, accept z ;.

If the new state has higher energy, accept with A = exp (—Af/kT)

@AM 207
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Lowering temperature slowly, the system
reaches "thermal equilibrium" at each
temperature. Boltzmann's distribution:

pX =1)= Z(lT) o (—lj’)

If you identify

pr(z) = e 7@/T and p(z) = e @)
Then:

Pr(z) = P(z)Y7T

@AM 207
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SAMPLING
AND MCMC




GENERATE THEM!

—
o
1

e |nverse method, Rejection (on steroids)

e Stratification to reduce variance M g(x)

 Importance (for expectations) f(x)

« MCMC, MH, HMC(, Slice, ADVI, etc

e integrals (marginalize) by ignoring
dimensions in histogram

Y Axis
C = N WA OO N @® ©
R e S S

@AM 207
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Sampling a Distribution

 Turn the annealing question on its head.

* Suppose we wanted to sample from a distribution p(x)
(corresponding to a minimization of energy —log(p(x)))-

e keep our symmetric proposal (reversibility!). Need irreducibility
to sample from full distribution

e set T=1, and use our simulated annealing method: Metropolis

@AM 207

46






Intuition: proposal approaches typical set

oA

Instead of sampling p we sample q, yielding a new state, and a new
proposal distribution from which to sample.

@AM 207
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Critical: explore the typical set

Set

S

Typical dq

n(q) dq

lq - qModeI
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Stationarity

()

Continuous case: define T' so that:

/da:is(wi)T(miH ;) = s(x;.1) then

/da:s(a:)T(y\a:) = /p(y, z)dz = s(y)

@AM 207
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Detailed balance is enough for stationarity

s(z)T'(ylz) = s(y)T'(z|y)

If one sums both sides over z

/dms(m)t(y\w) = s(y) /dwT(x\y) which gives us back the

stationarity condition from above.

@AM 207
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Need Ergodicity

 “Ergodic” law of large numbers:

[ s(@)1(@)da = %j;lgm)

(the jury is out on thinning. Most dont think one needs it)

If there exists a stationary s(z), you can construct a T" such that tlim T™ is stationary and converges to s, and
—00

e an ergodic law of large numbers exists

e an ergodic central limit theorem exists

@AM 207
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qz

gz

qz

g2
.

gz

gz

&AM 207

|E[g2] — ¢2|
g g

|E[g2] — q2|

|E[g2] — ¢2|

Metropolis and MH

overshoot and oscillate at pinches
need to specify step step sizes

large steps can go outside typical set
and are not accepted

but can cover ground quickly
small steps accepted but go nowhere

large correlations
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Proposal distributions

Proposal distributions
with smaller variance...

with larger variance...

Disadvantage: robot
................................ often proposes a step

that would take it off
a cliff, and refuses to

move § i

Advantage: robot can
potentially cover a lot of
ground quickly

steps

@AM 207

Advantage: robot seldom
refuses to take proposed

Disadvantage: robot takes
smaller steps, more time
required to explore the

Same area
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MH Acceptance

s(x;) X q(xi_1|x;) )

A(zi, z;—1) = min(l, |
( 1) ( s(zi—1) X q(z;|z;i—1)

e correct the sampling of g to match p, corrects for any
asymmetries in the proposal distribution.

e A good rule of thumb is that the proposal has the same or larger
support then the target, with the same support being the best.

@AM 207
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If robot has a greater tendency
to propose steps to the right as ,’
opposed to the left when choosing -

its next step, then the ’

acceptance ratio must
counteract this
tendency.

Suppose the probability of
proposing a spot to the right
is 2/3 (making the probability
of choosing left 1/3)

In this case, the Hastings ratio

decreases the chance of accepting moves to the right by half, and
increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

(from Paul Lewis)
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The idea of Gibbs

f(il?t) — /h(xtaxt—l)f(xt—l)dxt—L d
Stationary distribution.

h(z,z') = /dyf(m|y)f(y|:c') Sample

alternately to get transitions.

Can sample & marginal and z|y so can
sample the joint z, y.

@AM 207
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Data Augmentation

The difference from Gibbs Sampling: the other variable, say y, is to
be treated as latent.

The game is to construct a joint p(z, y) such that we can sample
from p(z|y) and p(y|x), and then find the marginal

p(z) = / dyp(z,y).

@AM 207
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SLICE

(a'data augmentation)
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HMC & NUTS
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HMC to the rescue: need
glide

Now, like in annealing, let
p(p, q) _ e—Energy

DATA AUGMENTATION: with an

additional momentum gives energy
9

Hamiltonian H(p, q) = 2pm -V (q)

Hamiltonian flow: reversible, time-
invariant, volume-preserving
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Thrusters fire away

p(p,q) = e HPD = e~ KP2) VD = p(p|q)p(q)

H(p, q) = —log(p(p,q)) = —logp(p|q) — logp(q)

Choice of a kinetic energy term is choice
of a conditional probability distribution
over the "augmented" momentum such
that:

/ dpp(p, q) = / dpp(p|q)p(q) = p(q) / p(plq)dp = p(q)

@AM 207
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Tuning:

 The ideal kinetic energy interacts with

target, in practice we often use
Kp)=pM'p

e Set inverse mass matrix to the covariance of
the target distribution: maximally decorrelate
the target. Do in warmup phase.

e use symplectic integration

e need to determine L and e.

e generally static not good, under samples tails
(high-energy microcanonicals). Estimate
dynamically: NUTS (pymc3 and Stan)

&AM 207
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Acceptance probability

e small symplectic errors means H evolution only forward in time

 tack on sign change (q,p) — (g1, —pr)- Superman to the rescue!

P(QL, —PL)5(QL — qL)5(—PL +pL)]

e Acceptance: A = min|l,
b b= 03— )

e More general acceptance in NUTS, sum over all points in orbit

@AM 207
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Model convergence

e traces white noisy

. . 16 16 16 16 14
 diagnose autocorrelation, check 14 14 14 14 12
: : : : 10
. 10 10 10 10
parameter correlations 08 os o8 o os
0.4 0.4 0.4 0.4 g:
02 02 02 02 .
pm. trace—to—dataf rame ( trace ) . COI‘I‘( ) 202530354045  15202530354045 202530 354045 202530 354045 20 25 80 85 40 45
16 16 16 16 16
. . . 14 14 14 14 14
e visually inspect histogram every m 12 12 12 12 12
samples o6 0 06 06 o6
0.4 04 0.4 04 0.4
0.2 0.2 0.2 0.2 0.2
o tracep|OtS from dlﬁe rent Sta rﬁng pOintS 0'02.0 2530 3540 45 O.02_0 25 30 35 40 45 0'02.0 25 30 35 40 45 O.02_0 2530 3540 45 0'02.0 2530 35 40 45

different chains

e formal tests: Gewecke, Gelman-Rubin,
Effective Sample Size
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Thoughts on Diaghostics

e be paranoid, you only know you have not converged, not if you
have

e what if you missed out an entire lobe? Thus multiple chains and
multiple starting points.

e check posterior correlations, trace autocorrelation, effective n,
the look of the trace, the acceptance rate

e check gewecke and gelman-rubin

@AM 207 66






WHEN BAYES


https://twitter.com/jim_savage_/status/983371427226308609

Jake Mortenson @m0Ort - 19h v
That was part of my point, the other part being (perhaps out of my depth): with

2 Jim Savage y
@jim_savage_
. large data the benefits from incorporating pricrs may not be large (fixed effects
A test for whether a prOblem requires may be sufficient, depending on parameters of interest), and also computation

Bayesian methods: might be time-expensive. Sound right?
1. Is there information that is not in your data O 1 N > =
about population-level unknowns?

