Bayes Recap

匋AM 207

Frequentist Stats

- parameters are fixed, data is stochastic
- true parameter θ^{*} characterizes population
- we estimate $\hat{\theta}$ on sample
- we can use MLE $\theta_{M L}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}$
- we obtain sampling distributions (using bootstrap)

Bayesian Stats

- assume sample IS the data, no stochasticity
- parameters θ are stochastic random variables
- associate the parameter θ with a prior distribution $p(\theta)$
- The prior distribution generally represents our belief on the parameter values when we have not observed any data yet (to be qualified later)

Posterior distribution

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

with the evidence or prior predicive distribution $p(D)$ or $p(y)$ the expected likelihood (on existing data points) over the prior $E_{p(\theta)}[\mathcal{L}]$:

$$
p(y)=\int d \theta p(y \mid \theta) p(\theta)
$$

- posterior $=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}$
- evidence is just the normalization
- usually dont care about normalization (until model comparison), just samples
- What if θ is multidimensional? Marginal posterior:

$$
p\left(\theta_{1} \mid D\right)=\int d \theta_{-1} p(\theta \mid D)
$$

Posterior Predictive for predictions

The distribution of a future data point y^{*} :

$$
p\left(y^{*} \mid D=\{y\}\right)=\int d \theta p\left(y^{*} \mid \theta\right) p(\theta \mid\{y\})
$$

Expectation of the likelihood at a new point(s) over the posterior $E_{p(\theta \mid D)}[p(y \mid \theta)]$.
(the expectation over the prior is the prior predictive or evidence)

Summary via MAP (a point estimate)

$$
\begin{aligned}
\theta_{\mathrm{MAP}} & =\arg \max _{\theta} p(\theta \mid D) \\
& =\arg \max _{\theta} \frac{\mathcal{L} p(\theta)}{p(D)} \\
& =\arg \max _{\theta} \mathcal{L} p(\theta)
\end{aligned}
$$

Plug-in Approximation: $p(\theta \mid y)=\delta\left(\theta-\theta_{M A P}\right)$ and then draw
$p\left(y^{*} \mid y\right)=p\left(y^{*} \mid \theta_{M A P}\right)$ a sampling distribution.

Posterior predictive from sampling

- first draw the thetas from the posterior
- then draw y's from the likelihood
- and histogram the likelihood
- these are draws from joint y, θ

Posterior predictive Idea

Bayesian Workflow (from @ericnovik)

$$
p(y \mid X, \theta) * p(\theta)
$$

$$
p(\theta \mid y, X)
$$

Conjugate Prior

- A conjugate prior is one which, when multiplied with an appropriate likelihood, gives a posterior with the same functional form as the prior.
- Likelihoods in the exponential family have conjugate priors in the same family
- analytical tractability AND interpretability

Coin Toss Model

- Coin tosses are modeled using the Binomial Distribution, which is the distribution of a set of Bernoulli random variables.
- The Beta distribution is conjugate to the Binomial distribution

$$
p(p \mid y) \propto p(y \mid p) P(p)=\operatorname{Binom}(n, y, p) \times \operatorname{Beta}(\alpha, \beta)
$$

Because of the conjugacy, this turns out to be:

$$
\operatorname{Beta}(y+\alpha, n-y+\beta)
$$

- think of a prior as a regularizer.
- a $\operatorname{Beta}(1,1)$ prior is equivalent to a uniform distribution.
- This is an uninformative prior. Here the prior adds one heads and one tails to the actual data, providing some "towards-center" regularization
- especially useful where in a few tosses you got all heads, clearly at odds with your beliefs.
- a $\operatorname{Beta}(2,1)$ prior would bias you to more heads (water in globe toss).
氟AM 207

Bayesian updating of posterior probabilities

: AM 207

Bayesian Updating "on-line"

- as each piece of data comes in, you update the prior by multiplying by the one-point likelihood.
- the posterior you get becomes the prior for our next step

$$
p\left(\theta \mid\left\{y_{1}, \ldots, y_{n+1}\right\}\right) \propto p\left(\left\{y_{1}, \ldots, y_{n}\right\} \mid \theta\right) \times p\left(\theta \mid\left\{y_{1}, \ldots, y_{n}\right\}\right)
$$

- the posterior predictive is the distribution of the next data point!