2. Do you need coherent uncertainty?

3. Are you combining complex models and

Jim Savage @jim_savage_ - 19h v
See rule 1 though: if there is informaticn your enormous data doesn't contain
about the unknown of interest (in the pcpulation--which for most purposes is a

want uncertainty to percolate th rough? future population) then there might still be value in having priors. Turkey before
thanksgiving story.
Yes to any? Bayes it. ® " M 1 S

11:49 AM - 9 Apr 2018

11 Retweets 90 Likes @W‘QOG@‘.

Q 3 1 11 ¥ % &

. Tweet your reply

4 Jake Mortenson @jmOrt - 20h v
| Replying to .

Have been locking for an excuse to dc Bayesian stuff in a tax policy research O + >
setting. But isn’t there also 4, do you have some sparsely populated (and : - v/ 4 —
interesting) bins? The answer tc 1 and 2 are virtually always yes, but have

Noah Motion @statmodcitizen - 22h v
Replying to

My intuition is that the answer to (2) is always "yes", but | may be
misunderstanding what you mean by the question...

O 1 [ \/ &

Jim Savage @jim_savage_ - 22h v
Strictly yes, if computation and analyst time has ne cost. Business maximize
profit, not correctness.

avoided so far because our data are typically yuge. Frank Harrell @f2harrell - 18h v
O 1 0 v, & e Replying to
la Jim Savage @jim_savage._ - 20h » Nice. I'd simply say "Does your problem require statistical inference?". If yes,
“ | couldn't add 4) You want to generalize to new populations (post-strat) & so Bayes it. Among other things this solves is that inference is exact. Most
want to estimate sub-group effects, but your sample has small N in those sub- frequentist analyses are approximations, other than the ordinary linear model
@ AI\/Pﬂ?@f?re's a lot of value in hierarchical priors. and a few others. 49
Are we saying the same thing? Q () ' 1 cz

) 4 9 a8 2 £A



Latent Variables

e dont think of bayes/frequentist, think of observed z /Latent z

e anything unobserved is latent (this is the posterior predictive
point of view, x as 0), thus standard bayesian viewpoint: nuisance
parameters are latent

e |atent factors in matrix factorization, mixtures,
recommendations...cluster zs

@AM 207
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Generative model
p(z, z) = p(x|2)p(2)




Bayesian

e sample is the data, and is fixed

e parameter is stochastic, has prior and posterior distribution

p(y|0) p(0)

. can summarize via MAP
p(y)

e posterior: p(Qly) =

likelithood X prior

* just bayes rule: posterior = .
evidence

@AM 207
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From edwardlib: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.

@AM 207
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» prior-predictive = evidence: p(y) = Ey¢ [£] = /d@p(yw)p(e) a
normalization, irrelevant for sampling, useful for EB

e What if 8 is multidimensional? Marginal posterior:

p(61|D) = / d6_.p(6|D).

e posterior predictive: the distribution of a future data point y*:

p(y'|D = {4}) = By 0(¥]6)] = / d6p(y*19)p(6] {w})

@AM 207
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Marginalization

Marginal posterior:
p(91|D) - /de_lp(9|D), 30

samps[20000: :,:7].shape #(10001, 2) 25

sns.jointplot(

pd.Series(samps[20000::,0], name="$\mu$"), L 20
pd.Series(samps[20000::,1], name="$\sigma$"),
alpha=0.02)
.plot_joint(
sns.kdeplot, 15

zorder=0, n_Llevels=6, alpha=1)

Marginals are just 1D histograms ‘o

plt.hist(samps[20000::,0])

&AM 207
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pearsonr =-0.0047; p = 0.64

19 20
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=20

priors

choose likelihoods with MAXENT

choose priors as non-informative, e.g.
uniform or Jeffreys

better still: choose priors as weakly
informative/regularizing

helps with sampler performance

see https:/github.com/stan-dev/stan/
wiki/Prior-Choice-Recommendations
and Stan Manual
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Normal-Normal Model

Posterior for a gaussian likelihood:

1 1 2

2 2 —57 2Yi—m)
P, O |Y1yeeeyYpn, O ) X e 27

What is the posterior of 1 assuming we

know ¢°?

Prior for 0% is p(c?) = §(0* — 02)

@AM 207
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1
p(uly1, .-, Yn,0° = 02) x p(ulo® = o2)e *o

The conjugate of the normal is the normal itself.

Say we have the prior

plulo?) = expd — 55 (- ? |

posterior: p(ulyi, ..., Yn,0%) exp{—%(ﬂ - b/a)z}

@AM 207
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1 n Qo D Yi
0=—%+—=5, b= 3
T o T oF:

a Iﬁ',—l—’nlul K-+n

which is a weighted average of prior mean and sampling mean.

@AM 207
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The variance is

1
2
Tp

as n increases, the data dominates the prior and the posterior
mean approaches the data mean, with the posterior distribution
narrowing...

@AM 207
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Bayesian updating of posterior probabilities

0

—i
00 02 04 06 08 10 00 02 04 06 08 10
p, probability of heads

00 02 04 06 o8 10 00 02

00 02 04 06 o8 10 00 02

! % 8 fosses, 15 tosses,
. eads

00 02 00 02 04 06 o8 1.0

&AM 207
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p, probability of heads



Bayesian Updating "on-line"

e as each piece of data comes in, you update the prior by
multiplying by the one-point likelihood.

e the posterior you get becomes the prior for our next step

PO | {y1,-- s Yni1}) xp({y1,.- s Yn} | 0) x 00| {y1,...,Yn})

e the posterior predictive is the distribution of the next data point!

PYns1[{y15- - n}) = Eppity,..u ) [P(Un4110)] = / d0p(Yn+1|0)p(01{v1,---Yn})
@AM 207 |
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Weakly informative or regularizing priors

e these are the priors we will concern ourselves most with
e restrict parameter ranges
e help samplers

e regularizing priors may use the data "twice" as we shall see

@AM 207
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Normal model Example

7000

e two data points 1 and -1

6000

e flat improper priorson pu,o > 0 000

4000

e model drifts wildly as less data

3000

e flat priors say extreme implausible 2000
values quite likely

1000

e extreme drifts overwhelm chain 0

-1000

-2000
0 10000 20000 30000 40000 50000
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60

40
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=20

weakly regularizing priors

choose p Z N(0,10)
choose o ~ Hal fCauchy(0,1)

lets mean vary widely but not crazily

HalfCauchy lets variance be positive
and occasionally can have high value
samples
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0 5000 10000 15000 20000 25000 30000 35000 40000
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N=0
== posterior with flat prior
= nosterior with biased prior

Data Overwhelms priors

02 04 06 o8 1.0

N=4
== posterior with flat prior
= nosterior with biased prior

Define kK = o2 /72

O aN W o N ® O a2 NWdH O~ ®

00 02 04 06 o8 1.0

: N=8

| = posterior with flat prior

| = posterior with biased prior
|
|

00 02 04 06 o8 1.0

: N=32

| = posterior with flat prior

| = posterior with biased prior
|
|
|

1
2
Tp

O aNWsE O N O aNW O N® O a N W N®

7_ 0_ 00 02 04 OIB o8 - 1.0
* priors regularize data for small data A
e but large data overwhelms priors : A e

N=500
15 = nosterior with flat prior
= nosterior with biased prior
10

|
5 |
AM 207 |
0 I

00 02 04 06 o8 8/ 1.0



Exchangeability

Lets assume that the number of children of a women in any one of
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a
permutation of variables.

This is really a statement about what is I[ID and what is not.

It depends on how much knowledge you have...

@AM 207

88



150

100
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Posterior Predictives

p(y°| D) = / d6p(y*10)p(6] D)

Sampling easy (mothers poisson-gamma):

postpredl = poisson.rvs(thetaltrace)
postpred?2 = poisson.rvs(thetaltrace)

Exact: Negative Binomial (requires math):

o (a+ D y)
By’ = (b+ N)

var|y'| = b+ N (N+b+1).
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Posterior Predictive Smear

Posterior probability/y/y/‘/‘ \
2500

Sampling distributions 2000
: 0

0.1 0.2 0.3 04 05 06 Ir 4 0.8 .9
||... |”||a ||H|I| .||| ||| n|| |||| 0|| hl. lII”ll c||||| ..||

Posterior predictive

I | predictive
plug-in (MAP)

- 1500
Posterior predictive
distribution
1000
3 6 9
number of water samples
500
0
-2 0

pp vs sampling distrib at MAP —
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Missing Data can be imputed
with the predictive

disasters_masked = np.ma.masked_values(disasters_missing, value=-999)
disasters = pm.Poisson('disasters', rate, observed=disasters_masked)
with missing data_model:

stepper=pm.Metropolis()

trace_missing = pm.sample(10000, step=stepper)

pm.summary(trace_missing, varnames=[ 'disasters_missing'])

&AM 207
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Bayes Action

First define the distribution-averaged utility:
(o) = [ dwu(a,w) pwlD)

We then find the a that maximizes this utility:

4 = argmax u(a)
a

This action is called the bayes action.

@AM 207
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Posterior Mean minimizes
squared loss
R(t) = Eyon) (6~ £)*] = [ d6(6 — t*5(6|D)

dR(t)
dt

=0 — t:/dHHp(0|D)
mse = [np.mean((xi-samples)**2) for xi in Xx]

plt.plot(x, mse);

This is Decision Theory.
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Custom Loss

0.03 Least-squares prediction vs. Bayes action prediction

- | east-squares prediction
- Bayes action prediction

def stock_loss(stock return, pred, alpha = 100.):
if stock_return * pred < 0:
#opposite signs, not good 0.02
return alpha*pred**2 - np.sign(stock_return)*pred \
+ abs(stock_return)
else:
return abs(stock_return - pred) 0.01
#posterior predictive samples at every x
possible_outcomes = lambda signal: alpha_samples + \
beta_samples¥*signal + noise

0.00

prediction

opt_predictions np.zeros(50)
trading_signals np.linspace(X.min(), X.max(), 50)
for i, _signal in enumerate(trading signals): -0.01
_possible_outcomes = possible_outcomes(_signal)
#expected loss over posterior predictive
tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean()
#bayes action minimizes expected loss -0.02
opt_predictions[i] = fmin(tomin, 0, disp = False)

-0.03
-0.04 -0.02 0.00 0.02 0.04

trading signal

&AM 207
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HIERARCHICAL

MODELS



Partial pooling: Hierarchical
Model

0;s drawn from "population distribution"
given by a conjugate Beta prior Beta(a, §)

with hyperparameters o and 3.

@ Hyperparameters
b
@ Parameters

Observations
s=1,....n @ @ Y"'l @

Plate representation “Unrolled” Graph

0; ~ Beta(a, B).

70
p(O|a, B) = H Beta(0;, a, B).
i=1

@AM 207
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Priors from data

Where do o and 8 come from?

Why are we calling them hyperparameters?

So far have assumed o and 3 known in priors to be weakly
informative.

New idea: estimate priors from data. Looks like a cross-validation
like setup.

@AM 207
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Key Idea: Share statistical strength
e Some units (experiments) statistically more robust

e Non-robust experiments have smaller samples or outlier like
behavior

 Borrow strength from all the data as a whole through the
estimation of the hyperparameters

e regularized partial pooling model in which the "lower"
parameters (@s) tied together by "upper level" hyperparameters.

@AM 207
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Empirical Bayes or Type-2 Likelihood

Posterior-predictive distribution, as a function of upper level
parameters n = (a, B).

p(y*|D,n) = / dop(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximume-likelihood with
respect to n to estimate these n using our "data" y*

Used in GPs, even can be sampled from

@AM 207
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Levels of Bayes

Method Definition

Maximum Likelihood f = argmazyp(D)6)

MAP estimation 6 = argmazyp(D|6)p(6|n)

ML-2 (Empirical Bayes) = 7 = argmaz, [dfp(D|0)p(8|n) = argmaz,p(D|n)

MAP-2 il = argmaz, [ d6p(D|0)p(0|n)p(n) = argmaz,p(D|n)p(n)

Full Bayes p(0,n|D) o< p(D|0)p(6|n)p(n)
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Full Bayes

* Fix o and B, we have a Gibbs step for all of the ;s

 For a and 3, everything else fixed, use stationary metropolis step,
as conditionals are not isolatable to simply sampled distributions

e when we sample for a, we will propose a new value using a
normal proposal, while holding all the 6s and g constant at the

old value. ditto for 8.
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Howto Sampling

e a DAG, with observations at the bottom of a tree, next layer
intermediate parameters, upper layers hyper-parameters

e sample conditionals from parents up the tree.
e general structure is sampling steps inside Gibbs

e stan, pymcd3 all have this structure

@AM 207
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Hierarchy organizes exchangeability

e we use the notion of exchangeability at the level of 'units’.