$$
p\left(y_{n+1} \mid\left\{y_{1}, \ldots y_{n}\right\}\right)=E_{p\left(\theta \mid\left\{y_{1}, \ldots y_{n}\right\}\right)}\left[p\left(y_{n+1} \mid \theta\right)\right]=\int d \theta p\left(y_{n+1} \mid \theta\right) p\left(\theta \mid\left\{y_{1}, \ldots y_{n}\right\}\right)
$$

Beta-Binomial all at once

- Seal tosses globe, θ is true water fraction
- The Beta distribution is conjugate to the Binomial distribution $p(\theta \mid y) \propto p(y \mid \theta) P(\theta)=\operatorname{Binom}(n, y, \theta) \times \operatorname{Beta}(\alpha, \beta)$
- Because of the conjugacy, this turns out to be:
$\operatorname{Beta}(y+\alpha, n-y+\beta)$
- a $\operatorname{Beta}(1,1)$ prior is equivalent to a uniform distribution.

Posterior

- The probability that the amount of water is less than 50% : np.mean(samples <0.5) = 0.173
- Credible Interval: amount of probability mass.np.percentile(samples, [10, 90]) = [0.44604094, $0.81516349]$
- np.mean(samples), np.median(samples) = (0.63787343440335842, 0.6473143052303143)

MAP, a point estimate

$$
\begin{aligned}
\theta_{\mathrm{MAP}} & =\arg \max _{\theta} p(\theta \mid D) \\
& =\arg \max _{\theta} \frac{\mathcal{L} p(\theta)}{p(D)} \\
& =\arg \max _{\theta} \mathcal{L} p(\theta)
\end{aligned}
$$

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0]) mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

310.662578641304

包AM 207

Posterior Mean minimizes squared loss

$$
\begin{aligned}
& R(t)=E_{p(\theta \mid D)}\left[(\theta-t)^{2}\right]=\int d \theta(\theta-t)^{2} p(\theta \mid D) \\
& \qquad \frac{d R(t)}{d t}=0 \Longrightarrow t=\int d \theta \theta p(\theta \mid D) \\
& \text { mse }=[\text { np.mean((xi-samples)**2) for } x i \text { in } x] \\
& \text { plt.plot(x, mse); }
\end{aligned}
$$

This is Decision Theory.

Posterior predictive

$$
p\left(y^{*} \mid D\right)=\int d \theta p\left(y^{*} \mid \theta\right) p(\theta \mid D)
$$

Risk Minimization holds here too: $y_{\text {minmse }}=\int d y y p(y \mid D)$
Plug-in Approximation: $p(\theta \mid D)=\delta\left(\theta-\theta_{M A P}\right)$ and then draw

$$
p\left(y^{*} \mid D\right)=p\left(y^{*} \mid \theta_{M A P}\right) \text { a sampling distribution. }
$$

Posterior predictive from sampling

- first draw the thetas from the posterior
- then draw y's from the likelihood
- and histogram the likelihood
- these are draws from joint y, θ
postpred $=$ np.random.binomial(len(data), samples);

Posterior predictive for globe tosses

Normal-Normal Model

$$
p\left(\mu, \sigma^{2}\right)=p\left(\mu \mid \sigma^{2}\right) p\left(\sigma^{2}\right)
$$

- fixed σ prior: $p\left(\sigma^{2}\right)=\delta\left(\sigma^{2}-\sigma_{0}^{2}\right)$
- non-fixed σ prior: Choose a functional form that is mildly informative, e.g., normal, half cauchy, half normal
- μ prior: Mildly informative normal with prior mean and wide standard deviation

- fixed σ

logprior = lambda mu:
norm.logpdf(mu, loc=mu_prior, scale=std_prior) loglike = lambda mu:
np. sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost $=$ lambda mu:
loglike(mu) + logprior(mu)

- non-fixed σ :

logprior = lambda mu, sigma:
norm. logpdf(mu, loc=mu_prior, scale=std_prior) +
norm. logpdf(sigma, loc=sig_data, scale=2)
loglike = lambda mu, sigma:
np.sum(norm.logpdf(Y, loc=mu, scale=sigma))
logpost = lambda mu, sigma:
loglike(mu, sigma) + logprior(mu, sigma)