* forour rats, the y; were exchangeable since we had no additional
information about experimental conditions.

e |f specific groups of experiments came from specific laboratories,
assume experiments interchangeable if from the same lab.

e lab specific oy, and 3., parameters

e add another level of hierarchy to draw these from hyperprior.
&AM 207
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Centered Hierarchical Normal-
Normal Model .

K~ N(07 5)

T ~ Half-Cauchy (0, 5)
ej ~ N(/J’a T)

yj ~ N(0j7 Uj) 1

problem: Small n.s¢. Poor sampling. .

0 2000 4000 6000 8000 10000
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High Curvature Issues

scatter plot between log(tau) and theta[0]
e symplectic integration diverges: good )

diagnostic

e sampler needs to have real small steps
to not diverge, but then becomes sticky

log(tau)

e regions of high curvature often have
high energy differences, causing trouble
for microcanonical jump transitions.

theta[0]

@AM 207

105



Non-centered model: Matt

Trick ;
(&
pu~ N(0,5)
T ~ Half-Cauchy(0, 5)
Vi ~ N(O, ].)
0.7 — l’l' —I_ TVJ ° 0 2000 4000 6000 8000 10000

Y; NN(ejaaj)

&AM 207
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Divergences and true length of funnel

4 scatter plot between log(tau) and theta[0] 4 scatter plot between log(tau) and theta[0]
. original
cat e ,' I N ST R reparametrized

2 . 2 : '

0 0
) F)
3 Iy
g g
= -2 = -2

-4 -4

-6 -6

-20 -10 0 10 20 30 40 50 -20 -10 0 10 20 30 40 50
theta[0] theta[0]
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Step size effect

0.14
| 0 P(E)
1 I | E . .
01 il PELD * lower step size € better for symplectic
integrators, especially in high curvature
0.10 regions, but too small: return of the random

walk
0.08

e if divergences persist on lowering step sizes,
we are still too curved

0.06

e |If Divergences infrequent, and all over. Mostly
false positives. Lowering step sizes should
make them go away

0.04

0.02

e check marginal energy: if has bigger tails,
30 indicative of big energy changes in high-
curvature regions not possible to boost to.
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SUPERVISED LEARNING
REGRESSION AND GLMs



Bayesian Regression

200

190  posterior narrower (y spread) than PP

e supervised learning, a distrib at each x

weight ) ) &

&AM 207
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Frequency
OO

Frequency

Frequency

AN

intercept

Traces for such a model are awful

100 110 120 130 140 150
slope

0.0 0.2 04 0.6 0.8 1.0
sigma

10 12 14 16
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Sample value
SSNWEOD
COO0OO0OO

160 0

Sample value
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—
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e W N
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o
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intercept
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slope
2000 4000 6000 8000
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10000
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correlation
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60

The slope and intercept are very highly correlated: -0.99!
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Frequency Frequency Frequency

Frequency

é@

—

OCO=2=2PNN

é

intercept

N

.151 .51562.0152.5153.0153.5154.0154.5155.0155.5156.0
slope

0
8
6
4
2
0
0.2 04 0.6 0.8 1.0 1.2
5 sigma
0
5
0
5
0
45

5.0 5.5 6.0 6.5 7.0 7.5
mu

% M.

135 140 145 150 155 160 165 170 175 180
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@ 156. intercept
a 1R3:
£ 194
5 15T
0 2000 4000 6000 8000 10000
@ 12 slope
T 1.0 bezmbe—sarkdanderto ot l oo ol oo
S 08 - B SRR (N0, SO PSR SN
o 0
- 06
£ 04
302
0 2000 4000 6000 8000 10000
® ;8 sigma
S 65
g5
o 5 P Y S BTPW T EY | Y ST T T e
£50 - 1, % : F {
S 45 - L
0 2000 4000 6000 8000 10000

Sample value

0

e

2000

4000 6000 8000 10000

Center the weights

e symptom of shared information and
identifiability

e fix by centering. intercept then gives
response when predictor=mean.
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glms

e linear regression with a link. likelihoods chosen MAXENT

f(p;) = a + Bz; where p; is the parameter at the ith data point.

For most GLMs, the common links we use are the logit link to
model the space of probabilities, and the log link which you will use
here to enforce positiveness on a parameter.
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y; ~ Poisson(\;)
v

log(\;) = log(—.i) = o + Bzx;

A\; IS rate, u; Is counts, 7; Is exposure.

T3

L; or \; constrained to be positive.

import theano.tensor as t

with pm.Model() as modell:
alpha=pm.Normal("alpha", 0,100)
beta=pm.Normal("beta", 0,1)

Logmu =

Lambda®
Lambdal

t.
y = pm.Poisson("obsv'", mu=t.exp(logmu), observed=df.y)

log(df.days)+alphatbeta*df.monastery

pm.Deterministic("lambda®", t.exp(alpha))

pm.Deterministic("lambdal", t.exp(alpha + beta))
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Zero Inflated Poisson Mixture
model

Liy=o0)=p+(1—p)e?,

Ne
Lly70) =G —p)—

150

Frequency
100

Drink Work
- l &

observe y =0 observe y > 0 0 1 2 3 4 5
manuscripts completed

50

0
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Oceanic tools

From Mcelreath:

The island societies of Oceania provide a natural
experiment in technological evolution. Different
historical island populations possessed tool kits of
different size. These kits include fish hooks, axes, boats,
hand plows, and many other types of tools. A number
of theories predict that larger populations will both
develop and sustain more complex tool kits. So the
natural variation in population size induced by natural
variation in island size in Oceania provides a natural
experiment to test these ideas. It's also suggested that
contact rates among populations effectively increase
population size, as it's relevant to technological
evolution. So variation in contact rates among Oceanic
societies is also relevant. (McElreath 313)

&AM 207
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culture population | contact | total_tools |mean_TU |logpop clevel
0 |Malekula ([1100 low 13 3.2 7.003065 |0
1 [ Tikopia 1500 low 22 4.7 7.313220 |0
2 | Santa Cruz | 3600 low 24 4.0 8.188689 |0
3 |Yap 4791 high 43 5.0 8.474494 |1
4 | Lau Fiji 7400 high 33 5.0 8.909235 |1
S | Trobriand |8000 high 19 4.0 8.987197 |1
6 | Chuuk 9200 high 40 3.8 9.126959 (1
7 |Manus 13000 low 28 6.6 9.472705 |0
8 | Tonga 17500 high 55 5.4 9.769956 (1
9 | Hawalii 275000 low 71 6.6 12.524526 |0
&AM 207

Model M1

T; ~ Poisson(\;)
log(Ai) = o+ Bplog(
a ~ N(0,100)
Bp ~ N(0,1)
Bc ~ N(0,1)
Bpc ~ N(0,1)

with pm.Model() as ml:
betap = pm.Normal('"betap", 0, 1)
betac = pm.Normal('"betac", 0, 1)
betapc = pm.Normal("betapc", @, 1)
alpha = pm.Normal("alpha", @, 100)
loglam = alpha + betap*df.logpop +
betac*df.clevel + betapc*df.clevel*df.logpop
y = pm.Poisson('"ntools"

with ml:
trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100% | NI | 200000/200000 [00:15<00:00, 13019.16it/s]
100% || 10000/10000 [01:59<00:00, 83.80it/s]

P;) + BcC; + BpcCilog(

, mu=t.exp(loglam), observed=df.total_tools)

12683.03it/s]

F;)

117



Hierarchical regression:
Overdispersion fixed by
varying intercepts

100
50 °
L .
.
0
6 7 8 9 10 1 12 13

with pm.Model() as m3c:
betap = pm.Normal("betap", 0, 1)
alpha = pm.Normal("alpha", @, 100)
sigmasoc = pm.HalfCauchy("sigmasoc", 1)
alphasoc = pm.Normal('"alphasoc", @, sigmasoc, shape=df.shape[0])
loglam = alpha + alphasoc + betap*df.logpop c
y = pm.Poisson(''ntools", mu=t.exp(loglam), observed=df.total_tools)

@AM 207
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Intercept-slope Correlation Modeling

import theano.tensor as tt

def pm_make_cov(sigpriors, corr_coeffs, ndim):
sigma_matrix = tt.nlinalg.diag(sigpriors)
n_elem = int(ndim * (ndim - 1) / 2)
tri_index = np.zeros([ndim, ndim], dtype=int)
tri_index[np.triu_indices(ndim, k=1)] = np.arange(n_elem)
tri_index[np.triu_indices(ndim, k=1)[::-1]] = np.arange(n_elem)
corr_matrix = corr_coeffs[tri_index]
corr_matrix = tt.fill_diagonal(corr_matrix, 1)
return tt.nlinalg.matrix_dot(sigma_matrix, corr_matrix, sigma_matrix)

sigs=np.array([1,1])

tri_index = np.zeros([2, 2], dtype=int)
tri_index

array([[0, 0],
[0, 0]1)

with pm.Model() as modelmvg:
nu = pm.Uniform('nu', 1, 5) # prior on how much correlation (@ = uniform pr
ndim=2
corr_coeffs = pm.LKJCorr('corr_coeffs', nu, ndim)
cov = pm_make_cov(sigs, corr_coeffs)
mvg = pm.MvNormal('mvg', mu=[0,0], cov=cov, shape=2, observed=data)
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Oceanic Tools Correlations:
Example of GP

We modeled society specific intercepts for
oceanic tools as draws from a O mean
multivariate gaussian and correlation
function depending on distance: nearer
societies have similar intercepts.

Covariance posteriors:

@AM 207

T; ~ Poisson(\;)
log A\i = & + Ysociery(i) + Bplog P;

¥ ~ MVNormal((0, ...,0),K)

Kij = 1" exp(—p°Djj) + ;(0.01)
a ~ Normal(0, 10)

3p ~ Normal(0, 1)

1° ~ HalfCauchy(0, 1)

p* ~ HalfCauchy(0, 1)
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Gaussian Formulae

, | ? if " ’ | - -
JOINT : p(y,f*) =N [”} : 2;’ 2o =N([“ ,[K+;’] R )
pee o [ 2y Zppe pd L Ko K.

MARGINAL : p(f*) = /p(f‘,y)dy = N(u., K..)

CONDITIONAL : p(f* | y) = N (us + K.(K + 6*D)~'(y = u), K.n — K. (K + 621)"'KT)
Note here that:

K=Kxx):K, =K(x,x*):K,.. = K(x*,x7)

@AM 207
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Generating curves from a kernel-based covariance

15

0

1

| =50.0

15

10
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a Gaussian Process defines a prior distribution over functions!

Once we have seen some data, this prior can be converted to a

posterior over functions, thus restricting the set of functions that
we can use based on the data.

@AM 207
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KEY INSIGHT:

MARGINAL IS DECOUPLED

...for the marginal of a gaussian, only the covariance of the block of the
matrix involving the unmarginalized dimensions matters! Thus "if you
ask only for the properties of the function (you are fitting to the data) at
a finite number of points, then inference in the Gaussian process will
give you the same answer if you ignore the infinitely many other points,
as if you would have taken them all into account!”
-Rasmunnsen
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Universal Approximation

e Exact correspondence between the gaussian process (direct
usage of gaussians in space) to the basis function regression (in
feature space with gaussians for prior parameters) in the
kernelized representation, as long as we identify the GP
covariance function k with the kernel function

k(z,z') = ¢(z)! To(z'). (Mercer's theorem)
e We have seen such universal approximation in NN

e thereis a connection for both single layer and deep NN
@AM 207 125


https://arxiv.org/abs/1711.00165

p(f* |y) =N (ue + Ko (K +0°1) " (y — p), Kuw — Ku(K 40 I) T K])

EQUALS Predictive



&AM 207



INFERENCE

Use the marginal likelihood:
p(y]X) = / p(ylf, X)p(f1X)df
f

The Marginal likelihood given a GP prior and a gaussian likelihood
IS:

n 1 1
log p(y| X) = — - log 2 — Zlog K+ o”I| — EyT(K + oIty

@AM 207
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Setting up the model

with pm.Model() as model:

# priors on the covariance function hyperparameters

L = pm.Uniform('Ll"', @, 10)

# uninformative prior on the function variance

s2 £ = pm.HalfCauchy('s2 f', beta=10)

# uninformative prior on the nolise variance

s2 n = pm.HalfCauchy('sZ2 n', beta=5)

# covariance functions for the function f and the noise

f cov = s2 £**¥2 * pm.gp.cov.ExpQuad(l, 1)

mgp = pm.gp.Marginal(cov_func=f cov)

y_obs = mgp.marginal Llikelihood('y obs',
X=xtrain.reshape(-1,1), y=ytrain, noise=sZ2 n,
is observed=True)
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MCMC

with model:
trace = pm.sample(10000, tune=2000, l

o |
nuts_kwargs={'target_accept':0.85}) gos 4//\\\\‘ %5
with model: Eﬁo 'go | | | | | |

fpred = mgp.conditional("fpred", 0 2 4 6 8 ® 0 2000 4000 6000 8000 10000
Xnew = X _pred.reshape(-1,1), _ s2_f ® s2_f
pred_noise=False) §a2 /\\\“ S .

ypred = mgp.conditional("ypred", £ 00 g'o | I [ | |
Xnew = X_pred . reshape( -1 ; 1) ; 0 10 20 30 40 n 0 2000 4000 6000 8000 10000

pred _noise=True) s2_n s2_n

gp_samples = pm.sample_ ppc(trace,
vars=[ fpred, ypred],
samples=200)

2000 4000 6000 8000 10000

Frequency
o N

Sample value
o N

o
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Posterior predictive distribution

4
® train pts
— actual
3 _ = predicted

==
y

.
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MODEL
CHECKING




Multiple replications of the posterior predictive

p({y'}) = / p({y"}6)p(6/D)db, observed data: D = {y}

Replicated Data: {y, }: data seen tomorrow if experiment replicated
with same model and value of 6 producing todays data {y}.