Marginalization

Marginal posterior:
$p\left(\theta_{1} \mid D\right)=\int d \theta_{-1} p(\theta \mid D)$.
samps[20000::,:].shape \#(10001, 2)
sns.jointplot(
pd.Series(samps[20000::,0], name="\$\mu\$"), pd.Series(samps[20000::,1], name="\$\sigma\$"),
alpha=0.02)
plot_joint(
sns.kdeplot,
zorder=0, n_levels=6, alpha=1)
Marginals are just 1D histograms
plt.hist(samps[20000::,0])

Posterior Predictive

The distribution of a future data point y^{*} :

$$
\begin{gathered}
p\left(y^{*} \mid D=\{y\}\right)=E_{p(\theta \mid D)}[p(y \mid \theta)] \\
=\int d \theta p\left(y^{*} \mid \theta\right) p(\theta \mid\{y\}) .
\end{gathered}
$$

First draw the thetas from the posterior, then draw y's from the likelihood (these are draws from joint y, θ)
post_pred_func = lambda post: norm.rvs(loc = post, scale = sig)
post_pred_samples = post_pred_func(post_samples)

Regularization in the Normal-Normal Model

Posterior for a gaussian likelihood:

$$
p\left(\mu, \sigma^{2} \mid y_{1}, \ldots, y_{n}, \sigma^{2}\right) \propto \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(y_{i}-\mu\right)^{2}} p\left(\mu, \sigma^{2}\right)
$$

What is the posterior of μ assuming we know σ^{2} ?

Prior for σ^{2} is $p\left(\sigma^{2}\right)=\delta\left(\sigma^{2}-\sigma_{0}^{2}\right)$

$$
p\left(\mu \mid y_{1}, \ldots, y_{n}, \sigma^{2}=\sigma_{0}^{2}\right) \propto p\left(\mu \mid \sigma^{2}=\sigma_{0}^{2}\right) e^{-\frac{1}{2 \sigma_{0}^{2}} \sum\left(y_{i}-\mu\right)^{2}}
$$

The conjugate of the normal is the normal itself.
Say we have the prior

$$
p\left(\mu \mid \sigma^{2}\right)=\exp \left\{-\frac{1}{2 \tau^{2}}(\hat{\mu}-\mu)^{2}\right\}
$$

posterior: $p\left(\mu \mid y_{1}, \ldots, y_{n}, \sigma^{2}\right) \propto \exp \left\{-\frac{a}{2}(\mu-b / a)^{2}\right\}$

Here
$a=\frac{1}{\tau^{2}}+\frac{n}{\sigma_{0}^{2}}, \quad b=\frac{\hat{\mu}}{\tau^{2}}+\frac{\sum y_{i}}{\sigma_{0}^{2}}$
Define $\kappa=\sigma^{2} / \tau^{2}$

$$
\mu_{p}=\frac{b}{a}=\frac{\kappa}{\kappa+n} \hat{\mu}+\frac{n}{\kappa+n} \bar{y}
$$

which is a weighted average of prior mean and sampling mean.

The variance is

$$
\begin{gathered}
\tau_{p}^{2}=\frac{1}{1 / \tau^{2}+n / \sigma^{2}} \\
\text { or better } \\
\frac{1}{\tau_{p}^{2}}=\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}} .
\end{gathered}
$$

as n increases, the data dominates the prior and the posterior mean approaches the data mean, with the posterior distribution narrowing...
(4M 207

Posterior vs prior

$Y=[16.4,17.0,17.2,17.4,18.2,18.2,18.2,19.9,20.8]$
\#Data Quantities
sig = np.std(Y) \# assume that is the value of KNOWN sigma (in the likelihood) mu_data = np.mean(Y)
$n=\operatorname{len}(Y)$
\# Prior mean
mu_prior = 19.5
\# prior std
tau = 10
\# plug in formulas
kappa $=$ sig**2 / tau**
sig_post $=n \mathrm{p} . \operatorname{sqrt}\left(1 . /\left(1 . / \mathrm{tau}^{* * 2}+\mathrm{n} /\right.\right.$ sig**2))
\# posterior mean
mu_post $=$ kappa $/($ kappa $+n)$ *mu_prior $+n /(k a p p a+n) *$ mu_data \#samples
$N=15000$
theta_prior = np.random.normal(loc=mu_prior, scale=tau, size=N); theta_post $=$ np.random.normal(loc=mu_post, scale=sig_post, size=N);