{y,} comes from posterior predictive, and if there are covariates
{x*}, then {y, } is calculated at those covariates only

(sample ppc).
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Departure from usual
predictive sampling ;

Sample an entire {y, } at each 6 from
trace.

For example the minimum value of speed 0 » . .
of light in 20 predictive replications.
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Visual Checking

30
-50-403-30-20-10 0 10 20 30 40 -50(-40-30-20-10 0 10 20 3040 -50-40-3G-20-100 1020 3040 -50-403-30-20-100 10 20 30 40 25
. ‘ ‘ | - ‘ ‘ ‘ ‘ ‘ | Jml \ 20
-50-43-30-20-10 0 10 20 30 40 -506-40-30-2G-10 0 10 20 3040 -50-40-3G-20-100 1020 3040 -50-43-30-20-100 10 20 30 40
\ | | "
. J | RN l |
-50-43-30-20-10 0 10 20 30 40 -506-40-30-20-10 0 10 20 3040 -50-40-3G-20-100 1020 3040 -50-43-30-20-100 10 20 30 40
10
O n | \ | nr
-50-43-30-20-10 0 10 20 30 40 -5(-40-30-260-10 0 10 20 3040 -50-40-3G-20-100 1020 3040 -50-46-30-20-100 10 20 30 40 5
'|\ y r M‘\ o —
-50-403-30-20-10 0 10 20 30 40 -50(-40-30-2-10 0 10 20 3040 -50-40-3G-20-100 1020 3040 -50-46-30-20-100 10 20 30 40 -50 -40 =30 =20 -10 0

Do these even look similar??
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Bayesian p-values

pe = Pr(T({y:},0) > T({y},0)[{y}),

probability over the posterior and
posterior predictive
(that is, the joint distribution,

p(9,{v:}{y}))-

s = / d0d{y }I(T({wr},0) > T({w}, 6) {3 )OI

using p({y- }10, {y}) = p({y: }|0)-

=10 -5 0 S 10
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Appropriate usage

Gelman: Finding an extreme p-value and thus ‘rejecting’ a model is
never the end of an analysis; the departures of the test quantity in
question from its posterior predictive distribution will often suggest
improvements of the model or places to check the data, as in the speed
of light example. Moreover, even when the current model seems
appropriate for drawing inferences (in that no unusual deviations
between the model and the data are found), the next scientific step will
often be a more rigorous experiment incorporating additional factors,
thereby providing better data.
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Oceanic Tools counterfactual checking

3.0

2.5 _\

betap betac 7 \
20 ¥
010 015 0.20 0.25 0.30 0.35 040 —4 3 2 -1 0 1 2 3 4 15
betapc Iph
mean=0.042 /
. 1.0 r‘
-03 02 -01 00 01 0.2 03 04 05 —05 00 0. 1.0 1.5 20 25 05 M \M
0.0

-04 -0.2 0.0 0.2 04 0.6 0.8 1.0
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MODEL COMPARISON
AND ENSEMBLING



Model comparison

The key idea in model comparison is that we will sort our average utilities in some order. The exact values are not
important, and may be computed with respect to some true distribution or true-belief distribution M.

a( My, ax,) — / dy* u(an, v )p(y* | D, M)

where a;, is the optimal prediction under the model M;,. Now we compare the actions, that is, we want:

M = arg max a( My, ag)

No calibration, but calculating the standard error of the difference can be used to see if the difference is
significant, as we did with the WAIC score
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Bayesian Inference works in the small world

Pp

(some times includes the true generating process py;)
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Inference in the small world

Pp

we go from prior to posterior
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Bias and Variance: Overfitting

Pp Pp
Overfitting can occur even if the small world includes the true data
generating process py.
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Deviance

D(q) = -2 Z log(g:)

then
Dict(p,q) ~ Dict(p.7) = 2+(D(g) ~ D(r))
N
More generally: D(q) = 5 E,|log(q))
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deviance
48 50 52 54 56 58 60

AIC

Akaike Information Criterion, or AIC:

N =20 N =100
§ - AlIC = -Dt'raz'n = 2p
- P = Il ™ | ‘Q{4.1
2 \\\\’ = 8 [ - \\
j “o w0 \ Dtraz’n = —2 % log(p(y|9mle)
© 53 76 9.7 g 2 \\\ -
& i OIT ‘1  multivariate gaussian posterior
ol Q| 49 |71 8.5
2 | s o flat priors
1 2 3 4 5 1 2 3 4 5
number of parameters number of parameters ° data S>> parameters
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Train to Test

N =20 N =100
o
o -
2]
0 +1SD
© '
N
8 8 ' " 8 o 60 ¢ out
= ¢ ¢out o c 8 i ine
© ©
S0 | | ¢ 'S
QO w ne O
© T M~ A o (0]
N (0]
8 -180 o |
- o ®
o B - 3
N
wn _
< o
m -
| L | | 1 N 1 1 1 L |
1 2 3 4 5 1 2 3 4 5
number of parameters number of parameters
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DIC

e uses the posterior distribution, calculable from MCMC.

e multivariate gaussian posterior distribution.
Dtrain = —2 % lOQ (p (y|9postmean)
DIC = Dipgin, + 2pp Where

pprc = 2 * (1og(p(Y|Opostmean) — Epost [log(p(y|0)]) (by monte carlo)

alternative fomulation for pp, guaranteed to be positive, is

PDp — 2 % Va'rpost [lOg(p(y|0postmean))]
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Bayesian deviance

* D(q) = —% »[log(pp(y))] posterior predictive for points y on the test set or future data

e replace joint posterior predictive over new points y by product of marginals: ELPD:

Z E,[log(pp(y:))]

e Since we do not know the true distribution p, replace elpd: Z E,[log(pp(y;))] by the computed

"log pointwise predictive density" (Ippd) in-sample

D log (p(y;16)) =) _ log (% Zp@ﬁl@s))
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WAIC

WAIC = lppd + 2pw

where

pw =2, (10g(Epost [P(y:10)] — Epost [log(p(y:16))))

Once again this can be estimated by

D _ Varyost [log(p(yi|6)))
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Centered vs Uncentered

m2c_nopc
WAIC (pWAIC |dWAIC |weight SE dSE warning
mic
name
m2_nopc |79.1059 |4.22647 |0 0.61959 11.0612 |0 1
m2c_onlyp -noP
I m1i 80.3046 [5.03686 | 1.19871 | 0.340258 11.3985 |0.571957 (1
I
m2c_onlyic | _._é_ m2_onlyp |84.5787 |3.84888 |5.47276 |0.0401523 |8.98146 |20.1717 |1
I m2_onlyic | 141.327 |8.10745 |62.2212 | 1.90956e-14 | 31.6664 |338.568 |1
I
m2c_onlyc , _._é— m2_onlyc |152.975 |18.1559 | 73.8689 | 5.64512e-17 | 46.6488 |678.014 |1
I

75 100 125 150 175 200
Deviance

interaction is overfit. centering decorrelates
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Definitions

e dWAIC is the difference between each WAIC
and the lowest WAIC.

e SE is the standard error of the WAIC estimate.

e dSE is the standard error of the difference in
WAIC between each model and the top-
ranked model.

exp(—3dWAIC;)
> exp(—3dWAIC;)

w; =

read each weight as an estimated probability
that each model will perform best on future data.
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It is tempting to use information criteria to compare models with
different likelihood functions. Is a Gaussian or binomial better?
Can't we just let WAIC sort it out?

Unfortunately, WAIC (or any other information criterion) cannot
sort it out. The problem is that deviance is part normalizing
constant. The constant affects the absolute magnitude of the
deviance, but it doesn't affect fit to data.

— McElreath

Use Cross-Validation in such cases
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LOOCV

e Fit a model on N-1 data points, and use the Nth point as a validation point.

e the N-point and N-1 point posteriors are likely to be quite similar, use importance sampling. Fit the full
posterior once. Then we have

_ p(98|y—i) x 1
p(0sly) — p(y:il0s,y—i)

Wy

* the importance sampling weights can be unstablein the tails, pymc (pm. Loo) fits a generalized pareto to the
tail (largest 20% importance ratios) for each held out data point i (a MLE fit). Smooths out any large variations.

elpdloo — Z log(p(yi |y_z)) — Z log ( Zs ’;Ssptf;:/: ‘93) )
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What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the
same likelihood, the latter can be used with models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-likelihood models

(especially nested models where you are really performing feature selection), it is
the first line of attack

3. One does not always have to do model selection. Sometimes just do posterior
predictive checks to see how the predictions are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predictive performance within an existing

cluster or group. Cross validation is best for new observations from new groups
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Evidence for model comparison: Occams Razor

A
(@ M=0 M=1 M=2 M=3_ () r\| —
40 . 10 ’ |\ S1Impic
Vg o a
0 E |
20 g 0.6 8 ‘ |
M=4 M=5 M=6 M=T T 04 a |
40
2 \ | | 02 [’ ‘1 ‘just right’
|
0 | l l ’ 0 1 2 3 4 5 6 7 J : {00 complex
\| l l M L 1
203510 03510 0510 0 5 10 o

D
all possible datasets of size n
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Bayesian Model Averaging

pema(Y’|z", D) ZP “|z*, D, My )p(Mj|D)

where the averaging is with repect to weights w, = p(M}|D), the
posterior probabilities of the models M,..

Use the weights from the WAIC
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Counterfactual PP and ensembling via weights

300 140
250 120
100
200
80
150
60
100
’ 40
4/' \
50 |
20
0 0
6 7 8 9 10 1 12 13 6 7 8 9 10 1 12 13
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Xesian Workflow
(from @ericnovik)

p(y| X, 0) * p(6) p(fly, X)

Gather Prior Formulate a STV EVCRELC it fa:;i::;? R Fit the model to
Knowledge generative model data parameters real data

Evaluate and
Add Structure to § « criticize the

P(Ynew|y)

Predict for each Inference

decision

Maximize Set up a utility



Battery of tests

e Visual Inspection

e Gewecke, Gelman Rubin, Effective N, posteriors from various
starts

e posterior plots, pairwise posterior plots

e Divergences, enerygyplots
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Parallel Co-ordinates for divergences

see paper on bayesian viz

mu tau theta_ 0 theta__ 1 theta_ 2 theta_ 3 theta_ 4 theta_ 5 theta_ 6 theta_ 7
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https://arxiv.org/pdf/1709.01449.pdf

Model Calibration

Think about the Bayesian Joint distribution.
p(0,y) = p(y | 0)p(6)

The prior predictive:

p(y) = / dip(0,y) = / dfp(y | 0)p(6)
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How to choose priors?

e mild regularization

e un-informativity

e sensible parameter space

e should correspond to scales and units of process being modeled

e we should calibrate to them
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Generate Artificial data sets

e from fixed params, but even better, from priors

* 6~ p(6)

* §j~ply|0)

e callibrate inferences or decisions by analysing this data

. Ula) = / d6dgp(, 6)U(a(), 6)
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Posterior Quantiles

Figure 3. An example of posterior quantiles g from software with error. An effective summary for detecting the
error should emphasize quantiles near O or 1, such as h(qg) = (d—1(q))".
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Now fit a posterior to each
generated dataset

see Cook et al

take each §
get a @ | g posterior
find the rank of @ in "its" posterior

a histogram of ranks should be uniform-
this tests our sampling software
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http://www.stat.columbia.edu/~gelman/research/published/Cook_Software_Validation.pdf
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Sensitivity of posterior to
range allowed by prior

on(0n|7)

On (en‘?j)z
o (§)?

S, = 1

where 1 and o are generated-posterior

quantities and 7 is a prior one, and n
iIndexes the parameters
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Then move to the REAL DATA posterior

now we do posterior predictive checks

the prior checks have specified possible data distributions that can
be generated

the posterior predictive ought to be a subset of these. If not our
model is mis-specified

this may seem strange as we didnt think priors are data generating

they are not but are defined with respect to the likelihood
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The Workflow (from Betancourt, and Savage)
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Prior to Observation

1. Define Data and interesting statistics
2. Build Model

3. Analyze the joint, and its data marginal (prior predictive) and its summary statistics
4. fit posteriors to simulated data to calibrate

e check sampler diagnostics, and correlate with simulated data

e use rank statistics to evaluate prior-posterior consistency

e check posterior behaviors and behaviors of decisions
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Posterior to Observation

1. Fit the Observed Data and Evaluate the fit

e check sampler diagnostics, poor performance means generative model not consistent with actual data
2. Analyze the Posterior Predictive Distribution

e do posterior predictive checks, now comparing actual data with posterior-predictive simulations

e consider expanding the model
3. Do model comparison

e usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

e you might want to ensemble instead
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GENERATIVE
MODELS



Mixture Models

3 a? b a? A distribution p(x|{0}) is a mixture of K

component distributions py, ps, ... px if:
~ Dirichletk(a)

7
2, Q Z(P z3<P ZHQ ~ Discrete(s)
0.0 0 -®

O

p(z[{6k}) Z)\kpk (z|6k)

. . . . N ) with the \; being mixing weights, A\ > 0,
~ S =
i K2 K ~ N0, o)) k
A K
v ‘ Example: Zero Inflated Poisson
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Generative Model: How to simulate from it?

Z ~ Categorical( A1, A2, ..., k)

where Z says which component X is drawn from.

Thus ); is the probability that the hidden class variable z = j.

Then: X ~ p,(z|0,) and general structure is:

p(z|0) = Zp Zp p(z|z, 6) where 0 = {60, }.
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GMM supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)

m m

_%ZZ CC_,UzZ x—yz —I—i Zz log)\—l—(l—zz)log(l—)‘)]

1=1 1=1 1=
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Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U, )p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yr) = Y pla)o(xla)
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Semi-supervised learning

We have some labels, but typically very few labels: not enough to
form a good training set. Likelihood a combination.

({zi}, {z;}, {2:}16, %) = ) logp(ai, zi|X,6) + ) logp(z;|, 6)
— Z logp(z; | \)p(x;|2.0) + Z log Zp(zj\)\)p(mj|zj, 6)

Here 1 ranges over the data points where we have labels, and j over

the data points where we dont.
&AM 207
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Autoencoders

e can think of an autoencoder as a way of
approximately training a generative
model.

e the features of the autoencoder
describe the latent variables that Dencodes LR | &)
explain the input

Pdecader "B | h'

e can go deep!

e generalize to a stochastic autoencoder.
The standard autoencoder then is a
specific hidden state h or 2
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encode > decode >

(from he
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https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1




The EM algorithm

e jterative method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

e Sorta like, just assign points to clusters to start with and iterate.

e Then, at each iteration, replace the augmented data by its conditional
expectation (more precisely, compute the conditional expectation of the
augmented or full data likelihood) given current observed data and
parameter estimates. (E-step)

 Maximize the full-data likelihood (M-step).
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x-data likelihood

(, 2|6)
q

logp(z|0) = E, [logp | + Dkr(q,p)

If we define the ELBO or Evidence Lower
bound as:

x, z|0)

L(q,0) = E, [logp( q

|

then log p(z|#) = ELBO + KL-divergence
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KL(g||p) =0
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E-step and M-step

L(q, onCW’)

In p(X|60"")
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Process

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate
q(z,004) = p(z|x, 0,4) Which gives
rise to ELBO(0): L(q(z, ,14), 6)(blue
curve) whose value equals the value
of p(a:|6’) at 6,4.

2. M-step: maximize ELBO (or Q func)
wrt 0 to get 0,,.,,.

’ 90](1 gncw :
3. 5et 0,19 = Onew
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VARIATIONAL
INFERENCE




Variational Inference Core Ildea

z is now all parameters. Dont distinguish
from 6.

Restricting to a family of approximate

d
t

istributions D over z, find a member of
nat family that minimizes the KL

C

lvergence to the exact posterior. An

optimization problem:

q (2) = ar(g)r;l;n KL(q(2)||p(z|z))
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Basic Setup in VI

KL + ELBO = log(p(x)): ELBO bounds log(evidence)

2,2), _ o palDp(e)
az) |~ Pallos =y

—> ELBO(q) = E,,)|(log(p(z|z))] — KL(q(2)||p(2))

p(2) |

ELBO(q) = E,llog q(z)

= F,|logp(x|z)| + E,|log

(likelihood-prior balance)
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Mean Field: Find a ¢ such that:

KL + ELBO = log(p(x)): KL minimized means ELBO maximized.

Choose a "mean-field" ¢ such that:

m

q(2) = || 9i(2))

j=1

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.
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ADVI

e CAVI does not scale

Core ldea:

e Use gradient based optimization, do it on less data

e do it automatically
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What does ADVI do?

1. Transformation of latent parameters (T transform)
e reparametrize mean field parameters to the real line

2. Standardization transform for posterior to push gradient inside
expectation (S transform)

3. Monte-Carlo estimate of expectation

4. Hill-climb using automatic differentiation
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2D gaussian example

High correlation gaussian with sampler

4
cov=np.array([[0,0.8],[0.8,0]], dtype=np.floaté4)
) data = np.random.multivariate normal([©0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
density = pm.MvNormal( 'density', mu=[0,0],
0 cov=tt.fill _diagonal(cov,1), shape=2)
with mdensity:
mdtrace=pm.sample(10000)
-2
-4

Trace: == . . . . . . . .
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Two ideas from Yao et. al.

e pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementation, WIP). The
Idea comes from the process of smoothing in LOOCV estimation

e VSBC (variational simulation based callibration) : Extends
calibration from Bayesian Workflow to variational case. pymc3

experimentation by @junpenglao here, WIP
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https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb

Why use VB: Deep Generative Models

e simply not possible to do inference in large models
e inference in neural networks: understanding robustness, etc
e hierarchical neural networks (perhaps on exam)

 Mixture density networks: mixture parameters are fitted using
ANNS

e extension to generative semisupervised learning
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https://arxiv.org/pdf/1406.5298.pdf

Variational Autoencoder

e just as in ADVI, we want to learn an approximate "encoding
posterior" p(z|z)

e note that we have now again gone back to thinking of z as a
(possibly) deep latent variable, or "representation”.

We know how to do this:

ELBO maximization
@AM 207
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Why?

See pymc3 for e.g. for auto-encoding LDA

e variational auto-encoders algorithm which allows us to perform
inference efficiently for large datasets

e use tunable and flexible encoders such as multilayer perceptrons
(MLPs) as our variational distribution to approximate complex
variational posterior
-then its just ADVI with mini-batch on PyMC3 or pytorch. Can
use for any posterior, example LDA, or custom for MNIST
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https://docs.pymc.io/notebooks/lda-advi-aevb.html

Big Ideas
e |learning is possible because there is a compressive manifold on which the
data lives
e through SGD, HMC, etc we try tolearn about this manifold

e principled modeling can be done by combining known schemes such as
poisson GLM with deep networks

* networks (which are just complex models) can be used at other places such
as variational posteriors

e priors will regularise for us!

@AM 207

198



Interesting Times

e we progress by first predicting, and then understanding the
robustness of our inference: posteriors and error bars

« MCMC/HMC, bayesian workflow, generative models, deep
generative models and variational inference are at the cutting
edge

e we have tried in this course to cover the basics and then be at
this edge in places

@AM 207

199



What you have done and should do

e alot of practice with lecture examples, labs, and homework
 been at the edge with your paper
e stay at the edge! Twitter is the place to be.

e follow folks like Andrew Gelman, Michael Betancourt, Jim Savage, Dan
Simpson, lan Goodfellow, Aki Vehtari, Dustin Tran, BayesGroup, Stephen
Merity, Jeremy Howard, Roger Grosse, Ferenc Huszar, Alex D'Amour, Tom

Wiecki, Colin Carrol, Tom Augsperger, Francios Chollet, Junpeng Lao,
Richard McElreath

@AM 207 200



FIN
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https://www.youtube.com/watch?v=yG8o47npQug

